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- A Locally Optimal Seasonal Unit-Root Test

Mehmet CANER

Department of Economics, Bilkent University, Ankara, Turkey

This article proposes a locally best invariant test of the null hypothesis of seasonal stationarity
against the alternative of seasonal unit roots at all or individual seasonal frequencies. An asymptotic
distribution theory is derived and the finite-sample properties of the test are examined in a Monte
Carlo simulation. My test is also compared with the Canova and Hansen test. The proposed test is
superior to the Canova and Hansen test in terms of both size and power.

KEY WORDS: Locally best invariant test; Maximum likelihood estimation; Monte Carlo;
Seasonal differencing filter; Seasonal stationarity.

Seasonality in economic time series can be viewed as
either deterministic or stochastic. Fitting dummy variables
is the usual way of handling seasonality in a deterministic
way. To differentiate among various patterns of seasonality,
statistical tests are introduced in the literature.

Hylleberg, Engle, Granger, and Yoo (HEGY) (1990) de-
veloped tests of the null hypothesis of a unit root at one or
more seasonal frequencies against the alternative of station-
ary seasonality. Their test is an extension of the unit-root
test of Dickey and Fuller (1979) from the zero frequency
to the seasonal frequencies. This test has low power in fi-
nite samples near unit roots, so it is difficult to reject the
false unit-root hypothesis at a single or a set of seasonal
frequencies (Canova and Hansen 1995).

In the tests that are developed by Canova and Hansen
(CH) (1995), stationary seasonality forms the null hypoth-
esis. The alternative hypothesis is nonstationarity due to
seasonal unit roots. They generalized the unit-root test of
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) (1992)
from the zero frequency to the seasonal frequencies. Their
test statistics are Lagrange multiplier (LM) tests that are
modified to include serially correlated and heteroscedas-
tic processes. Only least squares techniques are needed in
their LM-type test, and autocorrelation is handled by using
a nonparametric adjustment. Tam and Reinsel (1995) also
contributed to this literature by developing tests for moving
average (MA) seasonal unit roots. Their test is mainly the
extension of the Saikkonen and Luukkonnen (1993) unit-
root test to seasonal frequencies.

In this article, I propose a test procedure in which the
null hypothesis of stationary seasonality is tested against
the alternative of seasonal nonstationarity. I generalize the
unit-root test of Leybourne and McCabe (1994) from zero
frequency to the seasonal frequency. To test the null hy-
pothesis, I propose a locally best invariant test that is de-
rived from the framework of King and Hillier (1985). The
test statistics depend on the residuals, which are calculated
via maximum likelihood and then using least squares. The
large-sample distribution under the null is the generalized
von Mises distribution that does not depend on the nuisance
parameters.

There are two major differences between my test and the
CH test for seasonal stability. In my test, autocorrelation is
taken into account in a parametric way, but the CH test uses

a nonparametric correction. Second, my test statistic is con-
sistent to the order N, whereas the CH test is of order V/z,
where z is the lag truncation parameter. The nonparamet-
ric adjustment of autocorrelation suggested by Canova and
Hansen (1995) fails to give good finite-sample performance
when a large autoregressive (AR) component is present in
the data. This problem is due to the significant truncation
errors in the finite samples.

The aim of this article is to overcome this problem by
introducing a test statistic that accounts for autocorrelation
parametrically. A Monte Carlo exercise has been conducted
to examine and compare the finite-sample properties of the
proposed test with those of the CH test. It is shown that the
proposed test has better size and power properties than the
CH test in an AR type of autocorrelation.

Section 1 introduces the regression model. Section 2
presents the structural and reduced form of the model, and a
locally best invariant test statistic is also derived for testing
unit roots at the seasonal frequencies. The rest of the section
develops the asymptotic distribution for this test statistic. In
Section 3, a Monte Carlo exercise is conducted, and the size
and power properties of the proposed test are compared to
those of the CH test. Section 4 concludes the article. Proofs
of the theorems are discussed in the Appendix. A GAUSS
program for calculating test statistics is available on request
from me.

