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A hierarchical model for the cell loading problem of cellular

manufacturing systems

M. SELIM AKTURK² * and GEORGE R. WILSON³

A hierarchical cell loading approach is proposed to solve the production planning
problem in cellular manufacturing systems. Our aim is to minimize the variable
cost of production subject to production and inventory balance constraints for
families and items, and capacity feasibility constraints for group technology cells
and resources over the planning horizon. The computational results indicated
that the proposed algorithm was very e� cient in ® nding an optimum solution
for a set of randomly generated problems.

1. Introduction

A recent change in the customers’ sense of values has forced many companies to
manufacture products in a speci® ed period, with very short notice, and with the
production volume for each product very low. This market environment must be
accommodated by a classic batch-type production (BP). BP accounts for 60± 80% of
all manufacturing activities. Group technology (GT) is an innovative approach to
BP which seeks to rationalize small-lot production by capitalizing on the similarities
that exist among component parts and/or processes. The central theme of GT, when
applied to component parts, is the formation of part families on the basis of design
or manufacturing, or both. Once formed, these part families can be used to achieve
e� ciencies in, primarily but not exclusively, (1) product design, (2) manufacturing
engineering and (3) cellular manufacturing (CM). CM, which is a subset and deri-
vative of GT, is the physical division of the manufacturing facilities into production
cells, representing the basis for advanced manufacturing systems such as just-in-time,
¯ exible manufacturing systems and computer integrated manufacturing as discussed
in Gunasekaran et al. (1994). In CM, each cell is designed to produce a part family or
families e� ciently.

There are many studies related to the part-family and machine-cell formation
(PFMCF) problems in the context of the CM systems. In the literature, these studies
can be categorized into two major groups: the classi ® cation and coding (CC) systems
and the clustering methods. O� odile et al. (1994) provide a comprehensive review of
the CM literature and present an extensive bibliography of the PFMCF problems by
citing more than 100 GT related works. Furthermore, an overview of similarity and
distance measures for solving the cell formation problem can be found in Shafer and
Rogers (1993). Hyer and WemmerlÈ ov (1989) reported the ® ndings of a survey of 53
US users of GT. Thus, as an approach to increasing the productivity of BP, GT’s
importance is growing. But the literature on GT is not speci® c with regard to how
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the production plan is actually obtained. Rather, it seems to suggest that economic
production plans will be easy to ® nd once a production operation is decomposed into
machine groups and part families. Morris and Tersine (1989, 1990) and Shafer and
Charnes (1995) performed simulation experiments to investigate several factors that
might in¯ uence the loading problem in CM systems. They have shown that a direct
conversion from a process layout to a cellular layout by itself was not able to bring
about all the stated advantages suggested in the literature. It would appear that a
new cellularly divided shop must be controlled with e� cient production planning
systems so as to bene® t from the advantages of GT. Therefore, the thrust of this
paper is the development of a hierarchical cell loading approach to solve the produc-
tion planning problem in CM systems.

Cell loading, or production planning, in a CM environment is a decision activity
that determines the kind of items and the quantities to be produced in each cell in the
speci® ed time period, subject to the production capacity and demand forecast. Two
distinct approaches for the cell loading problem in a BP environment have appeared
in the literature. The ® rst approach, termed the monolithic approach, formulates the
cell loading problem as a large mixed-integer linear programming (MILP) problem
at an individual item level and heuristic procedures are sought to solve it, such as
Ham et al. (1985). The second approach is the hierarchical approach, which parti-
tions the overall problem into a hierarchy of smaller problems. The earliest contri-
bution in the area of hierarchical production planning (HPP) is attributed to Hax
and Meal (1975). Hax and Meal’s HPP approach de® nes three levels of aggregation
for products. The top level derives from an aggregate planning model using linear
programming for the variables corresponding to `types’ , which are sets of items that
are similar in terms of seasonal demand patterns and production rates. The middle
level considers a heuristic disaggregation of the types into f̀amilies’ which are sets of
items that have similar setup costs. Third level decisions consist of disaggregating
families into items based on equalizing runout times. The underlying idea of their
approach is to make decisions sequentially starting from the highest level. The
decision at each level then becomes a constraint for the next lower level. The
major drawback of this approach is that constraints imposed by higher levels are
based on type level calculations only. This might create empty feasible solution
spaces and otherwise unnecessarily limit the number of alternatives possible at the
lower levels. Furthermore, the original HPP procedure is based on the assumption
that setup costs are of secondary importance and magnitude; therefore, they do not
consider its cost impact in the model, and their approach lacks any feedback
mechanism.

The initial work of Hax and Meal has been extended by several authors. Bitran et
al. (1981) reformulated the family and item disaggregation plan of Hax and Meal as
a knapsack problem. They showed that whenever setup costs are low, the results
approached optimality and remained insensitive to forecast errors. Graves (1982)
considered a di� erent approach to the HPP. He ® rst formulated the overall problem
as a monolithic MILP assuming an in® nite production capacity, then used a
Lagrangean relaxation procedure to solve the dual to the MILP. The linear problems
obtained through Lagrangean relaxation were the aggregate planning model and a
set of uncapacitated lot-size models for each product type. His approach also
includes a feedback mechanism between subproblems. Most of the HPP approaches
assume in® nite production capacity and, therefore, ignore capacity constraints. But
their results might easily become infeasible if there is a bottleneck workstation which
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governs the production rate in the system. A more detailed discussion of the HPP
approaches can be found in Bitran and Tirupati (1993) and McKay et al. (1995).

