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A Lac;la!iv CJ Optima Seasons! Unit- WOO% Test 

h~ahrne:: GAB'.~ER 
Sdepeu~nsnt of Economies, Bilkenl Univers~ly, Ankara, Turkey 

This article proposes a locally beslt invariant test of the null hypothesis of seasonal stationarity 
agalnst the alternative of seasonal unit roots at all or individual seasonal frequencies. An asynlprotic 
distribution theory is derived and the finite-sample properties of the test are examined in a Monte 
Carla simulation. My test is also compared with the Canova and Hansen test. The proposed test is 
superior to the Canova and Mansen test in terms of both size and power. 

I E Y  WORDS: Locally best invariant test; Maximum likelihood estimation; Monte Carlo; 
Seasonai differencing filter; Seasonal stationarity. 

Seasonality in econon~ic time series can be viewed as 
either deterministic or stoci~~stic.  Fitting dummy variables 
is the usnal way of handling seasonality in a deterministic 
way To ddiEerenria.te among various patterns of seasonality, 
statisticai tests are introduced in the literature. 

Ey1Yeberg9 Engle, Granger, and Yoo (HEGY) (1990) de- 
veloped tests of the null hypothesis of a unit root at one or 
more seasonal frequencies against the alternative elf station- 
ary scamnality, Their test is ara extension of the unit-root 
testof Dickey and Fuller (8939) from the zero frequency 
ro the seasonal frequencies, This test has low pa7vver in fi- 
nite samples gear unit roots. so it is difficult to reject the 
false unit-root hypothesis at a single or a set of seasonal 
frequencies (Canow and Hansen 1995). 

In the tests that are developed by Canova and Hansen 
(CB) 4,19951, stationary seasonality forms the null hypoth- 
esis, The alternative hypothesis is nonstationarity due to 
seasonal unit roots. They generalized the unit-root test of 
i<i~viatkowski~ Phillips, Schmidt, and Shin ( O S S )  (1992) 
horn the zero frequency to the seasonal frequencies. Their 
test slatistics are Lagrange mcltiplier (LM) tests that are 
modified tc include seriajly correlated and hetel-oscedas- 
tic processes. Only least squares techniq~es are needed in 
their LM-type test, and autocorrelation is handled by using 
a nonpararnetric adj~astmeat. Tam and Reinsel (li>95) also 
conaribuied to this literature by developi~ag tests for moving 
average (MA11 seasonal unit roots. Their lest is mainly the 
extension of the Jaikkonen and Luukkonnen (1993) unit- 
root test to seasonal frequencies. 

In this article, I propose a test procedure in which the 
null hypothesis of stationary seasonality is testeel against 
the alternative 3f seasonal nonstationarity. 1 generalize the 
unit-root test of Zeybouraae and McCabe (1994) fi-om zero 
frequencg~ BO the seasonal frequency. To test the null hy- 
pothesis, 1 propose a locally best l~avariant test that is de- 
rived from the framework of King and Hillier (1985). The 
rest statisrlcs depend on the residuals. which are c;llculated 
via maxi~num liltellhood and then using least squares. The 
Barge-sample distribution under the null is the genzeralized 
voc Mises distribution that does not depend on the nuisance 
para-meters. 

a nonparameeric correction. Second, my test statistic is con- 
sistent to the order ,"\', whereas the CH test is of order l 7 / z :  

where z is the lag truncation parameter. The nonpararnet- 
ric adjustment of autocorrelation suggested by Canova and 
Hansen (1995) fails to give good finite-sample performance 
when a large autoregressive (AR) component is present in 
the data. This problem is due to the significant truncztion 
errors in the finite samples. 

The aim of this article is to overcome this problem by 
introducing a test statistic that accounts for autocorrelation 
parametrically. A Monte Carlo exercise has been conducted 
to examine and compare the finite-sample properties of the 
proposed test with those of the CH test. It is shown that the 
proposed test has better size arnd power properties than the 
CH test in en AR type of autocorrelation. 

