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Dynamical properties of the two-dimensional Holstein-Hubbard model in the normal state
at zero temperature: A fluctuation-based effective cumulant approach
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The two-dimensional many-body Holstein-Hubbard model in theT50 normal state is examined within the
framework of the self-consistent coupling of charge fluctuation correlations to the vibrational ones. The pa-
rameters of our model are the adiabaticity, the electron concentration, as well as the electron-phonon and the
Coulomb interaction strengths. A fluctuation-based effective cumulant approach is introduced to examine the
T50 normal-state fluctuations and an analytic approximation to the true dynamical entangled ground state is
suggested. Our results for the effective charge-transfer amplitude, the ground state energy, the fluctuations in
the phonon population, the phonon softening as well as the coupling constant renormalizations suggest that, the
recent numerical calculations of de Mello and Ranninger~Ref. 5!, Berger, Vala´šek, and von der Linden~Ref.
2!, and Marsiglio~Refs. 4 and 8! on systems with finite degrees of freedom can be qualitatively extended to the
systems with large degrees of freedom.@S0163-1829~98!03728-X#
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I. INTRODUCTION

In this work we focus on the dynamical properties of t
polaronic ground state in the Holstein-Hubbard model fr
the perspective of what we call as the charge-density w
~CDW! fluctuation-basedeffective cumulant approach. In
this many-body model, the qualitative aspects of the tra
tion from large to small polarons as the electron-phon
~e-ph! adiabaticity and the Coulomb interaction strengths
varied, with the full assessment of these interactions, is
an unresolved problem since the celebrated work
Holstein.1 Recently quantum Monte Carlo~QMC!
calculations,2–4 semianalytic direct diagonalization5–8 using
finite lattice and electronic degrees of freedom, and va
tional ground-state techniques9–11 have revealed evidence o
a smooth transition of the ground state from the large
tended to the small localized polaronic one as the interac
parameters are varied from the weak-coupling adiabatic
strong-coupling antiadiabatic ranges. The ground-state
namics of the Holstein-Hubbard model is determined by
three dimensionless scales; viz., the adiabaticityg5t/v0 ,
the e-ph mediated couplingl5(g/v0)2, and the repulsive
Coulomb interaction strengthVc

e-e/v0 wherev0 is the fre-
quency of Einstein phonons,t is the charge transfer ampl
tude andg is the lineare-ph coupling strength. In the weak
coupling adiabatic regime~i.e., l,0.5, 1,g and Vc

e-e

sufficiently small!, the Migdal random-phase approximatio
~RPA! is quite accurate in describing the quasiparticle ren
malization. However, the extension of Migdal RPA beyo
l;0.5 encounters superficial instabilities in the phon
vacuum. This point has been critically questioned for
stance, in Refs. 2, 5, and 6 when it is no longer possible
assign independent degrees of freedom to phonon and
tron systems beyond the weak-coupling strongly adiab
PRB 580163-1829/98/58~7!/3777~17!/$15.00
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ranges, and one has to self-consistently deal with an
tangled dynamical picture by abandoning the simpler qu
particle one. On the semianalytic side progress has b
made in the diagrammatic approaches by extending
Migdal RPA to the Migdal-Eliashberg~ME! formalism with
self-consistent handling of the phonon and electron ren
malizations within the RPA, where compatible results
more reliable QMC simulations2,4 have been obtained. At th
other extreme, the crucial role played by the adiabaticity
rameter was clearly shown in Ref. 5 such that the stro
coupling Lang-Firsov~LF! approximation is strictly appli-
cable only in the strongly antiadiabatic rangeg;1 and
contrary to the common belief, the convergence to LF beh
ior can be considerably weakened in transition from stron
antiadiabaticg!1 to weakly nonadiabatic rangesg&1. In
our opinion, although these results do not contradict the c
ditions of applicability of the LF approach or strong
coupling 1/l expansion,12 they confine their validity to the
strongly antiadiabatic ranges.

The crucial point needed for a global perspective of
ground-state properties in the Holstein-Hubbard problem
a large range of coupling constants and adiabaticities is
the understanding of the nonlinear, self-consistent coup
of the charge fluctuations to the fluctuations in the vib
tional degrees of freedom. In this respect, the main moti
tion for our fluctuation-based approach was provided by
numerical direct-diagonalization results in Ref. 5 regard
the correlated charge-deformation dynamics, as well as
CDW susceptibility based QMC and self-consistent ME c
culations of Refs. 2, 4, and 7.