The underlying philosophy of the proposed hierarchical cell loading approach
has some similarities to the HPP approach developed by Hax and Meal, and
extended by Graves. The proposed approach is directed toward extending and
enhancing the HPP in several ways utilizing knowledge of GT-based manufacturing
systems. The ® rst enhancement is the formulation of the production planning pro-
blem. In the proposed approach, the capacity constraints are added to the problem
formulation, as a result, the production rates are determined to be within the current
capacity of the system. Furthermore, the advantages of a CM shop con® guration are
used to simplify the problem by allowing the inclusion of spatial decomposition,
where the manufacturing system is divided into a set of GT cells, and there is a
structured product-based aggregation/disaggregation (A/D) scheme based on GT
oriented CC systems. Another enhancement is to one of the central ideas of the
HPP approach which is to making decisions sequentially starting from the highest
level. In this top-down constrained approach, solutions to higher levels become
`hard’ constraints to the lower levels as discussed above. By contrast, in the proposed
approach the higher levels do not dictate bounds to the lower levels, but rather
provide guidance, or s̀oft’ constraints, which are priced out by a set of dual vari-
ables, that focus lower level searches in areas most likely to contain good solutions.
Consequently, the dual and feedback information are passed between the levels to
ensure internally consistent decisions.

The remainder of this paper is organized as follows. In the following section, a
mathematical programming formulation is presented to solve the cell loading pro-
blem. We discuss the proposed solution procedure in § 3. A full factorial design is
developed in § 4 to evaluate the e� ects of several system parameters. Finally, some
concluding remarks are provided in § 5. Furthermore, a list of abbreviations used
throughout the paper is as follows:

GT: Group technology
CM: Cellular manufacturing
A/D: Aggregation/disaggregation
CCS: Classi® cation and coding systems

2. Mathematical formulation

Our aim is to allocate production capacity among GT families and items by
means of the proposed aggregate planning model. This can be achieved by solving
a multi-period optimization problem which minimizes the summation of production,
setup, inventory holding, and regular and overtime capacity costs subject to produc-
tion and inventory balance constraints for families and items, and capacity feasibility
constraints for GT cells and resources over the planning horizon. The objective
function corresponds to the minimization of the variable cost of production. The
set of the parameters and decision variables are given in tables 1 and 2, respectively.

In the proposed cell loading approach we consider the capacity constraints at a
more detailed level at the higher levels of the decision making hierarchy. As stated
earlier, most of the hierarchical approaches in the literature either assume in® nite
production capacity or deal with the capacity issues in an aggregated manner at the
higher decision making levels, which might lead to an infeasible solution when we
consider the detailed capacity constraints of bottleneck resources. Let’s look at the

Cell loading in CMSs: a hierarchical model 2007
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following example of 3 items and 3 resources with the corresponding demand and
processing times per item on each resource as shown in table 3. If we assume that the
available capacity for each resource is 40 time units then total available capacity is
40 *3 = 120 time units, and total required capacity is 2.5 *10 + 3.5 *15 + 3 *10
= 107.5 time units. If we only apply an aggregated capacity check then we conclude
that there is enough capacity so we proceed on. Although we cannot meet total
demand requirements by producing exactly the required quantities at the required
period with zero inventories since Resource 2 is a bottleneck resource and
1 *10 + 2 *15 + 1 *10 = 50 > 40.

An A/D scheme is applied to reduce the size of the problem, where the decom-
position of the manufacturing system proceeds in three dimensions: by ¯ oor space

2008 M. S. Akturk and G. R. Wilson

C i j t : Aver. unit cost for producing one unit of family i by cell j in period t

r j t : Aver. cost of one regular time unit for cell j during period t

o j t : Aver. cost of one overtime unit for cell j during period t

h i t : Aver. holding cost for family i in period t

d i t : Demand for family i in period t

a i j : Aver. total time required to produce one unit of family i at cell j

B S i j : Setup cost for family i in secondary cell j

B P i j : Setup cost for family i in primary cell j

b s i j : Setup time for family i in secondary cell j

b p i j : Setup time for family i in primary cell j

Q i j t : Initial estimate for the lot size of family i in cell j in period t

P j : Set of families which their primary cell is j

S j : Set of families which their secondary cell is j

F S ( j) : A feasible set of families assignable to cell j

d k tw : Demand for item k in subperiod w of period t

T I ( i) : A set of items belonging to family i

t : n *w , where n is an integer multiple
P R k l : Aver. total time required to produce one unit of item k using resource l

a l t : Aver. proportion of time resource l is down in period t

L R ( j) : Set of resources belonging to cell j

N O (k j) : Number of operations for item k in cell j

N I ( i ) : Number of items belonging to family i

N R ( j) : Number of resources in cell j

J : Number of cells
N : Number of families
K : Number of items
L : Number of resources
T : Planning horizon

Table 1. Parameters.

X i j t : Number of units of family i produced by cell j in period t

I F i t : Inventory of family i at the end of period t

O j t : Overtime used by cell j in period t

R j t : Regular time used by cell j in period t

Z k jtw : Number of units of item k produced by cell j in subperiod w of period t

I k t w : Inventory of item k at the end of subperiod w of period t

O R l t : Overtime used by resource l in period t

R R l t : Regular time used by resource l in period t

Table 2. Decision variables.
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(or resource-based), by product, and by time horizon. In the ¯ oor space decomposi-
tion, the manufacturing system is divided into a set of GT cells where each cell is
designed to produce a GT family or families. In the product-based decomposition,
similar items are grouped into GT families, based on their designs or processes, or
both. Throughout this research a GT family is de® ned as a set of items that require
similar machinery, tooling, machine operations, jigs and ® xtures. Both GT cell for-
mation and the prerequisite product family determinations are assumed to have been
done a priori to this planning activity, but their impact on the performance of the
results are tested in § 4. In the time scale decomposition, the levels of the decision
hierarchy di� er by complexity, scope and time horizon in that higher levels deal with
longer range and more aggregated issues, and lower levels deal with short term and
more speci® c issues. The linkage between the di� erent levels is achieved through a
feedback mechanism and a set of Lagrange multipliers as discussed in the next
section. Our time scale decomposition corresponds to the shop and cell levels of
the control structure developed for the automated manufacturing research facility at
the National Institute of Standards and Technology in the USA, which decomposes
the manufacturing functions into ® ve levels: facility, shop, cell, workstation, and
equipment as discussed by Jackson and Jones (1987).

