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The static and dynamic screening of power loss of a two-dimensional
electron gas

C. Bennett, N. Balkan†
University of Essex, Department of Physics, Colchester, U.K.

B. Tanatar
Bilkent University, Department of Physics, 06532 Ankara, Turkey

H. Celik, M. Cankurtaran
Hacettepe University, Department of Physics, 06533 Ankara, Turkey

(Received 24 September 1997)

Experimental results concerning the well-width dependence of the acoustic-phonon-assisted
energy relaxation of a two-dimensional electron gas in GaAs/Ga1−xAl xAs quantum-well
structures are compared with theoretical models that involve piezoelectric and deformation-
potential scattering and the effects of static and dynamic screening of the electron–acoustic
phonon interaction. It is shown that screening only slightly modifies the predictions of the
approximate calculations.
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1. Introduction

Experimental work concerning the energy loss rate of the two-dimensional (2D) electrons in the acoustic
phonon scattering regime has been reported by a large number of groups [1–7]. It has often been pointed out
that experimental results do not agree well with the theoretical predictions. Recently, we have also reported
power-loss results in GaAs/Ga1−xAl xAs quantum-well structures obtained as a function of well width, and
addressed a number of uncertainties associated with the cooling mechanisms [8]. It was argued that one
reason for the discrepancy between the theory and experiment might be associated with the over-estimated
piezoelectric component in 2D. The aim of this paper is, therefore, to understand whether the inclusion of
the screening of electron–acoustic phonon interaction by the degenerate 2D electron gas may account for the
disagreement between experiment and theory.

2. Experimental results

Most of the experimental results and the details of the theoretical model have been reported by us [8]. We,
therefore, give only a brief summary for convenience.
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Table 1: Sample parameters(GaAs/Ga1−xAl xAs).

First Fermi Base
Well Al 2D electron subband energy: Hall mobility lattice

No. of width concentration density E1 EF − E1 µ(4.2 K) temperature
Sample wells (̊A) (%) (cm−2) (meV) (meV) (cm2(Vs)−1) T0 (K)

A 10 51 32 9.0× 1012 73.7 32.2 2.43× 104 1.55
B 10 75 33 1.1× 1013 45.5 39.3 2.98× 104 1.70
C 10 78 32 9.9× 1012 43.1 35.4 3.75× 104 1.64
D 10 106 32 9.1× 1012 27.7 32.5 2.42× 104 1.70
E 10 145 32 1.08× 1013 16.9 38.6 2.58× 104 1.57

The parameters of the GaAs/Ga1−xAl xAs multiple-quantum-well samples used in the investigations are
given in Table 1. All the samples were grown with the molecular beam epitaxy (MBE) technique. Samples
were fabricated in the form of Hall-bar shapes and the ohmic contacts were formed by alloying Au/Ge/Ni.
The experiments involved the measurements of the Shubnikov de Haas (SdH) oscillations as a function of
both the applied electric field at a fixed lattice temperature (the lowest of the lattice temperature range, i.e.
T0 in Table 1, and the lattice temperature(T0 < TL < 4.2 K) at a fixed electric field that was low enough to
ensure ohmic conditions and hence to avoid carrier heating. Thermal damping of the oscillations, at a fixed
magnetic field was determined only by the temperature, magnetic field and the effective electron mass as
described in [8–11], i.e.

A(TL)

A(T0)
= TL sinh(2π2kBT0m∗/h̄eB)

T0 sinh(2π2kBTLm∗/h̄eB)
(1)

where A(TL) and A(T0) are the amplitudes of the oscillations at the two lattice temperaturesTL and T0

respectively. The change in the amplitude of the SdH oscillations with electric field can be described in
terms of the electric-field-induced electron heating [11], then in eqn (1),TL can be replaced by the electron
temperature,Te, and therefore, electron temperatures can be determined by directly comparing the relative
amplitudes of the oscillations plotted as a function of the electric field and lattice temperature [10, 11]:[

A(TL)

A(T0)

]
F=F0

=
[

A(E)

A(E0)

]
Tl=T0

(2)

whereE0 andT0 are the lowest applied electric field and the lattice temperature of the measurements. The
power loss from the electrons to the lattice by the emission of acoustic phonons can be calculated from the
steady-state energy balance equation via [11],

p = eµ(E)2 (3)

wherep, µ andE are the energy loss/supply rate per electron, electric-field-dependent electron mobility, and
the applied electric field respectively.

The power loss versus electron temperature is plotted in Fig. 1 for all the samples studied. It is evident
from the figure that both the magnitude and the electron temperature dependence of the power loss vary
significantly from one sample to another. Since both the barrier parameters and the 2D electron densities
of all the samples are identical within 10%, the observed variation is indicative of an association with the
only variable parameter in the samples; i.e. the quantum-well width,L Z . In order to show the well-width
dependence clearly, in Fig. 2 we plotted the power loss as a function of the well width atTe = 4 K. The power
loss changes by about a factor of two in the range of quantum wells studied. There is a clear reduction in the
power loss with increasing well width up toL Z = 106Å. However, although very limited data are available
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Fig. 1. Energy loss rate per electron versus electron temperatures for the samples studied. The letters refer to samples in Table 1.
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Fig. 2. Quantum-well width dependence of the electron power loss at electron temperatureTe = 4 K.

for wider wells(Lz ≥ 100Å) the indication is that the power loss tends to increase as the confinement length
increases and as the electrons acquire more of a quasi-three-dimensional (3D) characteristic.