Section 1 introduces the regression model. Section 2 
presents the structural and reduced form of the mode:, and a 
locally best invariant test statistic is also derived for testing 
unit roots at the seasonal frequencies. The rest of the section 
develops the asymptotic distribution for this test statistic. Irz 
Section 3. a Monte CxBo exercise is conducted, and the size 
and power properties of the proposed test are compared to 
those of the CH test. Section 4 concludes the article. Proofs 
of the theorems are discussed in the Appendix. A GAUSS 
program for calculating test statistics is available on request 
from me. 

1. THE MODEL 

A linear time series model with stationary seasonality is 
considered: 

@(L)gt = 11 +St  + r t .  t = I. 2 , .  . . . lV. ( I )  

In the preceding equation, @ ( L )  = 1 - ol L - g2L2 - . . . - 
O,LP is a pth-order AR polynomial in the lag operator L 
with roots outside the unit circle, yt is real valued, and St 
is a real-valued deterministic seasonal process of period s, 
in which s is a positive even integer and error term el is 
distributed as rid (0 ,  o,"). The number of observations is LT\f~ 
If there are T years of data, ,V = Ts. 

Tkere are a wo majol d:Rerences between my test and the 
@ 1998 Ameslcat-a Statistical Aseeelaiaosa 

CH test for seaso~al  stabahty In my test, autocorrelation 1s Journal of Buslwees Lcl Economlc StaUoeEEcs 
taken ~ n ~ o  account in a parametrnc way, but the CH test uses duly 1998, voa. 16, No. 3 
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In this article, because I am interested in anii roots at 
the seasonal frequencies, 1 require that y, not have a unit 
root at the zero frequency because it is not very difficult to 
transform a series with nonstationarity at the zero frequency 
to a stationary series: various applications of this test will 
be possible. The autocorrelation in the series is accounted 
fmo; by including the lagged terms in yt. 

A trigonometric representation is presented for the derer- 
ministic seasonal pattern S: 

where q = s j2  (s = 2 fm quarterly data and 
.s = 12 for monthly data) and, for j < q. f i t  = 
[ c o s ( ( j / q ) ~ t ) ,  s i n ( ( j / q ) ~ t ) ] ,  when j = q. f q t  = cos(irt). Ex- 
pressing the right side of (2)  in a vector, 

These 7 and f t  vectors have ( s  - 1) elepnei~ts. Substituting 
( 3 )  into (11. the regression eqhiatlon is 

@(L)yt  = p + fly 4 e,. t = 1 2 .  Y .  ( 5 )  

This representation allows sea.sonality to be a cyPicai pro- 
cess. Ah the seasonal frequency j.r;/q, the cylicaP processes 
are elements of f,. Moreover. f t  is a zero-mean process 
whenever is a multiple of s. The coe&cients ;, repre- 
sent the effect of each cycle on the deterministic seasonal 
component St. Tsnis cylical formulation of seasonality is 
common in the time series literature (Miirman 1970, p. 174; 
Harvey 1989. p. 42). 

2. THE TEST FOR SEASONAL UNIT ROOTS 

2.1 The Structural Model and %he Reduced Form 

To test whetqer seasonal pattesns are stable or not, 1 need 
to present a specnfis alternat~ve hypothesis One form of 
the alternatave hypothes~s 1s to allow a unse root ID - t  Thla 
idea was singgested by Hannan (1970) and rased by Canova 
and Wanren (1995) and Eeyboume and McCabe (1994) The 
atroctusal model 1s 

and 

40  fixed It as assumed that ut is i~di mean 0, ~nclependent of 
et and ft and its covanssnce matrlx are 

where G is an ( s  - 1) x ( s  - 1) matrix and 02 is a scalar. The 
unit roots a: different seasonal frequencies are determined 
by G matrix. It can be easily seen from (6) and (7) that: 
whenever 0; f 6, then there will be seasonal unit roots. 