1. THE MODEL

A linear time series model with stationary seasonality is
considered:
(I’(L)yt=;4+St+et, t=1,27...,N. (1)
In the preceding equation, ®(L) =1 — ¢ L — o L% — - - —
¢pLP is a pth-order AR polynomial in the lag operator L
with roots outside the unit circle, y; is real valued, and S;
is a real-valued deterministic seasonal process of period s,
in which s is a positive even integer and error term e; is
distributed as iid (0, o2). The number of observations is V.
If there are 7" years of data, N = T's.
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In this article, because I am interested in unit roots at
the seasonal frequencies, I require that y; not have a unit
root at the zero frequency because it is not very difficult to
transform a series with nonstationarity at the zero frequency
to a stationary series; various applications of this test will
be possible. The autocorrelation in the series is accounted
for by including the lagged terms in y;.

A trigonometric representation is presented for the deter-
ministic seasonal pattern S:

q
Se = fisvs 2)
j=1
where ¢ = s/2 (s = 4 for quarterly data and

s = 12 for monthly data) and, for j < g¢,f}; =

[cos((j/q)mt),sin((j/q)7t)], when j = g, fq = cos(nt). Ex-
pressing the right side of (2) in a vector,

St = fiv, (3)
where

T fut
7= o fe=
Yq fat

These v and f; vectors have (s — 1) elements. Substituting
(3) into (1), the regression equation is

O L)ys =p+ fiv+e, t=1,2,...,N. (5

This representation allows seasonality to be a cylical pro-
cess. At the seasonal frequency jm/qg, the cylical processes
are elements of f;. Moreover, f; is a zero-mean process
whenever N is a multiple of s. The coefficients v; repre-
sent the effect of each cycle on the deterministic seasonal
component S;. This cylical formulation of seasonality is
common in the time series literature (Hannan 1970, p. 174;
Harvey 1989, p. 42).

(4)

2. THE TEST FOR SEASONAL UNIT ROOTS
2.1 The Structural Model and the Reduced Form

To test whether seasonal patterns are stable or not, I need
to present a specific alternative hypothesis. One form of
the alternative hypothesis is to allow a unit root in ~;. This
idea was suggested by Hannan (1970) and used by Canova
and Hansen (1995) and Leybourne and McCabe (1994). The
structural model is

(D(L)yt:y‘-’_ftl')/t"_eh t=1’27"':N7 (6)
and
Yt = Vi1 T+ Ug, (7)

vo fixed. It is assumed that v, is iid mean 0, independent of
e; and f; and its covariance matrix are

Eutu;& = UZGa (8)

where G is an (s—1) x (s— 1) matrix and o2 is a scalar. The
unit roots at different seasonal frequencies are determined
by G matrix. It can be easily seen from (6) and (7) that,
whenever cr;i # 0, then there will be seasonal unit roots.

Journal of Business & Economic Statistics, July 1998

The structural model (6)—~(7) is second-order equivalent
in moments to the reduced-form model:

O(L)S(L)y = p' + O(L)¢e, ©)

where ¢, is distributed (0,02),S(L) = Y523 L7 is a sea-
sonal filter, and p' = su.

This last term ©(L) is an MA(s — 1) polynomial. The
derivation of (9) can be obtained from me on demand. For
the importance of this representation, the reader can consult
Leybourne and McCabe (1994). This reduced form is very
similar to the model used by Tam and Reinsel (1995). Their
model did not, however, result in a test that can differentiate
between unit roots at various seasonal frequencies and the
zero frequency.

