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0. Introduction

Let

f(z)¯ 3
¢

k=!

a
k
zk a

!
" 0 (0.1)

be a formal power series. In 1913, G. Po! lya [7] proved that if, for all sufficiently large

n, the sections

f
n
(z)¯ 3

n

k=!

a
k
zk (0.2)

have real negative zeros only, then the series (0.1) converges in the whole complex

plane C, and its sum f(z) is an entire function of order 0. Since then, formal power

series with restrictions on zeros of their sections have been deeply investigated by

several mathematicians. We cannot present an exhaustive bibliography here, and

restrict ourselves to the references [1, 2, 3], where the reader can find detailed

information.

In this paper, we propose a different kind of generalisation of Po! lya’s theorem. It

is based on the concept of multiple positivity introduced by M. Fekete in 1912, and

it has been treated in detail by S. Karlin [4].

Recall that the sequence ²a
k
´¢

k=!
of real numbers is said to be m-times positive

for m `Ne²¢´ if all minors of orders less than m1 of the infinite matrix
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are non-negative. Usually, ¢-times positive sequences are called totally positive

sequences.

The Aissen–Edrei–Schoenberg–Whitney theorem (see [4, p. 412]) gives an

exhaustive characterisation of totally positive sequences. In particular, this theorem

yields the fact that the entire function (0.1) of genus 0 has purely negative zeros if

and only if the sequence ²a
k
´¢

k=!
is totally positive. Applying this to the polynomial

(0.2), we see that negativity of all its zeros is equivalent to total positivity of the

sequence ²a
k
´n
k=!

B ²a
!
, a

"
,… , a

n
, 0, 0, 0,…´. Thus the condition of Po! lya’s theorem

is equivalent to total positivity of the truncated sequences ²a
k
´n
k=!

for all sufficiently

large n.
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The following problem seems to be of interest. Does the assertion of Po! lya’s

theorem remain in force if we replace total positivity of the truncated sequences

²a
k
´n
k=!

by a slower condition of m-times positivity for some m!¢? It is easy to see

that the answer is negative for m¯ 1 and m¯ 2. For example, if a
k
¯ 1 for any k¯

0, 1, 2,…, all truncated sequences ²a
k
´n
k=!

are 2-times positive, but the series in (0.1)

does not converge in the whole plane C. The main aim of this paper is to show that

the answer is positive for m& 3. We shall consider some related results and problems.

Note that the m-times positivity of the truncated sequence ²a
k
´n
k=!

for m!¢ is not

too closely connected with zeros of the corresponding polynomial (0.2). I. J.

Schoenberg (see [9] and [4, pp. 397, 415]) proved that, for ²a
k
´n
k=!

, n& 2, to be m-

times positive, the necessary condition is the non-vanishing of f
n
(z) in the angle ²z :

rarg zr%πm}(mn®1)´, but the sufficient condition is its non-vanishing in the greater

angle ²z : rarg zr%πm}(m1)´. Both of the conditions are unimprovable in the sense

of the sizes of angles. Note that, for any m `N, zero-sets of all entire transcendental

functions (0.1) with m-times positive sequences ²a
k
´¢

k=!
form a rather wide class that

is described in [5].

1. Statement of results

Denote by P
m

the class of all formal power series (0.1) such that the truncated

sequences ²a
k
´n
k=!

are m-times positive for all sufficiently large n. Evidently, P
m« ZP

m

for m«&m. For any entire function g(z), put M(r, g)¯max ²rg(z)r : rzr% r´.

T 1. If a formal power series (0.1) belongs to P
m

for some m& 3, then it

con�erges in the whole complex plane C, and its sum f(z) is an entire function of order

0. Moreo�er,

lim sup
r!¢

logM(r, f )

(log r)#
%

1

2 log c
c¯

1o5

2
. (1.1)

The bound (1.1) cannot be improved for m¯ 3.