It is desirable that these numerical calculations, des
the limitations in the consideration of finite degrees
freedom—such as the finite lattice size, truncated Hilb
space, small number of electrons etc., which are neces
from the feasibility point of view of the numerica
3777 © 1998 The American Physical Society
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methods—can be qualitatively extended to reach at con
sive results on the nature of the polaronic transition for m
generalized systems with large degrees of freedom. In f
this point has been raised a long time ago by Shore
Sander9 and also stressed by the authors of Refs. 5, 7, an
However there has not been conclusive evidence, in part
lar at the intermediate rangesg.1, l.1, on whether the
theoretical results obtained using models with finite deg
of freedom could be extended to systems with realistic siz
Moreover, apart from the variational ground sta
calculations,9–11 direct attempts to tackle the many body d
namical fluctuations, in particular in the intermediate rang
have not been possible on practical grounds. On the o
hand, although the self-consistent ME RPA as well as QM
calculations provide an improved understanding of the pr
lem, a clear self-consistent picture of fluctuations in t
ground state~and, perhaps an approximate analytic for!
still remains to be established.

In this work we approach the many-body problem in t
normal state and at zero temperature by improving the C
fluctuation-based effective cumulant approach that was
cently introduced in Ref. 13 and applied to th
superconducting-state solution to examine the lo
temperatureTc-dependent phonon anomalies in certain hig
temperature superconductors.

In Sec. II the Holstein-Hubbard model is introduced a
studied in the momentum space. The nature of the interac
ground state is examined in Sec. II A where an approxim
analytic form is suggested in the direct product form, deco
posing the entangled nonlinear polaronic wave function
the coherent and two-particle correlated subspaces. The
rameters of this effective wave function are calculated us
the CDW fluctuation-based effective cumulant approach,
producing the all first and second-order phonon cumulant
the entangled polaronic wave function. The effective wa
function is an analytic and continuous function ofl, g, and
Vc

e-e , which ensures the same properties for the ground-s
energy as well as other physical parameters induced from
model. The solution of the wave-function parameters as w
as the calculation of the approximate ground-state energ
presented in Sec. II B. Section III is devoted to the renorm
ization of the charge-transfer amplitude. In Sec. IV, t
renormalization of the effectivee-e interaction is examined
The statistics of the fluctuations in the ground state of
renormalized phonon subsystem and the renormalizatio
the vibrational frequency are examined in Secs. V A a
V B, respectively.

II. MODEL

We investigate the Holstein-Hubbard problem via t
Hamiltonian,

H5He1Hph1 (
k,m,s

g~k!eikmcms
† cms~ak1a2k

† !

1
1

2 (
m,n,s,s8

Vm,ncms
† cns8

† cns8cms , ~1!

wherecms
† ,cms create and annihilate electrons at sitem with

spin s on a two-dimensional~2D! lattice, ak
† ,ak create and
u-
e
ct,
d
8.
u-

e
s.
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annihilate phonons at momentumk with g(k), andVm,n de-
scribing the lineare-ph and electron-electron Coulomb inte
actions, respectively. The first two terms in the Hamiltoni
describe the electron charge transfer and the harmonic
non contributions as

He5 (
^mn&s

tmncms
† cns , and

Hph5(
k

vk

2
~ak

†ak1akak
†!, ~2!

wheretm,n is the translationally invariant charge-transfer a
plitude between neighboring sitesm, n and vk is the har-
monic phonon frequency.

The central theme of this work is to calculate the fluctu
tions in the vibrational degrees of freedom in a se
consistent frame together with the charge-density fluct
tions in the correlated electron subsystem. The char
density fluctuations are defined by the expressions

cms
† cms5^cms

† cms&1D$cms
† cms% or, equivalently,

rk52n̄k1drk , ~3!

where rk5(k8,sck81k,s
† ck8,s with ck,s

† ,ck,s describing the
electron operators in the momentum representation,
2n̄k5^rk& describing the CDW order parameter. The fac
of 2 in Eq. ~3! arises from the spin degeneracy. Using E
~3!, Eq. ~1! is separated intoH5H01HI such that

H05He1(
k

H vk

2
~ak

†ak1akak
†!12g~k!n̄k~ak1a2k

† !J ,

HI5(
k

g~k!drk~ak1a2k
† !1

1

2 (
k

Vc~k!rkr2k , ~4!

whereVc(k)51/N(ke
ik.„m2n…Vm,n , andH0 corresponds to

the exactly solvable part associated with the eigen-wa
function,

uc0&5ufc& ^ uce&,

ufc&5Ucu0ph&5expH 2(
k

g~k!

vk
n̄k~ak2a2k

† !J u0ph&.

~5!