2.2 The Hypothesis Test

I wish to test whether the seasonal patterns are stable or
not. In other words I need to develop a hypothesis so that
I can determine whether a given series has stationary sea-
sonality or not. One such hypothesis is a stationary AR(p)
process, against the alternative of nonstationary seasonal-
ity. This can be easily formulated in terms of the structural
model (6)(7) as Hy : p = 0 against Hy : p > 0, where
p = 02 /02 1 shall examine the local departures from the
null hypothesis in the following section.

Another task that I face is developing a test statistic.
From the structural model (6)—(7) and using the framework
of King and Hillier (1985), the locally best invariant test
statistic for Hy : p =0 is

N
D=6N"?> " F/GF,

t=1

(10)

where £, = Z§=1 fié:,6% = é’é/N is a consistent estimator
of 02, and é is an N x 1 vector of residuals é;.

The residuals é; are obtained via the following procedure:
First find the maximum likelihood estimates of (¢) from the
fitted model,

P
vi =1+ b +O(L), (11)

=1

where y; = S(L)y:. Then construct the series

b
Ut =Yt — Z b Y1, (12)
=1

where ¢} are the maximum likelihood estimates of ¢; ob-
tained from (11). Then regress g; on an intercept and sea-
sonal dummies to obtain é;. Even though I do not assume
the normality of e;, this is necessary for the “optimality”
of the tests.

As pointed out by Saikonnen and Luukonnen (1993) and
Leybourne and McCabe (1994), one wants to estimate ¢;
consistently both under the null and the alternative hy-
pothesis in the reduced form, so I use maximum likeli-
hood estimation rather than ordinary least squares. Even
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though maximum likelihood estimation might have draw-
backs, they are found to have no effect on the finite-sample
properties of my test in the simulations that I have con-
ducted in the former version of the article (Ansley and
Newbold 1980; Galbraith and Zinde-Walsh 1994). An alter-
native way of estimation is the instrumental-variable tech-
nique. But this approach did not give good results in this
case.

An important point is the structure of G matrix. Different
specifications of the alternative hypotheses depend on the
structure of G. When the alternative hypothesis is unit roots
at all seasonal frequencies, then G must be nonsingular and
¢ must be time varying. If the alternative hypothesis is unit
roots at specific seasonal frequencies, then G must be block
diagonal with nonzero elements in only selected blocks and
a subset of -, is time varying.

2.3 The Asymptotic Distribution

If the alternative hypothesis is seasonal nonstationarity,
then I should have a joint unit-root test at all seasonal fre-
quencies. It was first suggested by Nyblom (1989) in the
likelihood context and later applied to econometric mod-
els by Hansen (1990, 1992) that, when G/o2 = (Qf)~1,
then the asymptotic distribution of the test statistic is
easy to evaluate. In the preceding discussion, f is the
long-run covariance matrix of f;e; (see Canova and Hansen
1995).

Because e; is serially uncorrelated and homoscedastic, I
can use the consistent estimator

1000 0
020 0 0
1
ar=s20 02 00 (13)
000 .0
000 0

To study the large-sample distribution of D, I use the fol-

lowing notation: 2 denotes convergence in distribution,
W, denotes a vector standard Brownian bridge of dimen-
sion m, and VM (m) is a random variable obtained by the
following operation:

VIW(-m)z/O W (1) W (1) dir.

As was suggested by Canova and Hansen (1995), VM (m)
will be referred to as the generalized von Mises distribution
with m df. Critical values were given in table 1 of Canova
and Hansen (1995). The main theorem of this section is
proved in the Appendix.

Theorem 1. In (1), if ®(L) is a finite AR polynomial in
the lag operator with roots outside the unit circle and if e,
is iid, Ee; = 0, and Ee? = 02 < oo, then, under Hy,

D5 VM(s—1).
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Following Section 2.2 and using theorem 3 of Canova
and Hansen (1995), I have the individual test statistics

N
2 - .
Djr/g = N2 ZF}/-tan J<uq, (14)
€ t=1
and

N
1 .
D = —0 = F 2 5 ) = . 15
s 5’3 N2 ; qt J q ( )
The individual test statistics can be calculated as a by-
product of the joint test. Their asymptotic distribution is
given in Theorem 2.