T 2. There exist entire functions f(z) `P
$

such that

lim
r!¢

logM(r, f )

(log r)#
¯

1

2 log c
.

The question arises of whether the bound (1.1) is unimprovable for m& 4. The

consideration of the proof of Po! lya’s theorem in [7] shows that, in fact, Po! lya

obtained the following result.

T (Po! lya). If a formal power series (0.1) belongs to P¢, then it con�erges

in the whole plane C, and its sum f(z) is an entire function that satisfies the inequality

lim sup
r!¢

logM(r, f )

(log r)#
%

1

2 log 2
. (1.2)

The inequality (1.2) is stronger than (1.1), but we are sure that it is not the best

possible even for f(z) `P
%
. The problem of finding the best possible bound remains

open for any m& 4. In this connection, it is worth mentioning that there are entire

functions f(z) `P¢ such that

lim
r!¢

logM(r, f )

(log r)#
¯

1

4 log 2
.
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Such a function,

f(z)¯ 3
¢

k=!

2−k
# zk,

was considered in [8, Problem 176, p. 66]. Hence the unknown best possible bound

(probably depending on m) is not less than 1}(4 log 2).

Denote by Q
m

the subclass of P
m

consisting of formal power series (0.1) satisfying

the following condition: for all n¯ 0, 1, 2,… , the truncated sequences ²a
k
´n
k=!

are m-

times positive. For f(z) `Q
m
, the bound (1.1) can be improved in the following way.

T 3. If a formal power series (0.1) belongs to Q
m

for some m& 3, then the

following refinement of (1.1) is �alid:

M(r, f )% a
!
"
$00,

1

oc1 exp ((log (roca
"
}a

!
))#

2 log c * , (1.3)

where "
$
denotes the Jacobi theta-function ([10, 21.11, p. 464]). Under the normalisation

condition a
!
¯ a

"
¯ 1, (1.3) takes a simpler form:

M(r, f )%"
$00,

1

oc1 c"/)or exp ((log r)#

2 log c * . (1.4)

C 1. If m is larger than or equal to 3, then the set of all entire functions

f(z) `Q
m

with fixed coefficients a
!
" 0, a

"
is a normal family.

The inequalities (1.3) and (1.4) are not sharp, at least for small r, since their right-

hand sides tend to ¢ as r tends to 0. Now we are going to obtain a bound which

is more complicated, but the best possible for all r& 0 and all f(z) `Q
$
.

Let ²z
k
´¢

k=#
be the sequence of positive numbers defined by the recurrence equation

z#
k+"

¯ z
k
1 k¯ 2, 3,… (1.5)

and by the initial condition

z
#
¯ 1. (1.6)

Define the following:

d
k
¯ 1

1

z
k

k¯ 2, 3,… (1.7)

(z)¯ 1z3
¢

k=#

zk

dk−"

#
dk−#

#
…d

k

. (1.8)

T 4. If a formal power series (0.1) belongs to Q
m

for some m& 3, then the

following inequality is �alid :

M(r, f )% a
!

(a
"
r}a

!
) r& 0. (1.9)

A. Edrei [1] proved that, if each f
n
(z) does not vanish in some half-plane (possibly,

depending on n), then the series (0.1) converges in the whole plane and its sum satisfies

the condition

logM(r, f )¯O((log r)#) r!¢. (1.10)
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T. Ganelius [3] proved that (1.10) remains in force if the half-plane is replaced by any

angle of positive size not depending on n. As a corollary of Theorem 1, we obtain the

following Theorem 5, which sharpens the bound (1.10) under some additional

conditions.

T 5. Let f(z) be a formal power series of the form (0.1) with real coefficients

a
k
. Assume that, for sufficiently large n, the zeros of the sections (0.2) are located in the

angle ²z : rarg z®πr!α´. Then the series con�erges in the whole plane C, and, moreo�er,

(i) if α is smaller than or equal to π}4, then (1.1) is �alid;

(ii) if α is smaller than or equal to π}2, then

lim sup
r!¢

logM(r, f )

(log r)#
%

2

log 2

is �alid.