A mathematical formulation of the problem is as follows:

Minimize å
T

t=1
å

J

j=1 ( å
i Î FS ( j)

Cijt ´Xijt + å
i Î Sj

(BSij /Qijt) ´Xijt + å
i Î Pj

(BPij /Qijt) ´Xijt

+ ojt ´Ojt + rjt ´ Rjt) + å
T

t=1
å

N

i=1

hit ´IFit

subject to

� production and inventory balance equations for each family:

å
J

j=1
Xijt + IFi,t- 1 - IFit = dit, for i = 1, . . . ,N and t = 1, . . . , T (1)

� capacity restrictions for each cell:

å
i Î FS ( j)

aij ´Xijt + å
i Î S j

(bsij /Qijt) ´Xijt + å
i Î Pj

(bpij /Qijt) ´Xijt - Ojt = Rjt

for j = 1, . . . ,J and t = 1, . . . , T (2)

Cell loading in CMSs: a hierarchical model 2009

Resource

Item Demand 1 2 3 Processing Time

1 10 1 1 0.5 2.5
2 15 1 2 0.5 3.5
3 10 1 1 1 3

Table 3. Aggregate capacity planning problem.

Total
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0 £ O jt £ (Upper limit) " j and t (3)

0 £ Rjt £ (Upper limit) " j and t (4)

� production and inventory balance equations for each item:

å
J

j=1

Zkjtw + Ikt,w- 1 - Iktw = dktw " k Î TI( i),w and t (5)

� inventory consistency equations:

å
k Î TI( i)

å
n

w=1

Iktw - IFit = 0 " i and t (6)

� capacity restrictions for each resource:

å
i Î FS ( j)

å
k Î TI( i)

PRkl å
n

w=1
Zkjtw( ) - ORlt = RRlt " l Î L R( j), j and t (7)

0 £ ORlt £ (Upper Limit) " l and t (8)

0 £ RRlt £ (Upper limit) ´ ( 1 - a lt) " l and t (9)

� resource consistency relations:

å
l Î L R( j)

ORlt - Ojt = 0 " j and t (10)

å
l Î L R( j)

RRlt - Rjt = 0 " j and t (11)

� non-negativity restrictions:

Xijt, IFit, Ojt, Rjt, Zkjtw, Iktw, ORlt and RRlt ³ 0 " i, j,k, l,t and w. (12)

The constraint sets (1) and (5) are the inventory balance constraints for families
and items, respectively, in which both the amount of inventory left in stock at the
end of each period and the demand in each period are supplied by the amount of
production in each period and the amount of inventory carried over from the pre-
vious period. No backordering is allowed. Moreover, a deterministic, but time-vary-
ing, demand for every item in every time period is assumed. Constraint (6), which
represents the inventory consistency equations, links the item inventories to the
inventory of the associated family. This constraint requires that the inventory for
a family equal to the sum of the inventories of the items contained in the family. As a
result, individual items are mapped into their corresponding families. Given that
å n

w=1 å k Î TI( i) dktw = dit, it can be shown that the constraint set, which includes
all the resource, production and inventory constraints, implies that
å n

w=1 å k Î TI( i) Zkjtw = Xijt for all i, j and t; that is, for each time period total
family production equals the sum of the production quantities for its items.

Constraints (2) and (7) are the capacity feasibility constraints for GT cells and
resources. Upper limits on regular and overtime usages are also de® ned by con-
straints (3), (4), (8) and (9). For the computational analysis, the upper limits on
the overtime are set to 25% of the upper limits on the amount of regular time
available. Constraints (10) and (11) link the available time for each GT cell to the

2010 M. S. Akturk and G. R. Wilson
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resources comprising that cell. An important assumption concerns the de® nition of
the capacity, which depends on the time scale. Long-term capacity is a statistical
average of actual short-term capacity. The available resource times are de® ned in
terms of proportion of time down, such as if a resource is down 10% of the time, and
this will be deducted from its available capacity as shown in constraint (9). As a
result, the production quantities are determined such that they are much more likely
to be within the current capacity of the system as prescribed by chance constrained
programming in Charnes and Cooper (1959).

Implicit in constraint (2) is the possibility that each GT family can have more
than one feasible cell for its production. A feasible cell is de® ned as a cell in which a
family can be processed entirely within that cell considering feasibility requirements.
A more detailed discussion on the formation of primary and secondary cells can be
found in Akturk and Balkose (1996). It is assumed that the primary cell of a family is
capable of producing the family at the lowest possible cost. Secondary cells are the
ones in which the manufacture of the family is possible at a higher cost, due to both
increased setup and material handling costs, assuming that all cells are initially
tooled for their primary families. An additional cost is incurred when other than
the primary families need to be produced at that cell. Therefore, the setup costs and
setup times for the families in their secondary cells are assumed greater than the
setup costs and setup times in the primary cells. The parameter, Qijt, is an initial
estimate for lot size allowing the cell resource constraints to approximately account
for the total setup time which is directly proportional to the number of setups
required to meet the desired production quantities at each cell. Also, the de® nition
of primary and secondary cells for each family allows the production management
system to react to the variations in the families’ total demand. For example, during a
very low demand period, one cell may be completely shut down because of main-
tenance and that cell’s families are assigned to some other cell.