Theorem 2. Under the conditions in Theorem 1, (1) for

5 <q,Djnsg S VM(2),and (2) j = g, Dx 3 VM(1).

The individual tests supply us with more information
about the nature of the seasonal process when there is sea-
sonal nonstationarity in the joint test. Nonstationarity can
be caused by the unit roots at the individual seasonal fre-
quencies.

The consistency of the joint and individual tests under
H; can be obtained via the method described by Leybourne
and McCabe (1994). My test is a generalization of the Ley-
bourne and McCabe test at zero frequency to the seasonal
frequency, whereas the CH test is a generalization of the
KPSS test. Both tests have the same limiting distribution.
If I analyze the advantages of the D test, first I should be-
gin by comparing my test with the CH test. The CH test
accounts for autocorrelation in a nonparametric fashion, but
in finite-samples this can cause problems if the data struc-
ture contains higher-order terms in the AR polynomial. The
nonparametric adjustment then is not able to capture the
serial correlation in data. My test focuses on this problem.
Autocorrelation is allowed by introducing lagged terms in
y¢. This parametric correction is the main advantage of the
test and, with a significant AR component in the data, this
results in better finite-sample performance. According to
Leybourne and McCabe (1994), the test statistic is consis-
tent at a rate O, (V) under Hy, but in the KPSS test this rate
is Op(N/z) (2 is the bandwidth parameter in KPSS and CH
tests). These rates also apply to my test statistic and the CH
test statistic under H;. Therefore, I expect my test’s power
to be better.

3. MONTE CARLO STUDY

To examine the size and power properties of the proposed
test statistics, a Monte Carlo exercise is conducted. Two
quarterly models are considered. The first model is

2

Q(L)ys = p+ Z fj/'t’}’jt + e,
j=1

e: ~ N(0,1), (16)

and
U, ™~ N(0,0’iG), (17)

where v = [1,1,1],7: = (714,72¢), and 0 < § < 1. 9, is @
2 x 1 vector, and G is a 3 x 3 matrix, o2 = 1. ®(L)y; is an

Ve = 0Ye—1 + Us,
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AR(p) process. The second model is given by
2

ve=p+ Y five+T(Le, e~ N(0,1), (18)

=1
and

Vi = O0vp_1 + Ug, ug, ~ N(0,02G), (19)
where 7(L) = 1 + 7L + 7L? + --- + 7, L¢. The model

(18)—(19) ensures a fair comparison between the D test and
the CH test because my test captures an AR(p) type of
autocorrelation. In calculating the size of the tests, I explore
the more empirically relevant case of 0 < § < 1 and o2 # 0.
For both models, three different data-generating processes
(DGP’s) are used under the alternative hypothesis—

Journal of Business & Economic Statistics, July 1998

Under DGP 1, there is a unit root at the 7 frequency as
long as o2 # 0. The D, test is designed for this specifi-
cation. There is a pair of complex conjugate roots at the
7/2 frequency under DGP2 when o2 # 0. Similarly, when
02 = 0 under DGP 3 there are no unit roots, but there are
unit roots at all seasonal frequencies if o2 # 0. One impor-
tant fact to note is that the covariance structure implied by
G is different from the one that is used to construct the D
and D, /, test statistics.

In the simulations, the order of the AR polynomial p and
the order of the MA polynomial ¢ are 1 and 2. Both the AR
parameters of (16)—~(17) and the MA parameters of (18)—(19)
are chosen carefully to understand the effect of autocorre-
lation on the test statistics that are proposed in this article.
I set § = .8. The signal-to-noise ratio p = 02 /02 takes the
value of .05. I vary the sample size among N = 50, 100, 200.