2. Proof of Theorem 1

Henceforth, we assume that the series (0.1) contains infinitely many non-zero

terms; otherwise, the statement of Theorem 1 is trivial. Under this assumption,

the sequence ²a
k
´¢

k=!
cannot contain zero terms at all, as the following (known)

Lemma 1 shows.

L 1. Let ²a
k
´¢

k=!
, a

!
" 0, be a 2-times positi�e sequence. Set n¯min ²k :

a
k
¯ 0´. If n is finite, then a

k
¯ 0 for any k& n.

Proof. By the definition of 2-times positivity, we have, for any k" n,

)an

a
n−"

a
k

a
k−"

)& 0.

Since a
n
¯ 0, a

n−"
" 0, we conclude that a

k
¯ 0.

Evidently, 3-times positivity of truncated sequences ²a
k
´n
k=!

for sufficiently large n

yields 3-times positivity of the whole sequence ²a
k
´¢

k=!
. Hence, Lemma 1 is applicable,

and all the a
k

are strictly positive. This allows us to introduce the positive numbers

ρ
k
¯

a
k−"

a
k

k¯ 1, 2,… (2.1)

It is evidence that

a
k
¯

a
!

0 k

j="
ρ
j

k¯ 1, 2,… (2.2)

The following (known) Lemma 2 shows that the numbers ρ
k

form a non-decreasing

sequence.

L 2. Let ²a
k
´¢

k=!
be a 2-times positi�e sequence without zero terms. Then the

sequence ²ρ
k
´¢

k="
defined by (2.1) is non-decreasing.

Proof. The inequality

)ak

a
k−"

a
k+"

a
k

)& 0

is equivalent to ρ
k
% ρ

k+"
.
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Define the numbers as follows:

δ
k
¯

ρ
k

ρ
k−"

k¯ 2, 3,…

Evidently,

ρ
k
¯ ρ

"
0
k

j=#

δ
j

k¯ 2, 3,… (2.3)

By Lemma 2, we have
δ
k
& 1 k¯ 2, 3,…

Using (2.2), we obtain

a
k
¯

a
!

ρk

"
δk−"

#
δk−#

$
…δ

k

k¯ 1, 2, 3,… (2.4)

The following Lemma 3 plays a basic role in the proof of Theorem 1.

L 3. Let ²a
k
´n
k=!

¯²a
!
, a

"
,… , a

n
, 0, 0,…´, a

!
" 0, a

n
" 0, n& 2, be a 3-times

positi�e sequence. Then

(i) for n¯ 2, we ha�e δ
#
& 2 ;

(ii) for n& 3, we ha�e δ
n
" 1 and

(δ
n
®1)#& 1®

1

δ
n−"

. (2.5)

Proof. If n¯ 2, we have

a
!

a
"

0

a
"

a
#

a
!

a
#

0

a
"

& 0.

Using this and (2.4), we obtain δ
#
& 2.

If n& 3, we have

a
!

a
"

0

a
n−"

a
n

a
n−#

a
n

0

a
n−"

& 0.

Calculating the determinant, we obtain

a
"
a#
n−"

®a
!
a
n−"

a
n
®a

"
a
n−#

a
n
¯ a

"
a
n−#

a
n0 a#

n−"

a
n−#

a
n

®
a
!
a
n−"

a
"
a
n−#

®11& 0.

Since (2.4) yields

a#
n−"

a
n−#

a
n

¯ δ
n

a
!
a
n−"

a
"
a
n−#

¯
1

δ
#
…δ

n−"

,

we get

δ
n
& 1

1

δ
#
…δ

n−"

" 1.

Further, we have

a
n−#

a
n−"

a
n−$

a
n−"

a
n

a
n−#

a
n

0

a
n−"

& 0.
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Calculating the determinant, we obtain

a$
n−"

a
n−$

a#
n
®2a

n−#
a
n−"

a
n
¯ a

n−$
a#
n0 a$

n−"

a
n−$

a#
n

1®2
a
n−#

a
n−"

a
n−$

a
n

1& 0.