The sir~ctura? model (6)-(4) is secoi~d-order eqeaivalent 
sn momeats ;a the reduced-form model: 

where Ct is disiributed (0. a:). S ( L )  = ~ g z h  LJ is a sea- 
sonal filter, and p' = s ~ .  

This Bast term 8 ( L )  is an MA(§ - 1 )  polynomial. The 
derivation of (9) can be obtained from me on demand. For 
the importance sf  this representation, the reader can consult 
Leybourne and McCabe (1994). This reduced form is very 
similar to the model used by Tarn and Reinsel (1995). Their 
model did not. however? result in a test that can differentiate 
between unit roots at various seasonal frequencies and the 
zero freguencq~. 

2.2 The Hypothesis Test 

I wish to test whether the seasonal patterns are stable or 
not. In other words 1 need to develop a hypothesis so that 
I can determine whether a given series has stationary sea- 
sonality or not. One such hypothesis is a statioiaary AR(p) 
process, against the alternative s f  nonstationary seasonal- 
ity. This can be easily formulaked in terms of the structural 
model (6)-(7) as No : p = 0 against El : p > 0. where 
p = o;,in:. 1 shall examine Ike local departures from the 
ntdl hypothesis in the fo9iowing section. 

Another task that 1 face is developing a test statistic. 
From the structural aodel(6)-(7) and using the frameaork 
of King and Hillier 119851, rhe EocaEly best invariant test 
statistic for Ah : p = 0 Is 

where @, = c F = ~  f q e i .  6: = &'e/:V is a consistect estimator 
of a:, and E is an A- x 1 vector or residuals F t .  

The residuals Bt are obtained via the following procedure: 
First find the naxirnu.m likelihood estimates of (o) from the 
fitted model, 

where y; = S(L)y, Then construct the series 

where o; are the maximum likelihood estimates of nl ob- 
tained f r o n  (1 11. Then regress g, on an intercept and sea- 
sonal olum~mies to obtain &. Even though 1 do not assume 
the normality of e t ,  this is necessary for the 'boptirnality" 
of the tests. 

As pointed out by Saikonnen and Lnnltonnen (1993) and 
keybourne and McCabe (19941, one wants to estimate ql 
consistently both under the null and the alternatia~e hy- 
pothesis in the reduced form, so I use ma:iimui~ likeli- 
hood estimation rather than ordinary least squares. Even 
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though n~axisnsm li:telahood estimation might have draw- 
baclcs, they are found to have no effect on the finile-sample 
properties of my ".st in the simulations that 1 B-iave con- 
dncted in the former version of the article (AI-LSP~Y and 
Ne~.vbold 1380: Gahraith and Zjnde-VValsh 1994). An alter- 
~atlrgme way of estimation is the instrumental-varia.bIe tech- 
nicpe. But t h ~ s  approach did not give good results in this 
case. 
.An impoi-last poht  is the structure of G matrix. Different 

specifications of the zlternative hypotheses deperld on the 
sk-uciv-re ot' G.l&7.'hen the alternative hypothesis is unit roots 
at a:! seasonal frequencies, then C: must be nonsin;;ular and 
?t must be lime a/a;ryirg. If the alternative hypothesis is unit 
roots at sljecific seaso~al frequencies, then G must be block 
dlaonal  wilh nonzero elements in only selected blocks and 
a snbset of ^it is zime varying, 

If the eleernatiire hypothesis is seasonal nonstationarity, 
then 1 should have a joint uraie-root test at all seasonal fre- 
quemies. It was h.rst suggested by Nyblorn (1989) in the 
Ilikelihood context and later applied to econometric mod- 
e3s by Hansen (1990, 1392) that, when G/az = ( O f ) - l ,  
then ;he asymptotic distribution of the test statistic is 
easy to evaluale. In the preceding discussion, C!.f is the 
Song-run covariance matrix of f ie i  (see Canova and Haaasenl 
1995). 