100 I have 1,000 independent realizations for each DGP and pa-
DGP1:G=|0 0 0 |, (20) rameter configuration. The test statistics are calculated for
L0 0 0] unit roots at all, 7, and /2 seasonal frequencies. Robust-
ness issues are explored in Subsection 3.3.
[0 0 0] My test’s finite-sample properties are compared to those
DGP2:G=|0 1 0 |, (21) of the CH tests (with and without one lag of the dependent
001 variable included). Hylleberg (1995) showed that the CH
d ) . test with one lag has low power. Because I analyze various
an data structures, however, I want to include that test in my
10 0] study also. The underlying model of the CH test is the same
DGP3:G= |0 1 0 (22) as my model (16)—(17) and (20)—(22), but they assume p = 0
001 or p = 1. Because they also assume an a-mixing process for
Table 1. Size and Power Comparison Between the CH and D tests: AR Model
D CHp CH,
DGP Ss J T /2 J ™ m/2 J m w/2
Vi+ .8y =p+fln+e
Size 200 12.9 8.8 13.5 8.9 24.9 7 6.2 3.7 7.0
Size 100 13.4 1.2 11.7 10.1 29.6 5 34 75 7.3
Size 50 14.8 15.0 10.1 13.0 34.6 7 23 3.9 5.1
DGP3 200 99.4 35.3 89.0 95.8 69.2 80.1 91.0 43.3 95.1
DGP3 100 88.5 233 77.2 77.9 58.9 54.9 83.1 25.9 83.3
DGP3 50 54.6 30.4 48.5 53.2 45.0 451 52.8 17.0 52.6
DGP2 200 97.9 1.5 98.2 90.6 43 97.4 94.7 14.0 95.5
DGP2 100 84.3 4.7 86.3 64.4 6.6 85.9 79.2 16.0 80.1
DGP2 50 59.1 125 51.4 20.5 9.2 50.4 47.0 8.7 51.9
DGP1 200 48.0 56.0 9 68.1 71.5 0 53 12.9 2.7
DGP1 100 35.7 45.0 1.6 54.9 57.4 A 46 11.1 3.2
DGP1 50 24.8 31.2 2.4 40.3 40.8 8.7 3.9 12.6 20.0
Y+ .8yi_z2=p+fy+er

Size 200 17.3 16.7 12.0 40.9 6 55.5 49.9 1.8 63.8
Size 100 21.0 14.3 16.6 47.7 6 63.7 50.4 1.0 64.1
Size 50 23.6 10.7 20.4 44.7 15 61.1 457 1.5 58.8
DGP3 200 94.0 83.0 47.5 94.1 64.1 86.3 93.3 61.5 85.5
DGP3 100 81.1 61.9 41.6 78.9 42.1 74.3 77.9 44.2 73.0
DGP3 50 345 40.1 19.7 62.0 38.6 61.0 65.1 32.9 59.2
DGP2 200 65.1 4 72.4 84.9 A 85.7 84.8 .0 85.9
DGP2 100 51.8 4 59.1 75.0 3 74.9 747 2.0 75.6
DGP2 50 13.7 8 14.6 60.4 8.2 62.2 59.4 2 56.8
DGP1 200 85.3 91.0 26 56.4 89.4 7.3 55.9 90.1 6.7
DGP1 100 66.3 73.1 10.5 31.7 67.8 10.7 30.4 68.9 16.5
DGP1 50 295 39.9 15.5 19.1 41.0 16.8 24.1 40.9 17.0

NOTE: In both AR parameterizations for the size part, v, =

.8vi—1 + uy. For the power part of the program, v; = ;1 + 4. SS is the sample size. D, CHo, and CH1 are the D and the CH

tests with no lags and one lag, respectively. J, 7, and 7/2 are the tests at all, semiannual, and annual seasonal frequencies, respectively. The DGP column shows the size and the power of the

tests (DGP3, DGP2, DGP1).
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es, their estimates of long-run covariance matrices Q{ and
QO , for p =1 and p = 0, respectively, depend on the choice
of the kernel and the lag truncation number z. In this study
the Bartlett kernel is used and, following Andrews (1991),
z = 3,4,6 is selected for N = 50,100, 200, respectively.
One important point about my test is the choice of p, the
number of lags in y,. The D tests are carried out with lag
lengths chosen by the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC).