Since (2.4) yields

a$
n−"

a
n−$

a#
n

¯ δ#
n
δ
n−"

a
n−#

a
n−"

a
n−$

a
n

¯ δ
n
δ
n−"

,

we get
δ#
n
δ
n−"

1®2δ
n
δ
n−"

& 0.

This inequality is equivalent to (2.5).

If a formal power series (0.1) satisfies the condition of Theorem 1, then there exists

some n
!
& 2 such that, for each n& n

!
, the truncated sequence ²a

k
´n
k=!

is 3-times

positive. By Lemma 3, we have δ
n
" 1 for n& n

!
, and therefore the numbers

y
n
B

1

δ
n
®1

n& n
!

(2.6)

are well defined. Using (2.5), we obtain

y#
n+"

% y
n
1 n& n

!
. (2.7)

Consider the sequence ²z
n
´¢

n=n
!

of positive numbers satisfying the recurrence

equation
z#
n+"

¯ z
n
1 n& n

!
(2.8)

and the initial condition
z
n
!

¯ y
n
!

. (2.9)

It is easy to see that
y
n
% z

n
n& n

!
. (2.10)

L 4. There exists the limit

lim
n!¢

z
n
¯

1o5

2
¯ c.

Moreo�er,

(i) if z
n
!

is smaller than c, then the sequence ²z
n
´¢

n=n
!

increases;

(ii) if z
n
!

is larger than c, then the sequence ²z
n
´¢

n=n
!

decreases;

(iii) if z
n
!

¯ c, then z
n
¯ c for any n& n

!
.

Proof. The proof of Lemma 4 is based on the fact that c is a root of the equation

z#¯ z1, and z#! z1 for 0% z! c and z#" z1 for z" c. The details can be

omitted.

Using (2.6), (2.10) and Lemma 4, we obtain

lim inf
n!¢

δ
n
¯ lim inf

n!¢
01

1

y
n

1& lim
n!¢

01
1

z
n

1¯ 1
1

c
¯ c.

If 0! ε! c®1, then we have

δ
n
& c®ε n" q¯ q(ε). (2.11)
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By (2.4), we obtain, for k" q,

log a
k
¯ log a

!
®k log ρ

"
®3

k

j=#

(k®j1) log δ
j

% log a
!
®k log ρ

"
®3

q

j=#

(k®j1) log δ
j
® 3

k

j=q+"

(k®j1) log (c®ε)

¯®
k#

2
log (c®ε)O(k) k!¢. (2.12)

Hence,
a
k
%CDk(c®ε)−k

#
/# k¯ 0, 1, 2,… , (2.13)

where C and D are positive constants not depending on k. Since c®ε is larger than

1, (2.13) yields the fact that lim
k!¢ a"/k

k
¯ 0. Hence the series (0.1) converges in the

whole plane.

Further, using (2.13), we have

M(r, f )¯ f(r)¯ 3
¢

k=!

a
k
rk%C 3

¢

k=!

(c®ε)−k
#
/#(Dr)k

¯C exp 0 (logDr)#

2 log (c®ε)1 3
¢

k=!

exp (®log (c®ε)

2 0k®
log (Dr)

log (c®ε)1
#*

!C exp 0 (logDr)#

2 log (c®ε)1 sup
−¢!x!¢

3
¢

k=−¢

exp (®log (c®ε)

2
(k®x)#* .

Since the sum of the series under the supremum sign is a periodic function of x (with

period 1), its supremum is finite. Hence

M(r, f )¯O 0exp ( (logDr)#

2 log (c®ε)*1 r!¢

and

logM(r, f )%
(log r)#

2 log (c®ε)
O (log r) r!¢.

Since ε" 0 is arbitrary, we obtain the inequality (1.1).