Becanse et is serially uncorrelated and homosct:dastic, P 
can use the cocsisrenr estimator 

- lo study she iarge-sample distribution of D, I use the fol- 
d lowing notation: i denotes convergence in distribution, 

TITm denotes a vector standard Brownian bridge of dimen- 
sioaa m., and ?';Ir"(m) is a random ~ar iable  obtained by the 
following operation: 

As was suggested by Canova and Hansen (19951, V;li(m) 
~niU be referred to US the generalized von Mises distribution 
witla rrt df, Criticd values were given in table 1 of Canova 
and Hansen (1995). The maio theorem of this section is 
proved in the Appendix. 

T!teoism J ,  In (1). if @ ( L )  is a finite AR polynomial in 
the lag ooeratcr with mots outside the unit circle and if et 
is iicl, Eei  = 0, and Ec,~ = a: < x~ then. under LYcl, 

Following Section 2.2 and using theorem 3 of Canova 
and Hansen (1995), 1 have the individual test slatistscs 

2 
\ 

D 3 n / q = r x F ; t L b J t .  J < Y .  (14.1 
a,2U2 t=l 

and 

The individual test stat~stics can be calculated as a by- 
product of the joint test. Their asymptotic distributhos is 
given in Theorem 2. 

Theorean 2. Under the conditions in Theorem 1: (1 j for 
d d 

j < q. D,,!, + Vii/i(2), and ( 2 )  j = q .  D, -+ VAf(l). 
The individual tests supply us with more information 

about the nature of the seasonal process when there IS ' sea- 
sonal nonstationarity in the joins test. Nonstationarity can 
be caused by she unit roots at the individual seasonal fre- 
quencies. 

The consistency of the joint and individual tests under 
HI can be obtained via the method described by Eeyboerrne 
and McCabe (1994). My test is a generalization of the key- 
bourne and McCabe test at zero frequency to the seasonal 
frequency, whereas the CH Pest is a generalization of the 
KPSS test. Both tests have the same limiting distribution. 
If I analyze the advtintages of the 3 test, first I shorald be- 
gin by comparing my test with the CM test. The CE test 
accounts for autocorrelation in a nonparametric fashion, but 
in finite-samples this can cause problems if the data sarwc- 
ture contains higher-order terms in the AK polynomial. The 
nonpararnetric adjustment then is not able to capture the 
serial correlation in data. My test focuses on this problem. 
Autocorrelation is allowed by introducing lagged terms in 
y,. This parametric correction is the main advantage of the 
test and: with a significant AR component in the data. this 
results in better finite-sample performance. According to 
Leyboearne and McCabe (19941, the test statistic is consis- 
tent at a rate O,(N) under MI, but in the MPSS teest this rate 
is U,(Ai/z) ( z  is the bandwidth parameter in KPSS and CR 
tests). These rates also apply to my test statistic and the CH 
test statistic under H I .  Therefore, I expect my test's power 
to be better. 

3. MONTE CARLO STUDY 

To examine the size and power properties of the proposed 
test statistics, a Monte Carlo exercise is conducted. Two 
quarterly models are considered. The first model is 

2 

@(E)yt = p + JL,/,-/,t + e t ,  et - lY(0. l), (16) 
1=1 

and 

where70 = [[i,l,l],-/t = (yLb.-y~t)i,  ando  < 6 5  1. 72i is a 
2 x 1 vector, and G is a 3 x 3 matrix, 02 = 1. @(L)yt is an 
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AR(p) process. The second model is given by 

and 

where T(L) = L + r lL  + raL2 + . . . T&&. The model 
("a)-(19) ensures a fair comparison between the D test and 
the CH test because my test captures an AW(p) type of 
autocorrelation. In calculating the size of the tests, 1 explore 
the more empirically relevant case of 0 < 6 < 1 and U: f 0. 
For both models, three different data-generating processes 
(DGP's) are used under the alternative hypothesis- 