Here ufc& describes the pure coherent part of the grou
state wave function in the phonon subsystem, andu0ph& is the
phonon vacuum state. At the exactly solvable level the pr
uct form of the wave function remains to be valid withuce&
representing the wave function of the electron subsyst
The coherent partufc& describes the coupling of the phonon
to the static charge-density wave described by the CDW
der parametern̄k51/2(k8s^ck1k8

† ck8s&. To examine the dy-
namical contributions to the interacting ground-state wa
function we eliminate this part from the Hamiltonian by th
unitary Lang-Firsov transformationUc in Eq. ~5! as
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H 85U c
†~H01HI !Uc

5He1(
k

vk

2
~ak

†ak1akak
†!

2(
k

ug~k!u2

vk
~ n̄k1drk!n̄2k1HI , ~6!

where the coherent part of the wave function in Eq.~5! is
now shifted touc08&5U c

†uc0&5u0ph& ^ uce&. Now the inter-
action termHI in Eq. ~4! is given purely in terms of the
coupling of phonons to the fluctuations in the CDW th
contribute to the dynamical part of the interacting groun
state wave function. This interaction term is also conventi
ally transformed away by another unitary transformationUd ,

Ud5expH(
k

g~k!

vk
drk~ak2a2k

† !J , ~7!

for which the transformed Hamiltonian reads

H 95U d
†H 8Ud

5 (
^mn&s

tmns~m,n!cms
† cns

1(
k

vk

2
~ak

†ak1akak
†!2(

k

ug~k!u2

vk
drkdr2k

2(
k

ug~k!u2

vk
~ n̄k1drk!n̄2k1

1

2 (
k

Vc~k!rkr2k .

~8!

The expense paid by this transformation is the introduct
of the multiphonon operator,

s~m,n!5expF1

2 (
k

g~k!

vk
~eik•m2eik•n!~ak2a2k

† !G .
~9!

Combining the transformations in Eq.~5! and Eq.~7! we
obtain a highly entangled dynamical wave functionucd&
5U d

†uc08&. Although the rest of the Hamiltonian in Eq.~8! is
decoupled in electron and phonon degrees of freedom
major difficulty is introduced by the multiphonon-electro
scattering in the first term in Eq.~8!. In the conventional
Lang-Firsov approach this term is replaced by its averag
the coherent partufc& of the wave function bys(m,n)
→^fcus(m,n)ufc&, which completely decouples the Hami
tonian. On the other hand, a refined treatment of the resi
interactions induced bys(m,n)2^fcus(m,n)ufc& has to in-
corporate the highly nonlinear phonon correlator,12 which, in
our opinion, can obscure the physical picture of the dyna
cal properties of the wave function.

In fact, the difficulties in the solution of the many-bod
problem are, at least, twofold. At one end, there is the
practicality of a formal diagrammatical approach to the
sidual interactions.12 At the other end, even if one can g
away with neglecting the residual interactions by using
Lang-Firsov-like formalism, a full understanding of the d
namical wave functionucd& is still not promised due to its
highly entangled nature. In this work, we will approach t
t
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n

a
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a

problem within a Lang-Firsov-like approach~namely, by re-
placing sm,n by ^cdusm,nucd& where ucd& is, in contrast to
the LF approach where the coherent part is used, the dyn
cal fluctuating part of the polaron wave function! by demon-
strating that it is, in principle, possible to construct an effe
tive wave function ucd

eff& as an approximation to the
dynamical partucd&, which adopts a special product form
the cumulant-generating-operator level in then-phonon cu-
mulant correlation space. Then, in an approximation sche
an analytic formucd

eff& will be constructed by reproducing a
first- and second-order cumulants of the phonon operator
ucd&.

A. Nature of the interacting ground state

Our purpose in this subsection is to understand the na
of the dynamical strongly entangled wave functionucd&. In
the static CDW limit ~i.e., n̄kÞ0!, the fluctuations in the
charge density are negligible. It is known that the sta
CDW limit corresponds to strongly antiadiabatic regim
when thee-ph coupling constant is in the extreme weak-
strong-coupling limits. This is the limit whereufc& can ac-
curately approximate the exact polaron ground state ofH in
Eq. ~1!. In the weak-coupling antiadiabatic limitl!1, g
!1, a perturbative scheme based on charge fluctuation
adequate where the magnitude of fluctuations in the resid
interactions is limited@i.e., us(m,n)2^s(m,n)&u!1#; since
s(m,n) is a positive and bounded operator by unity fro
above and̂s(m,n)&.1. In the strong-coupling antiadiabati
regime, the small polaronic bandwidth is strongly reduc
where we also have negligible contribution of the resid
interactions. There,s(m,n) is bounded from below by zero
since^s(m,n)&!1. It is clear that the corrections toufc& as
well as the importance of the residual interactions arise fr
the nonnegligible presence of the dynamical fluctuations
the intermediate ranges between these limits.