Proof of PoU lya’s theorem. Now we present the proof of Po! lya’s theorem for the

reader’s convenience. The condition f(z) `P¢ means (see the introduction) that the

sections (0.2) have purely negative zeros for sufficiently large n, that is, for n& n
"
say.

It is well known that derivatives of a polynomial having purely real zeros have purely

real zeros. Hence, the quadratic polynomial

0 d

dz1
n−#

f
n
(z)¯ (n®2)!a

n−#
(n®1)!a

n−"
z"

#
n !a

n
z#

does not have any complex zero. This means that the following inequality is valid:

(n®1)a#
n−"

& 2na
n−#

a
n

n& n
"
.

Remembering the definition of δ
n
, we can rewrite the last inequality in the form

δ
n
&

2n

n®1
" 2 n& n

"
. (2.14)
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Therefore (2.11) is valid with 2 in place of c®ε. This yields (2.12) and (2.13) with 2

instead of c®ε.

3. Proofs of Theorems 3 and 4

Proof of Theorem 3. If f(z) belongs to Q
$
, then, by Lemma 3(i), we have δ

#
&

2, and, moreover, we can take n
!
¯ 2 in (2.7)–(2.10). Since z

#
¯ y

#
% 1! c, Lemma

4 yields the fact that the sequence ²z
n
´¢

n=#
is increasing and z

n
is smaller than c for n

& 2. Hence y
n
! c, and

δ
n
¯ 1

1

y
n

" 1
1

c
¯ c n& 2. (3.1)

Using this, we can improve (2.12) in the following way:

log a
k
¯ log a

!
®k log ρ

"
®3

k

j=#

(k®j1) log δ
j

% log a
!
®k log ρ

"
®

k(k®1)

2
log c k& 2. (3.2)

We obtain the following refinement of (2.13) :

a
k
% a

!
(oc}ρ

"
)k c−k

#
/# k¯ 0, 1, 2,…

Hence

M(r, f )% a
!
3
¢

k=!

c−k
#
/#(roc}ρ

"
)k

¯ a
!
exp ((log (roc}ρ

"
))#

2 log c * 3
¢

k=!

exp (®log c

2 0k®
log (roc}ρ

"
)

log c 1#*
% a

!
exp ((log (roc}ρ

"
))#

2 log c * sup
−¢!x!¢

3
¢

k=−¢

exp (®log c

2
(k®x)#* .

By a well known formula of the theory of theta-functions [10, 21.51, p. 476], we have,

for any α" 0,

3
¢

k=−¢

exp 0®π#k#

α
2πkix1¯ ’ α

π
3
¢

k=−¢

exp (®α(k®x)#).

Hence the sum of the series in the right-hand side attains its maximal value when

x¯ 0, and we obtain

sup
−¢!x!¢

3
¢

k=−¢

exp 0®log c

2
(k®x)#1¯ 3

¢

k=−¢

exp 0®log c

2
k#1¯"

$ 00,
1

oc1 .
R 1. If f(z) belongs to Q¢, then (1.3) and (1.4) can be improved by the

replacement of c by 2.

Indeed, the condition f(z) `Q¢ yields the fact that the inequality (2.14) is valid for

any n& 2. Using this inequality instead of (3.1), we obtain the claimed result.

Proof of Theorem 4. By Lemma 3, we have δ
#
& 2, and the numbers y

n
are well

defined by (2.6) for all n& 2. In particular, we have

y
#
¯

1

δ
#
®1

% 1¯ z
#
.
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By (2.10) with n
!
¯ 2, we have y

k
% z

k
for any n& 2. Therefore,

δ
k
¯ 1

1

y
k

& 1
1

z
k

¯ d
k

k& 2.