3. Theoretical models and discussions

3.1. Approximate results for the unscreened interaction

Approximate analytical expressions for the unscreened interactions in 3D and 2D are given in [8, 12, 13].
The power loss due to scattering by acoustic phonons is then calculated using these expressions in two distinct
temperature regimes.
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Fig. 3. Well-width dependence of the theoretical and the experimental power loss atTe = 4 K. Full circles: experimental results; full
squares: approximate solution of the 2D analytical model; full diamond: approximate solution of the 3D analytical model. Lines are to
guide the eye.

1. The equipartition regime, where
h̄ωq

kT
� 1 (4a)

and, hence the phonon distributionn(ωq) is:

n(ωq) = 1

exp
(
h̄ωq/kBT

)− 1
≈ kBT

h̄ωq
(4b)

whereh̄ωq is the acoustic phonon energy at wavevectorq.
2. A low-temperature (Bloch–Gruneisen) regime where the phonon population diminishes and the Pauli

exclusion increasingly restricts the allowed process:

n(ωq)� 1. (5)

The scattering by absorption is negligible and only spontaneous emission is important.

In Fig. 3 we have plotted the total (polar+ non-polar) theoretical power loss per electron for all the samples
at Te = 4 K and at base lattice temperaturesT0 as listed in Table 1. Other parameters used in the calculations
are:Te = 4 K; n = 1.0× 1016 m−2; ρ = 5360 kg m−3; 4 = 7 eV; κ2

av = 2.52× 10−3; νs = 5240 ms−1;
ε = 13.18;m∗ = 0.07 me. Although the use of the bulk approximation for the smaller quantum wells is
questionable, for the widest well, where the electron gas has less of a 2D character the power loss is described
better with the 3D model. On the other hand, despite failing to predict the magnitude of the experimental
power loss, the 2D model has a well-width dependence very similar to the experimental results for the narrow
wells. Neither the 2D nor the 3D model explain the observations for the whole range of measurements.

3.2. Exact calculations and the static and dynamic screening of the interaction

Since the well-width dependence of the experimental results is not explained by the approximate results of
usual scattering theory, we now include the effect of the electron gas in screening the electron–acoustic phonon
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interaction. We start with the general scattering equation from many-body theory using the approximation of
one subband [14],

P = 2

h̄

∑
q‖

∫ ∞
0

d(h̄ω)h̄ω[nTe(ω)− nT (ω)]Im[Vscr(q, ω)]Im[χ(q‖, ω)], (6)

whereT is the lattice temperature,Te is the electron temperature,χ(q‖, ω) is the reducible polarizability
function given byχ0(q‖, ω)/ε(q‖, ω), ε(q‖, ω) = 1− V(q‖)χ0(q‖, ω) is the dielectric function and

VSC R(q‖, ω) =
Vph(q‖, ω)

1− [V(q‖)+ Vph(q‖, ω)]χ(q‖, ω)
. (7)

Here V(q‖) is the 2D Fourier transform of the Coulomb matrix element andVph(q‖, ω) =∑
qz
|M(q)|2D(q‖, ω) is the phonon potential. The matrix element is given by

|M(q)|2 = h̄

2ρVcωq

[
42q2+ K 2

avcLe2

ε0εs

] [
sin(qzLz/2)

qzLz/2
+ sin(qzLz/2+ π)

qzLz+ 2π
+ sin(qzLz/2− π)

qzLz− 2π

]2

, (8)

where the first part is for the interaction with acoustic phonons by deformation potential and the second part
by piezoelectric scattering, andD(q, ω) is the acoustic phonon propagator,

D(q, ω)= 2ωq

h̄(ω2− ω2
q)
. (9)

Also, the acoustic modes have the dispersionωq = νsq and

χ0(q‖, ω) = 2
∑
k‖

f (Ek‖)− f (Ek‖q‖)

h̄(ω + i γ )− Ek‖+q‖ + Ek‖
. (10)

We can simplify (6) by assuming that the acoustic phonons do not couple because they have much less
energy than the plasmons, i.e. eqn (7) becomesVscr(q‖, ω) = Vph(q‖, ω). The imaginary part of the phonon
propagator becomes a delta function, settingω toωq, leaving [15]

P =
∑

q

2ωq[nTe(ωq)− nT (ωq)]|M(q)|2Im[−χ(q‖, ωq)]. (11)

If we replaceε(q‖, ωq) with ε(q‖, 0) the static screening result is obtained. For acoustic phonons this should
also be a good approximation, again becauseωq � ωP, whereωp is the plasmon energy. We will compare
both the dynamic and static results. Ifε(q‖, ωq) is set to unity then (11) gives the exact unscreened power loss.