At the cell loading level, there are three basic ways of responding to changes in
demand: holding a relatively constant production rate and using inventory to satisfy
demand peaks, using changes in level of production to follow demand closely, or
combining these two strategies to meet demand. There are di� erent ways to change
the level of production, including overtime and assigning some of the items into their
secondary cells with an additional production cost and time. Given a capacity limit,
tradeo� s can be made among the costs of inventory, overtime and secondary cells.
To further illustrate the mathematical formulation of the cell loading problem, we
consider a numerical example involving 4 GT families and 2 manufacturing cells
such that P1 = {Family 1,2}, P2 = {Family 3,4}, S1 = {Family 3} and
S2 = {Family 1}, consequently FS(1) = {1,2,3} and FS(2) = {1,3,4}. The plan-
ning horizon consists of 4 periods. Furthermore, there are 20 items and 9 resources,
and their corresponding families and cells, respectively, are as follows:
TI(1) = {Item 1,2,3,4,5,6}, TI(2) = {Item 7,8,9,10,11}, TI(3) = {Item 12,13,
14,15,16}, TI(4) = {Item 17,18,19,20}, L R(1) = {Resource 1,2,3,4,5}, and
L R(2) = {Resource 6,7,8,9}. The cost parameters are C1,1,t = 0.75, C1,2,t = 1.49,
C2,1,t = 1.11, C3,1,t = 1.88, C3,2,t = 1.13, C4,2,t = 0.92, r1,t = 0.58, r2,t = 1.17,
ojt = 2 *rjt, and hit = (1 + 0.05(t - 1) ) *UN ~ [1.5,2.5]for every t Î T . The corre-
sponding data for each item are given in table 4.

We have created two scenarios. In the ® rst scenario, RRlt £ 120 and ORlt £ 30
for every l and t. The optimal solution for the cell loading problem is summarized in
table 5. In order to simplify the output, we only present the results for families and

Cell loading in CMSs: a hierarchical model 2011
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cells. In this solution, all of the items are assigned to their primary cells, and both
overtime and inventory options are utilized to absorb the demand changes. The
objective function value is equal to 6654.6. In the second scenario, we decreased
the available resource capacities in cell 1 to RRlt £ 80 and ORlt £ 16 for the ® rst two
periods. The upper limits on the resource availabilities in each cell are given in table
6. In this case, some of the items of Family 1 are assigned to their secondary cells, i.e.
Cell 2, in addition to the overtime and inventory options as shown in table 7. As a
result of that the objective function value is increased to 6861.4.

3. Solution procedure

Linear programming (LP) is a convenient type of model to use at this level because
of the wide availability of LP codes. LP also permits sensitivity and parametric

2012 M. S. Akturk and G. R. Wilson

Processing Times Demand
Resource Period

Item 1 2 3 4 5 6 7 8 9 t = 1 t = 2 t = 3 t = 4

1 0.27 0.29 0.34 0.30 0.31 0.49 0.48 0.47 0.52 26 45 42 37
2 0.30 0.30 0.30 0.29 0.31 0.49 0.50 0.54 0.46 37 36 33 31
3 0.30 0.27 0.26 0.31 0.31 0.49 0.53 0.49 0.52 48 35 60 28
4 0.29 0.31 0.35 0.29 0.31 0.47 0.51 0.46 0.52 32 30 31 29
5 0.34 0.29 0.26 0.33 0.35 0.50 0.49 0.47 0.52 27 32 60 56
6 0.31 0.27 0.29 0.27 0.26 0.45 0.51 0.47 0.50 35 24 44 25
7 0.34 0.27 0.34 0.30 0.27 - - - - 59 30 54 30
8 0.29 0.33 0.30 0.28 0.26 - - - - 44 47 35 57
9 0.33 0.29 0.34 0.29 0.33 - - - - 37 55 51 35

10 0.27 0.29 0.27 0.30 0.33 - - - - 27 58 46 50
11 0.25 0.31 0.32 0.26 0.30 - - - - 48 56 46 53
12 0.49 0.49 0.55 0.49 0.50 0.29 0.26 0.29 0.26 28 60 42 34
13 0.45 0.54 0.52 0.50 0.49 0.29 0.29 0.25 0.26 45 58 34 48
14 0.46 0.53 0.51 0.52 0.45 0.26 0.26 0.30 0.25 40 55 35 24
15 0.48 0.50 0.50 0.49 0.52 0.34 0.30 0.29 0.30 30 47 34 34
16 0.48 0.45 0.53 0.51 0.49 0.31 0.28 0.34 0.35 56 59 50 25
17 - - - - - 0.25 0.29 0.28 0.35 27 30 47 56
18 - - - - - 0.29 0.30 0.30 0.26 29 47 48 57
19 - - - - - 0.30 0.34 0.27 0.32 43 48 35 31
20 - - - - - 0.27 0.31 0.35 0.35 51 42 37 33

Table 4. Item data for numerical example.