The results of the exercise are presented in Tables 1 and
2. The percentage of rejection of the null is given at the 5%
significance level. Because the size of the D and CH tests
that are calculated in Tables 1 and 2 vary considerably, 1
calculate the size-adjusted power. In the tables, the power
of the tests are size-adjusted power. The critical values for
calculating these can be obtained from me on demand.

There are three Monte Carlo studies that compare the rel-
ative performance of the tests for seasonal stability. One is
by Hylleberg (1995) in which the HEGY tests are contrasted
with the CH tests. Ghysels, Lee, and Noh (1994) compared
the performance of the HEGY test with the Dickey, Hasza,
and Fuller (1984) tests. Canova and Hansen (1995) con-
trasted the CH tests with HEGY tests, but the DGP is dif-
ferent from the Monte Carlo study of Hylleberg (1995).

3.1

In this section the size and power properties of the D test
are compared with the CH test under the model (16)~(17).
When analyzing the size of the tests in Table 1, § is selected

Size and Power of the Test: AR(p) Process

353

to be .8 because this value corresponds to a “near” seasonal
unit root. In calculating the power of the tests in Tables 1
and 2, Iset 6 =1.

In Table 1, it is easy to see that the size of my tests
is slightly above the nominal size of 5% in most of the
cases. The CH tests have large size distortions for AR(2)
parameterization, however. For example, for N = 200 in
an AR(2) framework, the size of the joint D test is 17%,
whereas the joint CH tests reject the true null in 41-50%
of the trials.

The D tests have good power under different alternatives.
For N = 100, the power of the joint test is 84% when
there are seasonal unit roots present at the 7/2 frequency
(DGP2). For N = 200, in an AR(2) process, the power of
the joint test is 85% when there is a seasonal unit root at
the 7 frequency (DGP1).

The CH tests have mixed results under an AR structure.
For N = 100, in an AR(1) process the joint test has 64—
79% power against DGP2. The CH tests with one lag of
the dependent variable (CH; in Tables 1-2) perform quite
poorly in an AR(1) structure. The power is near the nominal
size of the tests. Both CH tests also have trouble in an AR(2)
structure when only a seasonal unit root at the = frequency
is present (DGP1). For N = 200, the joint tests have 56%
power under DGP1.

Overall, the CH tests do not perform well near seasonal
unit roots. They suffer from size distortion. On the other
hand, the proposed tests have good size and power. The CH
tests performed well in the Monte Carlo study of Canova