and 

Under DGP I 9  there is a unit root at the 7i- frequency as 
long as D: # 0. The D, test is designed for this specifi- 
cation. There is a pair of complex conjugate roots at the 
r;/2 frequency itnder DGP2 when D: f 0. Similarly, when 
B: = 0 under DGP 4 there are no unit roots, but there are 
unit roots at all seasonal frequencies if u,', f 0. One impor- 
tant fact to note is that the covariance structure implied by 
G is different from the one that is used to construct the D 
and D,;, test statistics. 

In the simulations, the order of the AR polynomial p and 
the order of the MA polynomial il are P and 2. Both the AW 
parameters of (1 6)-(17) and the MA parameters of (1 8)-(19) 
are chosen carefully to understand the eRect of autocorre- 
Iation on the test statistics that are proposed in this article. 
1 set b = .X .  The signal-to-noise ratio p = 0:/0,2 takes the 
value of .05.6 vary the sample size among ilT = 50.100.200. 
I have 1,000 independent realizations for each DGP and pa- 
rameter configuration. The test statistics are calculated for 
unit roots at all, T~ and n/2 seasonal frequencies. Robust- 
ness issues are explored in Subsec~ion 3.3. 

My test's finite-sample properties are compared to those 
of the CW tests (with and without one lag of the dependent 
vanable included). Hylleberg (1995) showed that the CH 
test with one lag bas iow power. Because 1 analyze various 
data structures. however, ]I want to include that test in my 
study also. The underlying model of the CH test is the same 
as my model (16)-(17) and (20)-(22), but they assume p = 0 
or p = 1. Because they also assume an a-mixing process for 

Tabe 1. Size and Power Gompsrison Between the CH and D tests: AR Model 

B CHo CHi 

DGP SS J - ~ i 2  J 7~ 7;/2 J 7i ~ / 2  

Size 
Size 
Size 
BGP3 
DBP3 
BGP3 
DGP2 
BGP2 
DGP2 
DGP1 
DGPl 
BGP1 

Sine 
Size 
Size 
BGP3 
DGP3 
BGP3 
BGP2 
BGP2 
DGP2 
DGPl 
DGPI 
DGP1 

NOTE. In both AR pararnetertzattons for the stze part. 7 ,  = .Byt-, i u; For the power part of fhe program, = -,-, + ut SS IS the sample slze. D. CHa, and CHI are the D and the CH 
tests with no lags and one lag. respectively J, 7 ,  and 7i!2 are the tests at all. semiannual. and annual seasonal frequencies, respectively The DGP column shows the size and :he power of the 
tests (DGP3. DGPP, DGP;). 



Caner: A Locally Optimal Seasonal Unit-Root Test 353 

e,, their estilcnates of long-run covariance matrices hf and 
for p = P and p = 0, respectively, depend on the choice 

s f  the kernel and she lag truncation number z. In this study 
the 3artletn kernel is used and, following Andrews (1991), 
z = 3.4; 6 is sclected for 1'; = 50; 100.200, respectively. 
One important point about mgl test is the choice of p, the 
number of lags in y,. The D tests ape carried out with lag 
lengths chosen by the Akailte information criterion (AIC) 
and the Bayesian information criteriori (BlC). 

The results of the exercise zre presected in Tables 1 and 
2. The percentage of rejection of the null is given at the 5% 
significance level. Because the size of the D and CH tests 
that are calculated in Tables 1 and 2 vary consicierably, I 
calculizse she size-adjusted power, In the tables, the power 
of the tests are size-adjusted power. The critical values for 
calceulati.ng these can be ohpained from me on demand. 