Regular time Overtime Inventory Number of units produced
Cell Cell Family Family

1 2 3 4
T 1 2 1 2 1 2 3 4 cell 1 cell 1 cell 2 cell 2

1 514.2 386.4 0 0 0 19 0 0 205 234 199 150
2 545.0 479.6 0 13.25 37 0 0 0 239 227 279 167
3 544.0 401.3 0 0 0 0 0 0 233 232 195 165
4 504.7 379.9 0 0 0 0 0 0 206 225 165 177

Table 5. Optimal solution for scenario.D
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analysis to be performed quite easily and the information on dual values can be
derived at little additional computational cost. It is also important to consider how
such a production planning system would be implemented in practice. The planning
horizon given by the mathematical model is posed as if all demand is known with
certainty and all parameters are to be frozen over the planning horizon. Because of
the uncertainties present in the planning process, a rolling horizon method with a
lookahead mechanism similar to Maes and Van Wassenhowe (1986) is applied to
solve this model in each period in order to deal with either ¯ uctuations or season-
alities in demand or other inputs. The lookahead mechanism anticipates possible
capacity shortages and considers the following tradeo� s to minimize the variable
production cost: building up su� cient inventory in earlier periods by increasing
production rates, or using overtime, or assigning families to their secondary cells
with an additional cost of production, or a mixture of these alternatives. Baker
(1977) describes, t̀he typical scenario of a rolling horizon procedure is as follows:
solve the model and implement only the ® rst period’s decisions; for the following
period, update the model to re¯ ect information collected in the interim, re-solve the
model, and implement only the imminent decision pending subsequent model runs’.
That is, the implementation of rolling horizons requires routinely updating or revis-
ing plans taking into consideration more reliable data as they become available. The
rolling horizon procedure simply re¯ ects the continuity of the production planning
and scheduling process into a non-® nite future.

The size of the problem is an important issue for LP applications, because the
time required to ® nd an optimum solution increases with the number of constraints.

Cell loading in CMSs: a hierarchical model 2013

Regular time Overtime
C e ll C e l l

T 1 2 1 2

1 400 480 80 96
2 400 480 80 96
3 600 480 120 96
4 600 480 120 96

Table 6. Upper limits on reesource availabilities for
scenario 2

Regular time Overtime Inventory Number of units produced
Cell Cell Family Family

1 2 3 4

T 1 2 1 2 1 2 3 4 cell 1 cell 2 cell 1 cell 1 cell 2 cell 2

1 400 478.6 76.7 0.0 0 0 62 0 192 13 215 - 261 150
2 400 480 79.0 20.8 0 0 0 0 162 40 246 - 217 167
3 586.6 401.3 0 0 0 0 0 0 270 - 232 - 195 167
4 504.7 379.9 0 0 0 0 0 0 206 - 225 - 165 177

Table 7. Optimal solution for scenario 2.
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On the other hand, recent advancements in microelectronics are making multipro-
cessor systems more cost-e� ective than a single processor. Distributing a task over a
multiprocessor (or parallel) system can increase system throughput and speed up
computation. Decomposition methods allow large scale models to be broken down
into manageable sub-models, and then systematically reassembled. These methods
show considerable promise for time critical decision support applications, especially
when the methods have been adapted for and implemented on parallel computers.
Decomposition methods can be ine� cient on serial computers when compared to a
monolithic approach, unless the subproblems have a special structure that may be
exploited.

The optimization of decomposable problems comprised of a number of related
subproblems is an important and frequently referred to topic in the literature with an
early seminal discussion given by Geo� rion (1970). The two principal types of
decomposition methods that have appeared in the literature are price directed
decomposition and resource directed decomposition. In price directed decomposi-
tion, the separation is accomplished by putting prices, or dual variables, on the joint
constraints and placing them in the objective function. The price directed coordina-
tion problem is concerned with calculating optimal prices on the shared resources to
be used in the subproblems so that an optimal solution to the overall problem is
achieved by optimizing separately each of the subproblems. In resource directed
decomposition, each of the subproblems is given a portion of the shared resources.
The resource directed coordination problem is concerned with e� ecting an appor-
tionment that permits the overall problem to be optimized by optimizing separately
each of the subproblems. Both types of decomposition are aimed at decomposing the
overall problem into, essentially, k separate optimization problems. Making a choice
between price and resource directed decomposition is based on which approach leads
to a set of subproblems with the most exploitable structure. A discussion on the
di� erent decomposition principles is given in detail in Geo� rion (1970) and Shapiro
(1993).

The solution procedure proposed for the cell loading problem is an example of a
price directed decomposition. It consists of formulating a Lagrangean relaxation of
the initial model and solving this dual problem by an e� cient, iterative solution
procedure. For the problem given in the previous section, the joint constraints, or
coupling constraints, which are inventory (6), and resource consistency (10) and (11)
equations, are dualized to obtain:

L ( ,̧¹
1,¹

2 ) = Minimize å
T

t=1
å

J

j=1 ( å
i Î FS ( j)

Cijt ´Xijt + å
i Î Sj

(BS ij /Qijt) ´Xijt

+ å
i Î Pj

(BPij /Qijt) ´Xijt + ojt ´Ojt + rjt ´ Rjt)
+ å

T

t=1
å

N

i=1

hit ´IFit + å
n

i=1
å

T

t=1
i̧t å

k Î TI( i)
å

n

w=1

Iktw - IFit
æ
è

ö
ø

+ å
J

j=1
å

T

t=1

¹
1
jt å

l Î L R( j)
ORlt - Ojt

æ
è

ö
ø + å

J

j=1
å

T

t=1

¹
2
jt å

l Î L R( j)
RRlt - Rjt

æ
è

ö
ø
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subject to constraint sets 1, 2, 3, 4, 5, 7, 8 and 9.

The dual problem to the original problem is:

(D) max
,̧¹1,¹2

L ( ¸,¹
1,¹

2)

Furthermore, the Lagrangean relaxation as given above may be separated into
the following two subproblems:

� family/cell aggregation subproblem (FCA)

Minimize å
T

t=1
å

J

j=1 ( å
i Î FS( j)

Cijt ´Xijt + å
i Î S j

(BSij /Qijt) ´Xijt + å
i Î Pj

(BPij /Qijt) ´Xijt

+ (ojt - ¹
1
jt )Ojt + (rjt - ¹

2
jt) Rjt) + å

T

t=1
å

N

i=1

(hit - i̧t) IFit

subject to constraint sets 1, 2, 3 and 4.