Table 2. Comparison of Size and Power: The CH and D tests in an MA Model

D CHp CH;
DGP Ss J ™ w/2 J T w/2 J T w/2
Ve=p+ jz= v+t e
Size 200 9.5 8.8 6.0 8.0 9.3 6.6 8.9 11.6 7.4
Size 100 9.8 9.5 5.4 4.1 6.4 55 9.0 14.6 6.8
Size 50 8.4 6.9 7.4 1.7 4.7 4.4 4.7 8.7 6.7
DGP3 200 92.3 51.9 68.5 98.7 83.0 92.9 98.8 78.5 93.6
DGP3 100 73.4 52.4 43.7 91.8 70.3 75.2 91.6 67.0 714
DGP3 50 67.2 48.9 303 70.4 60.1 42.2 65.0 54.5 39.9
DGP2 200 88.1 .0 93.6 89.1 0.0 93.9 86.2 .0 96.2
DGP2 100 62.9 .0 75.8 69.7 0.0 80.3 64.8 .0 77.7
DGP2 50 24.4 A 40.5 34.4 0.0 48.2 31.5 .0 457
DGP1 200 56.9 61.0 32 73.3 82.9 2.2 71.9 81.0 1.6
DGP1 100 43.3 53.5 0.6 65.6 735 14 61.5 70.2 1.4
DGP1 50 41.8 50.1 3.6 43.0 56.1 4.0 40.3 53.7 3.1
yvt=pu+ Zje=1f/;7jt + et + TEt—2
Size 200 14.1 17.4 9.9 3.0 9.4 1.1 1.6 7.2 1.8
Size 100 14.4 18.0 6.7 2.6 8.6 6 15 9.3 1.0
Size 50 5.6 17.4 0.7 1.6 11.3 A 1.4 10.8 2
DGP3 200 97.8 42.2 93.0 99.7 73.4 98.9 99.5 731 99.5
DGP3 100 922 29.8 90.3 94.2 55.2 90.7 93.9 51.9 94.1
DGP3 50 64.5 13.9 78.0 71.4 34.6 76.0 69.5 29.5 74.7
DGP2 200 91.1 8 93.9 97.2 2.8 99.3 95.7 2.7 98.8
DGP2 100 78.5 1.6 89.4 88.3 3.7 94.2 87.1 3.4 93.3
DGP2 50 50.3 1.4 77.4 55.6 4.3 751 52.6 4.2 72.2
DGP1 200 63.5 72.3 .0 64.8 75.8 0 64.9 72.9 .0
DGP1 100 45.4 541 .0 45.9 54.7 0 41.8 53.1 .0
DGP1 50 315 34.5 .0 241 31.6 1 15.9 27.6 A

NOTE: 7 = .8 in the above parameterizations. For further information on this table, see note to Table 1.
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and Hansen (1995) because of the structure of the DGP
that they used. Their simulated models are not “near” sea-
sonal unit roots at various frequencies, so it is difficult to
determine the size in their study appropriately. In our case
the simulated models correspond to an “almost” seasonal
nonstationary case.

3.2 Size and Power of the Test: MA(1) Process

In this section the DGP is (18)—(19), which is the case
with MA(¥¢) errors. This kind of setup provides a neutral
ground for comparing our tests with the CH tests. Two types
of MA processes are explored in Table 2. First I use

2

Y= p+ Zf]l‘t’)'jt +er+Tei1.
=1

Then the following MA(2) process is analyzed:

2

Y =p+ ijl‘t’th + et + Ter—2.
Jj=1

Iset § = .8,7 = .8, and 02 = .05. Using the AIC and
BIC, the optimal AR lag length p turned out to be 3, 5, and
6, for N = 50, 100, 200, respectively.

Table 2 shows that the proposed D tests have good size.
The test at the 7/2 frequency performs well even in the
small samples. For example, for N = 50 in an MA(1) pro-
cess, the size is 7%. Even though the test at the 7 frequency
performs well in an MA(1) model, however, the size rises
above the nominal level and is around 9-21% in an MA(2)
setup.

The CH tests also have good size properties. For example,
the size of the joint CH test with no lags of the dependent
variable (CHg) is 2-11%. The sizes of both tests do not
seem to be affected by the sample size.

Both the D and CH tests have good power under different
alternatives. Note, however, that the asymptotic rejection
frequency of the D tests is better than that of the CH tests.
These results were given by Caner (1996).

3.3 The Robustness Experiments

The results are robust to overfitting of the AR polyno-
mial, correlatedness of u; and e;, and overdifferencing of
vz Specifically, when I tried fitting up to six lags for AR(1)
and AR(2) models, there were no significant changes in the
power and size of the test. The finite-sample properties of
the test were also analyzed by using various ¢Z’s and 4’s.
The size and the power of the test were not affected by the
changes in 2. Smaller § and AR coefficients resulted in bet-
ter size properties for my test. Monte Carlo designs with
longer AR polynomials such as 3 and 4 were tried, gen-
erating results that were very similar to the case of AR(2)
design in Table 1.