There are three Monte CarPo studies than compare the rel- 
ative performance of the tests for seasonal stability. One is 
by Hyllebesg (1995) in which the WEGY tests are contrasted 
with the CH tests. Ghysels, Lee, and Noh (1 994) compared 
"re performance of the HBGY test with the Dlickely, Hasza, 
and Fnler (1984) tests. Canova and Hansen (1995) con- 
trasted the CH tests with HEGY tests, but the DGB is dif- 
ferent from the Monte Carlo study d Hylleberg (1995). 

3.1 Size and Power sf t h e  Test: AR(p)  Process 

Ba t h ~ s  section the size and power properties of the D test 
are compared with the CH test under the model (16)-(17). 
When analyzing the s u e  of the tests in Table I ,  b 1s selected 

to be .a because this value corresponds to a "near" seasonal 
unit root. In calculating the power of the tests in Tables I 
and 2, I set b = 1. 

In Table I ,  it is easy to see that the size of my tests 
is slightly above the nominal size of 5% in most of the 
cases. The CH tests have large size distortions for JaR(2) 
parameterization, however. For example, for N = 200 in 
an AW(2) framework, the size of the goint D test is 14%. 
whereas the joint CM tests reject the true null in 41-50% 
of the trials. 

The D tests have good power under different alternatives. 
For 1V = 100, the power of the joint test is 84% when 
there are seasonal unit roots present at the a/2 frequency 
(DGP2). For AT = 200, In an AR(2) process, the power of 
the joint test is 85% when there is a seasonal unit root at 
the T frequency (DGPI). 

The CH tests ha.ve mixed results under an AR structure. 
For iY = 100, in an AR(1) process the joint test has Q& 
79% power against DGP2. The CH tests with one lag sf 
the dependent variable (CHI in Tables 1-2) perform quite 
poorly in an AR(1) structure. The power is near the nominal 
size of the tests. Both CH tests also have trouble in an AR(2) 
structure when only a seasonal unit root at the x frequency 
is present (DGPB). For N = 200, the joint tests have 56% 
power under DGBH. 

Overall, the CH tests do not perform well near seasonal 
unit roots. They suffer from size distortion. On the other 
hand, the proposed tests have good size and power, The CH 
tests performed well in the Monte Carlo study sf  Canova 

Table 2. Comparison of SL?e and Power: The CH and D tests in an IWA Model 

B 
- 

CHo CHr 

DGP SS J T x / 2  J K 7i/2 J 7i TIP 

S~ze 
S~ze 
Size 
DGP3 
DGP3 
DGP3 
DGP2 
D G F 2  
DGP2 
D G P I  
D G P I  
DGP1 

S ~ z e  

S~ze 
S l z e  

DGP3 
DGP3 
B G P 3  
DGP2 
B G P 2  
DGP2 
DGP? 
D G P I  
DGPI 

NOTE. T = .8 in the above pararneter~zations. For further lnformatlon on this tabti?, see note to Table 1 
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and Hansen (1995) because of the structure of the DGP 
that they used. Their simulated models are not "near" sea- 
sonal unit roots at various frequencies, so it is difticult to 
determine the size in their study appropriately. In our case 
the simulated models correspond to an "almost" seasonal 
nonstalionary case. 

3.2 Size and Power of the Test: MA(1) Process 

In this section the DGP is (18)-(191, which is the case 
with MA(Y) errors. This bind of setup provides a neutral 
ground for comparing our tests with the CH tests. Two types 
of MA processes are explored in Table 2. First I use 

Then the following MA(2) process is analyzed: 

I set 6 = .8. T = .&, and a: = .05. Using the AIC and 
BIC, the optimal AR lag length p turned out to be 3, 5, and 
6, f o r I V  = 50,100,200, respectively. 

Table 2 shows that the proposed D tests have good size. 
The test at the n/2 frequency performs well even in the 
small samples. For example, for N = 50 in an MA(1) pro- 
cess, the size is 7%. Even though the test at the n frequency 
performs well in an MA(1) model, however, the size rises 
above the nominal level and is around 9-21% in an MA(2) 
setup. 