� Item/resource disaggregation subproblem for each t (IRDt)

Minimize i̧t å
k Î TI( i)

å
n

w=1

Iktw
æ
è

ö
ø + ¹

1
jt å

l Î L R( j)
ORlt

æ
è

ö
ø + ¹

2
jt å

l Î L R( j)
RRlt

æ
è

ö
ø

subject to constraint sets 5, 7, 8 and 9.

The IRDt model is solved over a shorter horizon, t, with periods, w, allowing a
® ner resolution than period t used for the subproblem FCA. For instance, items
might be scheduled weekly, while the production of families would be planned
monthly. The linkage mechanism for these two subproblems is resource and inven-
tory consistency relationships which are priced out by a set of Lagrange multipliers
¸, ¹

1 and ¹
2, which re¯ ect the cost penalties at the item level due to the requirements

set at the family level. The determination of these multipliers provides a feedback
process in the hierarchical framework. Furthermore, the separation of the mathe-
matical formulation into the FCA and IRDt subproblems allows us to solve these
optimization problems in parallel as shown in ® gure 1.

The dual problem is to ® nd ¸, ¹
1 and ¹

2 to maximize the Lagrangean as stated
above. For a primal-dual approach to solving the Lagrangean, the Lagrangean is
solved for a given ¸, ¹

1 and ¹
2, and based on this solution a new set of multipliers is

calculated. Recognizing that ¸, ¹
1 and ¹

2 may be interpreted as the marginal cost of
having to provide additional increments of inventory, overtime and regular time in
time period t, this iterative process continues until the inventory and resource con-
sistency relationships are satis® ed within an e range of the best known feasible
solution. The revision of the multipliers depends upon the current degree of incon-
sistency between the FCA and IRDt subproblems. A subgradient optimization
method, similar to Held et al. (1974), is used to update the values of Lagrange
multipliers. A validation of the subgradient optimization method can be found in
Held et al. (1974). The i̧t values at step c are updated by the formula:

Cell loading in CMSs: a hierarchical model 2015
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¸
c+1
it = ¸

c
it + d c å

k Î TI( i)
å

n

w=1
Iktw - IFit

æ
è

ö
ø .

where d c is a positive scalar step size which is determined by the following formula:

d c =
q c(Z* - L (¸,¹

1,¹
2) )

( å
k Î TI( i)

å
n

w=1
Iktw - IFit)

2 .

In this formula, Z* is the objective function of the best known feasible solution to the
original problem, which provides an upper bound on the dual problem, and q c is a
scalar between 0 and 2. A description of an upper bounding heuristic is given in the
Appendix. The sequence of q c is determined by setting q 0, initially to 0.01 and
increasing by a factor of two whenever the Lagrangean dual has failed to increase
in a speci® c number of iterations. Fisher (1985) has shown empirically that this rule

2016 M. S. Akturk and G. R. Wilson

Figure 1. Flow-chart representation of the algorithm’s framework.
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works well, although it is not guaranteed to satisfy the complementary slackness
condition for convergence.

4. Computational analysis

The proposed cell loading algorithm and the matrix generator for the problem
formulation are coded in the C language. An optimal solution is found by using the
CPLEX optimization package on a Sparcstation 10 under SunOS 5.4. We wish to
investigate to what degree the proposed approach is robust in the face of uncertainty
and how sensitive it is to the assumptions we have made throughout this research
with regard to machine-component groupings, GT cells and families, inclusion of
new products to the existing families, and resource availabilities. There are a large
number of variables which could have an e� ect on the performance of the cell
loading problem. Within the conceptual framework of the hierarchical procedure,
an experimental design is developed with two objectives in mind. The ® rst objective
is to generate a set of test problems to calculate the computation time to ® nd an
optimal solution. The second objective is to explain the relationships between the
variable production cost and the system parameters.

There are ® ve experimental factors that can a� ect the e� ciency of the proposed
approach, which are listed in table 8. The initial estimation of lot sizes depends on
the direct setup cost for each item, and plays an important role within the context
of the trade-o� s between inventory holding and overtime costs since it determines
the number of setups required. The direct setup cost, to make the results of the
research meaningful, must be compared to the inventory holding cost as a ratio,
S/I, as suggested by Maes and Van Wassenhowe (1986). The S/I ratios, factor
A, are used to ® nd the initial lot size of family i in cell j in period t as
Qijt = ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê2 ´S/I ratio ´ditÏ for every i Î FS( j). The representative ranges for factor
B, the number of families, and factor D, the number of cells, are based on the studies
done by Hyer and WemmerlÈ ov (1989), and WemmerloÈ v and Hyer (1989) on current
practices seen in industry for GT and CM systems. In addition, an assignment of the
items to the GT families is one of the objectives of the part-family and machine-cell
formation problem. These assignments are done depending upon the similarities that
exist between the items, and similarity coe� cients are calculated using several criteria
as discussed in Shafer and Rogers (1993) and O� odile et al. (1994). Factor E, the
number of items in each family, re¯ ects the fact that the variability within each
family could be di� erent depending upon the threshold values used to form the
GT families. A high threshold value means a low feature variability and a high
similarity among the items in each family. Since the total number of items is a
® xed parameter for all runs, factor E is used to measure the impact of variability
in each family by varying the size of the each family, and the processing time for each

Cell loading in CMSs: a hierarchical model 2017

Factors De® nition Low High

A S/I ratio 0.75 1.25
B Number of families 15 35
C Upper limits on resource availability No idle time 10% idle time
D Number of GT cells 5 10
E Set of items within each family Low variability High variability

Table 8. Experimental factors.
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item k on resource l, PRkl , is based upon the degree of similarity in each family, as
can be seen in table 9. The levels of factor C specify the upper limits on resource
availability where the low level corresponds to a congested shop ¯ oor, while the high
level represents a 10% idle time. Since there are ® ve factors and two levels, our
experiment is a 25 full-factorial design, which corresponds to thirty-two treatment
combinations. The number of replications of each combination is taken as ® ve
producing 160 di� erent randomly generated runs.