In Fig. 4 the results of the unscreened exact, together with the screened theoretical, power-loss calculations
are compared with the experimental results. It can be seen that the exact result has a much shallower gradient
than the approximate result used above and in earlier treatments [8], which actually has a better comparison with
the experimental results. This is due to the approximation of ignoring the matrix element in the perpendicular
direction and setting the associated perpendicular wavevector,qz, to zero. In the exact result the wavevector
does have a dependence on well width and hence the approximation, which follows 1/L Z , does not produce
the correct well-width dependence. The effect of screening has only reduced the rates; the gradient is about
the same. Both static and dynamic screening give similar results, as expected above, but both are now lower
than the experimental data and neither have the same form. The reduction in the power loss may be explained
by how the value for the deformation potential is obtained. In all the theoretical calculations the value of 7 eV
was used for4. This value was obtained by fitting the theory with the experimental data for the bulk power
loss using similar methods [16]. However, no screening was included when this fitting was done and hence
the value for the deformation potential is too low for the case of screening. Other authors [17] have used larger
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Fig. 4. The well-width dependence of the acoustic phonon power loss as obtained by using the approximate solution (solid curve), the
exact result (dotted curve), static screening (short-dashed curve) and dynamic screening (long-dashed curve). The experimental data are
shown by the solid line with circles marking the data points.

values for4 and concluded that screening must be included. However, the theory would still not predict the
well-width dependence of the experimental results.

Possible explanations for the discrepancies are that there is some electron population or scattering into
another subband. However, the densities and temperatures at which the results are taken are too small for this
to occur. It is possible that including another (empty) electron subband in the dielectric function would change
the well-width dependence of the power loss theoretically, but this is unlikely because of the low frequency
of the acoustic phonons.

To include the effect of many subbands, we may rewrite eqn (11) (ignoring any coupling) as

P =
∑
q,i j

2ωq[nTe(ωq)− nT (ωq)]|M ′i j (q,0)|2Im[−χ i j (q‖, ωq)], (12)

with i and j as the initial and final subband indices,χi j (q‖, ωq) similar to eqn (10) but including the subband
energy difference [17] and

M ′i j (q, ω)=
∑
mn

ε−1
i jmn(q, ω)Mmn(q), (13)

with |Mmn(q)|2 similar to eqn (8) but including the correct transition and with the different phonon in-
teractions treated separately. The dielectric function is now given by the matrixεi jmn(q‖, ω) = δinδjm −
Vi jmn(q‖)χmn(q‖, ω). If ε i jmn(q‖, ω) = δinδjm, i.e. M ′i j (q, ω) = Mi j (q), we again obtain the unscreened
result.

Figure 5 compares the power loss for A, the unscreened and B, the screened cases for different electron
densities. It can be seen that, although the power loss does indeed increase rapidly when a new subband
is filled, this increase occurs at larger well widths for the electron densities in the experiments. Increasing
the density does reduce the well width for which the increase occurs but the power loss per electron is also
reduced. Including the effect of screening does reduce the power loss with only a marginal effect on the shape
of the curve.

The theory predicts that there should be almost no well-width dependence of the power loss, whether
screening is included or not, for the range of densities and well widths used. In most cases it would appear as
though it is possible to use the unscreened power loss for comparison with experimental data as long as one
of the low values of4 is used, such as 7 eV.
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Fig. 5. A, The unscreened and B, the screened acoustic phonon power loss against well-width for electron densities of 1012 cm−2

(solid curve), 2× 1012 cm−2 (dotted curve) and 3× 1012 cm−2 (dashed curve).

4. Summary and conclusions

Experimental studies of energy-loss rates of warm electrons via scattering from acoustic phonons in
quantum-well structures have been presented. The results are compared with the predictions of the approx-
imate calculations of both the unscreened 3D and the 2D analytical models. It is shown that the 2D model
explains the well-width dependence for narrow wells, but overestimate the magnitude of the loss rates. The
exact numerical calculation of the 2D model and the inclusion of static or dynamic screening fail to predict
the observed power loss. One reason for this might be the infinite quantum-well approximation used in the
theoretical models. In the extreme quantum limit, the confined electron–bulk acoustic phonon interaction
is enhanced compared with the case in a real quantum well with finite barriers. As a result, a larger power
loss than that observed experimentally is not totally unexpected. Also, all the existing theories use the bulk
phonon approximation, which is obviously valid for wide wells. However, recent work on the acoustic phonon
confinement in GaAs slabs in vacuum suggests that the electron-confined mode scattering rates for narrow
wells may indeed be different from that obtained by using the bulk phonon approximation [18]. By how
much the confinement of the acoustic phonons in a GaAs/Ga1−xAl xAs system would change the scattering
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rates is an interesting problem that needs to be considered. Furthermore, the value for the sound velocity for
GaAs for propagation in the〈110〉direction that is used in the calculations has to be modified with the ap-
propriate weighting to take account of the GaAlAs mode propagation. To our knowledge no theoretical study
on the electron–acoustic phonon scattering exists in the literature which takes account of both the electron
confinement in a finite well, and the confinement and the folding of the LA and the TA modes.
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