Using (2.4) and (1.8), we obtain

M(r, f )¯ a
!
a

"
r3

¢

k=#

a
!
rk

ρk

"
δk−"

#
…δ

k

% a
!
a

"
r3

¢

k=#

a
!
rk

ρk

"
dk−"

#
…d

k

¯ a
! 0a"

a
!

r1 .
R 2. If f(z) belongs to Q¢, then the inequality (1.9) can be replaced by the

following more precise
M(r, f )% a

!
ψ(a

"
r}a

!
), (3.3)

where

ψ(z)¯ 1z3
¢

k=#

zk

2k(k−")/#k !
. (3.4)

Indeed, since (2.14) is valid for any n& 2, we have

ρ
n
¯ δ

n
ρ
n−"

&
2n

n®1
ρ
n−"

&…& 2n−" nρ
"
.

Hence, using (2.2), we obtain

M(r, f )¯ a
!
a

"
r3

¢

n=#

a
!
rn

ρ
"
ρ
#
…ρ

n

% a
!
a

"
r3

¢

n=#

a
!
rn

ρn

"
2n(n−")/# n !

¯ a
!
ψ 0a"

a
!

r1 .
Note that inequality (3.3) is contained in an implicit form in [7].

4. Proof of Theorem 2

L 5. The function (z) defined by (1.8) belongs to Q
$
ZP

$
.

Proof. We shall use the following test of m-times positivity.

T (I. J. Schoenberg [9]). Let ²b
k
´n
k=!

be a finite sequence of numbers.

Consider m matrices

B
k
¯

I

J

0

0

b
!

[
0

0

b
!

b
"

[
0

b
!

b
"

b
#

[
0

I
I
I

I
I

b
n−#

b
n−"

b
n

[
[

b
n−"

b
n

0

[
[

b
n

0

0

[
[

I
I
I

I
I

0

0

0

[
b
n

K

L

k¯ 1, 2,… ,m,

where B
k

consists of k rows and nk columns. Assume that the following condition is

satisfied for k¯ 1, 2,… ,m: all k¬k-minors of B
k
consisting of consecuti�e columns are

strictly positi�e. Then the sequence (b
!
, b

"
,… , b

n
, 0, 0,…´ is m-times positi�e.
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Let

a
!
¯ a

"
¯ 1 a

k
¯

1

dk−"

#
dk−#

$
…d

k

k¯ 2, 3,… (4.1)

be the coefficients of the function (z). Fix any n& 2, and consider the sequence

²a
!
, a

"
,… , a

n−"
, a

n
®ε, 0, 0,…´, (4.2)

where ε" 0 will be chosen sufficiently small later. Form three matrices :

A
"
¯ (a

!
a
"

… a
n−"

a
n
®ε)

A
#
¯ I
J

a
!

0

a
"

a
!

a
#

a
"

…

…

a
n−"

a
n−#

a
n
®ε

a
n−"

0

a
n
®ε

K
L

A
$
¯
I

J
0

a
!

0

a
!

a
"

0

a
"

a
#

a
!

…

…

…

a
n−#

a
n−"

a
n−$

a
n−"

a
n
®ε

a
n−#

a
n
®ε

0

a
n−"

0

0

a
n
®ε

K

L
.

All minors of A
"

are trivially positive for 0! ε! a
n
. Since

a
k

a
k+"

¯ d
#
d
$
…d

k+"
k¯ 1, 2,…

and d
k
" c" 1, we have

a
k−"

a
k

!
a
k

a
k+"

k¯ 1, 2,… , n®2

and

a
n−#

a
n−"

!
a
n−"

a
n
®ε

for sufficiently small ε. Therefore, all minors of A
#

are positive for such ε.