Other variables in the system are treated as ® xed parameters and summarized in
table 9, where UN~ [a,b]represents a uniformly distributed random variable in
interval [a,b]. All of the parameters’ values are constant throughout the planning
horizon, except the inventory holding cost for family i in period t, hit, which increases
over time to approximately account for factors like in¯ ation and time value of
money. Furthermore, there are some other parameters, such as dit and aij , that
assume ® xed parameter values. The e� ective demand for each item in each subperiod
of each period, dktw, is ® xed. Therefore, the demand for each family in a particular
period should be calculated by summing the demands of all of the items belonging to
that family corresponding to that period; i.e.

dit = å
n

w=1
å

k Î TI( i)
dktw " i,t

The processing time of each item at each feasible resource, PRkl , and the number of
operations for each item are ® xed. So, the average total time required to produce one
unit of family i at cell j, aij , should be the product of the average processing time of
an item belonging to family i at cell j and the average number of operations required
for an item k in family i. A mathematical expression is given below.

2018 M. S. Akturk and G. R. Wilson

Parameters Set of values

Total number of items, K 250
Total number of resources, L 50
Number of periods, T 12
Number of subperiods per period 4
Cost of production, C i j t UN~ [0.75, 1.25] if i Î P j

UN~ [1.5, 2.0] if i Î S j

Cost of regular time, r j t UN~ [1.25, 2.0]
Cost of overtime, o j t 2 * r j t

Inventory holding cost, h i t (1 + 0.05( t - 1) ) *UN ~ [1.5,2.5]
Setup cost for the families, BSi j and B P i j 0.03 * C i j t * d i t

Processing times, P R k l

(1) Low variability UN~ [ 0.25, 0.35] if i Î P j

UN~ [ 0.45, 0.55] if i Î S j

(2) High variability UN~ [0.2, 0.4] if i Î P j

UN~ [0.4, 0.6] if i Î S j

Setup times (0.1 * a i j ) if i Î F S ( j )
Number of operations per item UN~ [3, 5]
E� ective demand, d k t w UN~ [6, 15]

Table 9. Fixed parameters.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

29
 2

6 
O

ct
ob

er
 2

01
7 



aij =
( å k Î TI( i) å l Î L R( j) PRkl) ( å k Î TI( i) NO(kj) )

NI( i)2 ´NR( j)
" i Î FS( j) .

Table 10 summarizes the CPU times (in seconds) to ® nd the optimum solution
for each run, along with the minimum, average, and maximum CPU times (based on
® ve random replications) for each factor combination. In this table, low and high
levels for each factor are represented by 0 and 1, respectively. For all 160 problems
reported in this table, the maximum CPU time was 166 s, whereas the average time
was 60.7 s. The maximum CPU time was found for the factor combination of (1 0 1 1 1).
In other words, all the factors except the number of families were at their high levels.
On the other hand, the minimum average computation time is found for the factor
combination of (0 1 0 0 1), where the S/I ratio, upper limit on the resource avail-
ability and the number of GT cells were at their low levels. Furthermore, if we would
like to use the Lagrangean relaxation procedure discussed in § 3 on a parallel pro-

Cell loading in CMSs: a hierarchical model 2019

Factors CPU times (seconds)

A B C D E Minimum Average Maximum

0 0 0 0 0 12 38.8 86
1 0 0 0 0 15 39.0 81
0 1 0 0 0 14 21.2 31
1 1 0 0 0 13 22.0 32
0 0 1 0 0 17 40.6 80
1 0 1 0 0 16 39.2 80
0 1 1 0 0 15 22.6 32
1 1 1 0 0 14 22.2 30
0 0 0 1 0 111 129.0 146
1 0 0 1 0 100 125.4 138
0 1 0 1 0 45 50.8 57
1 1 0 1 0 40 50.4 60
0 0 1 1 0 106 134.0 161
1 0 1 1 0 8 102.6 149
0 1 1 1 0 42 54.0 67
1 1 1 1 0 39 52.0 65
0 0 0 0 1 16 45.8 119
1 0 0 0 1 15 37.8 80
0 1 0 0 1 13 20.4 29
1 1 0 0 1 14 21.0 32
0 0 1 0 1 16 41.0 82
1 0 1 0 1 15 40.8 79
0 1 1 0 1 16 21.4 28
1 1 1 0 1 13 20.8 27
0 0 0 1 1 100 128.2 156
1 0 0 1 1 110 137.2 153
0 1 0 1 1 47 53.4 57
1 1 0 1 1 44 54.6 68
0 0 1 1 1 104 132.4 159
1 0 1 1 1 103 136.4 166
0 1 1 1 1 43 53.6 61
1 1 1 1 1 43 52.4 65

overall 8 60.7 166

Table 10. Results of the computational experiments.
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cessor, then the Lagrange multipliers are updated by a subgradient optimization
method, which requires a calculation of an upper bound for the cell loading problem.
In table 11, we compare the average results of the upper bound with the average
optimum solution for each replication along with the computation time to ® nd the
optimum solution and the % deviations. The minimum % deviation was 0.000 006%
for the factor combination of (1 0 1 1 0), whereas the maximum one was 6.05% for
the factor combination of (1 0 1 0 1). As mentioned above, the average computation
time to ® nd the optimum solution was 60.7 s, which indicated that within the scope
of our experimental framework these problems can be solved optimally using a
commercial optimization package on a serial processor without using a means of
decomposition.