4. CONCLUSION

This article proposes a locally best invariant test for de-
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tecting the presence of seasonal unit roots in time series
models. The null hypothesis of the proposed test is sea-
sonal stationarity, whereas the seasonal unit-root hypothesis
forms the alternative. The derived asymptotic distribution
is nonstandard and covers serially correlated processes. My
test is similar to the CH test for seasonal stability. The main
difference between the two arises from handling autocorre-
lation under the respective null and alternative hypotheses.
My test has a parametric correction, but the CH test has a
nonparametric adjustment for autocorrelation. According to
my simulations the CH test suffers from size distortion in
an AR model, whereas the proposed test has good size and
power. Moreover, even with different autocorrelation struc-
tures and data-generating processes, the proposed tests have
good finite-sample properties.
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APPENDIX: DERIVATION OF THEOREMS

Before proving the theorems, I need to prove a lemma and
introduce some notation. Let = denote weak convergence
on [0, 1] with respect to the uniform metric, let |-] denote
integer part, and let 2 denote convergence in probability.

Lemma 1.

(N7
1 - 1 .
\/—N Finn = ﬁ Z fiée = B(r) —rB(1),
t=1

where B(r) is a three-dimensional Brownian motion with
covariance matrix Q7.

Proof of Lemma 1. From the structural model under the
null hypotheses, I obtain

fiés = fe(p— ) + ftftl(’YO —40)
p
+ fi Z (61 — @] Jys—1 + free. (A1)

=1

From the first-order conditions, I know that 1/N Zf;l fiés
=0, so I have

0= (’Yo-’?o)iff/
- N t=1 tt‘

+ Y (@

=1

1Y 1
- &)= fty—1+ = > frer. (A2)
DPNECES PP

Then subtract (A.2) from (A.1) to get
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fiée = felp— i) + (0 — o) I:ftf{ - Z N

+ Z(dn ) [ftyt I—thyt l}

=1

I:ftet - %thetJ .
t=1

In this expression each term will be examined in detail.
Now, observe that, from the first term on the right side of
(A.3),

(A3)

[NT]

th

In (A.4), if [Nr] is a multiple of s, then (A.4) is O because f,
is a zero-mean process. If [N7] is not a multiple of s when
N — o0, (A.4) converges to 0,

(A4)

[N7]

!\/1_th 50,

and, from Potscher (1991), (1 — 41) is 0p(1).

The same procedure applies to the second term on the
right side of (A.3) as well.

For the third term, under the null hypothesis y;; is an
AR(p) process. Following from the invariance principle for
linear processes (Phillips and Solo 1992),

sup (A.5)

0<r<1

[NT]

Z (ftyt - Nthyt 1)

converges weakly and is Op(1). Then, from Potscher
(1991), T know that (¢; — ¢7) is o0,(1), so

Z (61 —

[N7]

1/22 (ftyt 1——thyt 1)

= 0p(1). (A.6)

Finally, invoking the functional central limit theorem
(Billingsley 1968),

[N7] N
( t€t — Z ft6t>

[N7]

= B(T) - 7’B(l), (A7)

where B(r) is a vector Brownian motion with covariance
matrix . Combining (A.5), (A.6), and (A.7), I obtain

[N7]

thet

=

9%

N
(ftet Z ftet>
t=1

Il
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F =3 (@

t=1 l=1

[N7]

772 (0=0) [ftft > ftft}

+ (-

t=1

= B(r) —rB(1).

%I:"

Proof of Theorem 1. From Lemma 1 and applying the
continuous mapping theorem, I obtain

N
1 \ a1
D = e § :F;(Qf) LE,
t=1

= /O W_l(r)/W _1(T)d’/'

= VM(s—1).

Proof of Theorem 2. This theorem is proved in a manner
similar to the proof of Theorem 1.

[Received September 1996. Revised May 1997.]
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