Further, consider the determinants

N
k
¯ a

k−"

a
k

a
k−#

a
k

a
k+"

a
k−"

a
k+"

0

a
k

k¯ 2, 3,…

We have

N
k
¯ a$

k
a#

k+"
a
k−#

®2a
k+"

a
k
a
k−"

¯ a#
k+"

a
k−#

(d#
k+"

d
k
1®2d

k+"
d
k
)

¯ a#
k+"

a
k−#

d
k0 1

z#
k+"

®
1

z
k
11¯ 0 k¯ 2, 3,…

by virtue of (4.1), (1.7) and (1.5). Moreover, setting

N
"
¯ a

!

a
"

0

a
"

a
#

a
!

a
#

0

a
"

¯ 1®
2

d
#

,

we have N
"
¯ 0, since d

#
¯ 2 by virtue of (1.7) and (1.6).
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Now, consider the 3¬3-minors of A
$

consisting of consecutive columns:

M
!
¯ 0

a
!

0

a
!

a
"

0

a
"

a
#

a
!

M
"
¯ a

!

a
"

0

a
"

a
#

a
!

a
#

a
$

a
"

M
k
¯ a

k−"

a
k

a
k−#

a
k

a
k+"

a
k−"

a
k+"

a
k+#

a
k

k¯ 2, 3,… , n®3

M
n−#

(ε)¯ a
n−$

a
n−#

a
n−%

a
n−#

a
n−"

a
n−$

a
n−"

a
n
®ε

a
n−#

M
n−"

(ε)¯ a
n−#

a
n−"

a
n−$

a
n−"

a
n
®ε

a
n−#

a
n
®ε

0

a
n−"

M
n
(ε)¯ a

n−"

a
n
®ε

a
n−#

a
n
®ε

0

a
n−"

0

0

a
n
®ε

.

Positivity of M
!

and M
n
(ε) for 0! ε! a

n
is trivial. By the addition rule of

determinants, we have

M
"
¯N

"
a

$

a
!

0

a
"

a
!

M
k
¯N

k
a

k+#

a
k−"

a
k−#

a
k

a
k−"

k¯ 2, 3,… , n®3

M
n−#

(ε)¯N
n−#

(a
n
®ε)

a
n−$

a
n−%

a
n−#

a
n−$

.

Hence
M

k
" 0 k¯ 1, 2,… , n®3 M

n−#
(ε)" 0.

Since
M

n−"
(0)¯N

n−"
¯ 0

M!
n−"

(0)¯ 2a
n−"

a
n−#

®2a
n
a
n−$

¯ 2a
n
a
n−#0an−"

a
n

®
a
n−$

a
n−#

1" 0,

we have
M

n−"
(ε)" 0

for sufficiently small ε" 0.

Applying Schoenberg’s test, we conclude that the sequence (4.2) is 3-times positive

for all sufficiently small ε" 0. Taking a limit as ε tends to 0, we see that the sequence

²a
k
´n
k=!

¯²a
!
, a

"
,… , a

n
, 0, 0,…´ is 3-times positive.

The following immediate Corollary 2 of Lemma 5 is of interest.

C 2. The bound (1.9) is sharp, and it is attained for f(z)¯ a
!

(a
"
z}a

!
).

Note. It can be shown that the function ψ(z) defined by (3.4) does not belong to

Q¢ (or even to Q
%
). Therefore the sharpness of (3.3) seems doubtful.

L 6. The following equality is �alid:

lim
r!¢

logM(r, )

(log r)#
¯

1

2 log c
.
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Proof. Since (z) `Q
$
ZP

$
, Theorem 1 can be applied to (z). Hence

lim sup
r!¢

logM(r, )

(log r)#
%

1

2 log c
.

Therefore, it suffices to prove that

lim inf
r!¢

logM(r, )

(log r)#
&

1

2 log c
. (4.3)

For any n& 2, we have

logM(r, )¯ log (r)& log
rn

dn−"

#
dn−#

$
…d

n

¯ n log r®3
n

j=#

(n®j1) log d
j
.

Since lim
j!¢ d

j
¯ c, we have d

j
! cε for any given ε, and j" j

!
¯ j

!
(ε). Hence

logM(r, )& n log r®3
j
!

j=#

(n®j1) log d
j
®3

n

j=j
!