The CH tests also have good size properties. For example, 
the size of the joint CH test with no lags of the dependent 
variable kCHo) is 2-1196. The sizes of both tests do not 
seem to be affected by the sample size. 

Both the D and CH tests have good power under different 
alternatives. Note. however, that the asymptotic rejection 
frequency of the D tests is better than that of the CH tests. 
These results were given by Caner (1994). 

tecting the presence of seasonal unit roots in time series 
models. The null hypothesis of the proposed test is sea- 
sonal stationarity. whereas the seasonal unit-root hypothesis 
forms the alternative. The derived asymptotic distribution 
is nonstandard and covers serially correlated processes. My 
test is similar to the CH test for seasonal stability. The main 
difference between the two arises from handling autocorre- 
lation under the respective null and alternative hypotheses. 
My test has a parametric correction, but the CH test has a 
nonparametric adjustment for autocorrelation. According to 
my simulations the CM test suffers from size distortion in 
an AR model, whereas the proposed test has good size and 
power. Moreover, even with different autocorrelation struc- 
tures and data-generating processes, the proposed tests have 
good finite-sample properties. 
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APPENDIX: DERIVATION OF THEOREMS 

Before proving the theorems, I need to prove a lemma and 
introduce some notation. Let + denote weak convergence 
on [O, 11 with respect to the uniform metric, let [.] denote 
integer part, and !et 3 denote convergence in probability. 

kemnza I .  

where B(rj is a three-dimensional Brownian motion with 
covariance matrix flf . 
Proof of Lemma 1. From the structural model under the 

null hypotheses: 1 obtain 

3.3 The Robustness Experiments 

The results are robust to overfitting of the AR poiyno- 
snial, correlatedness of ut and e,, and overdifferencing of 
g t  Specifically, when 1 tried fitting up to SIX lags for AR(1) 
and AR(2) models. there were no significant changes in the 
power and size of the test. The fimte-sample properties of 
the test were also analyzed by using vanous 02's and 6's. 
The size and the power of the test were not affected by the 
changes in a:. Smaller S and AR coefficients resulted in bet- 
ter size properties for my test. Monte Carlo designs with 
longer AR polynomals such as 3 and 4 were tried, gen- 
eratlng results that were very similar to the case of AR(2) 
design in Table 1. 

4. CONCLUSION 

From the first-order conditions, I know that l i i ~ ~ ; : ,  ftBt 

= 0, so I have 

This article proposes a locally best invariant test for de- Then subtract (A.2) from (A.1) to get 
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In this expression each term will be examined in detail. 
Noav, observa that, from the first term on the right side of 
i"a.31, 

In (A.41, af 'ST] I S  a mul'iple of s. then (k.4) 1s O because f t  
i s  a zero-meaa process. IS [ lvr]  is not a multiple c ~ f  s when 
i m, (A.4) converges to 0, 

ar~d., from Potscher (19919, [' - f i )  is o,(l). 
The same procedure applies to the second term on the 

right side of (A.3) as well. 
For the third term, under the null hypothesis g t - ~  is an 

AR(p) process. Folowing from the invariance principle for 
linear processes (PtilPips and Solo 1992), 

converges weakly and is Op(1j. Then, horn Potscher 
119911, 1 know tha: (ol - dl ) is o,(!), so 

Finally, invoking the functional central limit theorem 
(Billingsley 19681, 

where B(T) 1s a vector Brownian motion with covariance 

matrix Qf, Combining BA.3, (A.61, and bA.'7), 1 obtain 

PI-sof of Theorem I .  From Lemma 1 and applying the 
continuous mapping theorem, I obtain 

Proofof Theorem 2. This theorem is proved in a manner 
similar to the proof of Theorem 1. 

[Received September 1996. Revised May 1997.1 
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