Finally, a two-way analysis of variance (ANOVA) test was applied to two per-
formance measures, the optimum value of the total production cost and the compu-
tation time, to test the equality of observed responses from the di� erent treatment
combinations of the chosen factors. The number of GT cells and families, factors D
and B, respectively, were found to be signi® cant at the 0.1% signi® cance level on the
computation time criterion, followed by the factor E, the number of items in each
family, that was used to represent the variability of the items within each family. For
the total production cost criterion, the factor D was the only signi® cant one at the
0.1% signi® cance level. The number of GT cells, factor D, is the most important
output of classi® cation and coding systems (CCS) and cell formation techniques
discussed in § 1. ANOVA tables indicated that the factor D has the most signi® cant
e� ect on both of the performance measures considered. Therefore, an interface
between CCS and cell loading decisions becomes a critical issue in any GT based
production planning approach. Unfortunately, most of the existing approaches do
not consider parameters associated with the cell loading activities during the initial
design stage.

Another important question is the sensitivity of cell loading decisions with
respect to the inclusion of new products into the existing GT families. Our computa-
tional experiments indicate that if there is more feature variability among the items
in each family, there will, consequently, be more in-process inventories, which is not
desirable. Therefore, if the feature variability of the items in each family is reduced
then the in-process inventory levels will tend to be decreased. Welke and Overbeeke
(1988) report their experiences at Deere & Co., and argue that GT families and cells
are generally constructed and based on the products that are currently being man-
ufactured. In order to maintain the existing GT cell formation valid for a long time,

2020 M. S. Akturk and G. R. Wilson

Optimum

Replication Upper Bound Solution Comp. time % dev.

Rep. 1 210 773.7 208 101.8 73.88 1.33
Rep. 2 209 556.7 204 966.3 57.25 2.28
Rep. 3 234 940.4 230 446.8 53.81 1.95
Rep. 4 233 865.1 231 608.9 65.22 1.04
Rep. 5 237 990.6 233 384.2 53.13 2.11

Overall 225 425.3 221 701.6 60.66 1.68

Table 11. Comparison of computational results.
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certain plans must be made so that new products can be designed to fully conform to
the existing manufacturing cells, i.e. design for manufacturing. Therefore, the exist-
ing GT database should be an in¯ uencing factor as to how the new parts will be
designed and processed within a CM system.

5. Conclusions

In this research, an aggregate planning model of the cell loading problem for CM
systems has been developed to minimize the variable production cost. The proposed
approach has several advantages over models in the current literature on hierarchical
planning and cell loading. First, the proposed approach allows more accurate por-
trayal of the operation of CM systems by using the capacity constraints to assess the
impact of the cell loading decisions on the lower levels. As a result, the production
rates are determined such that they are much more likely to be within the current
capacity of the system. Another advantage is the enhanced computational tractabil-
ity which is achieved by incorporating and combining the advantages of a hierarch-
ical planning, a CM shop con® guration, and decomposition principles including
Lagrangean relaxation and its related pricing mechanism. An aggregation/disaggre-
gation scheme with respect to products, resources, and time horizon is also included
in the mathematical formulation. The determination of Lagrange multipliers, which
re¯ ect the cost penalties at the item level due to requirements set at the family level,
provides a feedback process within the cell loading problem to satisfy the inventory
and resource consistency constraints. Furthermore, the ANOVA tables indicated
that the number of GT cells and families had a signi® cant e� ect both on the total
production cost and the computation time to ® nd an optimum solution. Therefore,
in future CCS, the feedback information from the cell loading level should provide a
more signi® cant input to the GT part-family machine-cell formation in addition to
the other commonly used factors, i.e. design and processing requirements.
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Appendix: Calculation of the upper bound

The overall aim of the upper bounding algorithm is to produce all the required
items at their primary cells in the amounts that they are demanded in each time
period. An algorithmic description of the proposed algorithm is given below.

Step 1. Equalize the production level of each item at its primary cell at a particular
period to its demand at that period such that Zkjtw = dktw

" k Î TI( i) and i Î Pj .
Step 2. Calculate the regular time and overtime requirements for each of the

resources in each cell. Let

TRlt = å
i Î FS( j)

å
k Î TI( i)

1.1 *PRkl * å
n

w=1

Zkjtw( ) " t, j and l Î L R( j) .

Cell loading in CMSs: a hierarchical model 2021
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If TRlt £ UL lt then RRlt = TRlt and ORlt = 0. Otherwise, RRlt = UL lt and
ORlt = TRlt - UL lt, where UL lt is the upper limit on the availability of
regular time at resource l in period t.

Step 3. Equalize the amount of production for each item at its primary cell in a
particular period to the total demand for that family in that period such that

Xijt = dit = å
k Î TI( i)

å
n

w=1
Zkjtw " t and i Î Pj .

Step 4. Calculate the regular time and overtime requirements at each cell. Let
TCjt = å i Î Pj aij *Xijt " j and t. If TCjt £ UL jt then Rjt = TCjt and
Ojt = 0. Otherwise, Rjt = UL jt and Ojt = TCjt - UL jt, where UL jt is the
upper limit on the availability of regular time in cell j in period t.

Step 5. Calculate the upper bound as follows:

UB = å
T

t=1
å

J

j=1
å
i Î Pj

(Cijt + BPij /Qijt) ´Xijt + ojt ´Ojt + rjt ´Rjt
æ
è

ö
ø + å

T

t=1
å

N

i=1
hit ´IFit.

The upper bounding algorithm utilizes the just-in-time logic in which the overall
goal is to produce exactly the required quantities at precisely at the required period
with zero inventories. The upper bound on the total production cost, which is based
on the local information in each period, will tend to be larger than the optimum cost
for the overall planning horizon when there is a high variability in demand and
resource availabilities in the planning horizon as shown in table 11.
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