(n®j1) log (cε)

& n log r®C
!
n®"

#
n# log (cε),

where C
!

is a positive constant that depends neither on n nor on r. Setting

n¯ 9 log r

log (cε): ,
we obtain

logM(r, )& 9 log r

log (cε): log r®C
!9 log r

log (cε):®
1

2 9
log r

log (cε):
#

log (cε)

¯
(log r)#

2 log (cε)
®O (log r) r!¢.

Since ε" 0 is arbitrarily small, we obtain (4.3).

Theorem 2 follows at once from Lemma 5 and Lemma 6.

5. Proof of Theorem 5

Proof of Theorem 5(i). We shall use the following result.

T (I. J. Schoenberg [4, p. 415]). Let g(z)¯ a
!
a

"
z…a

n
zn be a

polynomial with real coefficients and a
!
" 0. If g(z) does not �anish in the angle ²z :

rarg zr! (πm)}(m1)´, then the sequence ²a
!
, a

"
,… , a

n
, 0, 0,…´ is m-times positi�e.

Applying this theorem with m¯ 3, g(z)¯ f
n
(z), we obtain f(z) `P

$
. Hence, by

Theorem 1, (1.1) is valid.

Note. If all sections of (0.1) do not vanish outside ²z : rarg z®πr!π}4´, then we

apply Theorem 3 or Theorem 4 instead of Theorem 1, and obtain the more precise

inequalities (1.3) or (1.9) instead of (1.1).

Proof of Theorem 5(ii). We shall use the following result.
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T (Hermite–Bieler [6, p. 305]). Let P
"
(z) and P

#
(z) be two polynomials with

real coefficients. The polynomial

ω(z)¯P
"
(z)iP

#
(z)

does not �anish in the closed lower half-plane if and only if all zeros of P
"
(z) and P

#
(z) are

simple, real, and interlacing, and, moreo�er, at some point x
!
`R,

P!

#
(x

!
)P

"
(x

!
)®P

#
(x

!
)P!

"
(x

!
)" 0.

Assume that f(z) satisfies the conditions of Theorem 5(ii). Then, for sufficiently

large n, all zeros of

f
#n+"

(z)¯ 3
#n+"

k=!

a
k
zk

lie in ²z : Re z! 0´ so that the polynomial

f
#n+"

(iz)¯ 3
n

j=!

a
#j
(®1)j z#jiz 3

n

j=!

a
#j+"

(®1)j z#j B p(")

n
(z)izp(#)

n
(z)

does not vanish in the closed lower half-plane. By the Hermite–Bieler theorem, all

zeros of p(")

n
(z) and p(#)

n
(z) are real. Since these polynomials are even,

q(")

n
(z)B p(")

n
(ioz)¯ 3

n

j=!

a
#j

zj

q(#)

n
(z)B p(#)

n
(ioz)¯ 3

n

j=!

a
#j+"

zj

have purely negative zeros. It means that both the formal power series

q(")(z)¯ 3
¢

j=!

a
#j

zj q(#)(z)¯ 3
¢

j=!

a
#j+"

zj (5.1)

belong to P¢. Applying Po! lya’s theorem, we conclude that (5.1) converges in the

whole plane and

lim sup
r!¢

logM(r, q(s))

(log r)#
%

1

2 log 2
s¯ 1, 2. (5.2)

Since

M(r, f )¯ f(r)¯ q(")(r#)rq(#)(r#)% rmax
s=",#

M(r#, q(s)),

we have

lim sup
r!¢

logM(r, f )

(log r)#
% 4max

s=",#

lim sup
r!¢

logM(r, q(s))

(log r)#
%

2

log 2
.

Note. If all sections of (0.1) do not vanish outside ²z : Re z! 0´, we can apply

(3.3) instead of (5.2) to both functions (5.1). We obtain a more complicated but more

precise inequality :

M(r, f )% a
!
ψ0a#

a
!

r#1ra
"
ψ0a$

a
"

r#1 ,
where ψ(z) is defined by (3.4).
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