We will examine ucd& by calculating the characteristi
cumulants of the phonon coordinatesQk51/&(ak1a2k

† )
and Pk52 i /&(a2k2ak

†). In order to study the dynamica
fluctuations in the ground state we shift the phonon coo
nates in the Hamiltonian~1! to the origin by Qk→Qk
2^Qk& andPk→Pk2^Pk& where^Qk& and ^Pk& are deter-
mined in the coherently shifted componentufc& as ^Qk&
52@g(k)/vk#n̄k and^Pk&50. This is equivalent to a unitary
transformation byUc of the initial Hamiltonian yielding Eq.
~6!. Note that from here on all expressions involving facto
of Qk andPk will be expressed in theshifted coordinates.

We start with calculating five distinct types of the phon
moments defined by

Rs1
5^cdu~Qk!s1ucd&,

Ps2
5^cdu~Pk!s2ucd&,

Ks3
5^cdu~PkP2k!s3ucd&,

Fs4
5^cdu~QkQ2k!s4ucd&,

Gs5
5^cdu~Qk!s5~Pk!s5ucd&. ~10!

After a tedious but straightforward calculation usingucd&
5U d

†u0ph& ^ uce&, these are explicitly given by
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Rs1
50,

Ps2
50,

Ks3
5S 1

2D s3

s3!,

Fs4
5

s4!

2s4 (
p50

`

2F1~2s41p,0;1;21!

3
~2s4!p~22p!p

~p! !2 S g~k!

vk
D 2p

~^drkdr2k&!p,

Gs5
5S i

2D s5

s5!, ~11!

where (n)m5n(n11)¯(n1m21) and 2F1(a,b;c;z) is
the Gauss hypergeometric function and we assumed Ga
ian density fluctuation correlations. In principle, an effecti
wave functionucd

eff& that is expected to be equivalent toucd&
in the phonon sector should consistently reproduce the e
set of an infinite number of cumulants in Eqs.~11! with 1
<si,`, (i 51, . . . ,5). Hence, the effective wave functio
also comprises an infinitely large set of correlation subspa
where the correlations in each subspace is produced by
unitary n-phononcumulant correlation generatorU (n) as

ucd
eff&5 )

n51

`

U ~n!u0ph& ^ uce&,

where

)
n51

`

U~n![ )
n5m

`

U ~n!U ~m21!
¯U ~2!U ~1! ~12!

with U (1),U (2), . . . , etc. describing the one-particle cohe
ent, the two-particle coherent correlations, etc., respectiv
In fact, in this decomposition in terms of correlation su
spaces,U (1) corresponds to the coherent shiftU c

† in Eq. ~5!
and U (2),U (3), etc. describe the two-particle and thre
particle correlated sectors ofU d

† in Eq. ~7!, etc. In this case
the projection of the effective wave functionucd

eff& on the
m-dimensional correlation subspace isucd&m , which is de-
termined by the projection operator,

Tm5S )
n5m11

`

U ~n!D †

as ucd&m5Tmucd&. ~13!

In order for the product form in Eq.~12! to be a sensible
expansion of the wave function in terms of its independ
sectors in the correlation space, each unitaryn-phononcor-
relation generatorÛ(n) must reproduce thenth-order phonon
cumulants obtained from the moments in Eqs.~10! but not
the moments themselves. This is indeed the reason why
shifted the phonon coordinates in order to eliminate the
fluence of the coherent one-particle sector on the seco
order and higher dynamic correlations in the wave functi
This is equivalent to subtracting the coherent one-part
contributions by performing the shift Qk→Qk

2^0phuÛc
†QkÛcu0ph&. For those of themth-order ones, this
ss-

ire

es
he
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t

e
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d-
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le

procedure defines generalized shi

^0phu(Pn51
m21Û(n))†Qk(Pn851

m21 Û(n8))u0ph& and similarly for
Pk . In result, it is technically possible to decompose t
wave function in direct product form in the cumulant corr
lation space. Despite the fact that the technical principles
such a decomposition prescribed in Eq.~12! can be exam-
ined, it is not practically possible to go beyond the seco
order correlations, because of the fact that a possible gen
analytic form for the third- and higher-order cumulant ge
eratorsÛ(m), (3<m) have not been studied in the literatu
from the mathematical point of view. The first- and th
second-order cumulant correlations, on the other hand,
well known in quantum optics as the one-particle coheren14

and the two-particle coherent states,15–17 respectively, and
have been extensively applied to the polaron problem in
context of the dynamical13 and the variational~see, for in-
stance, Refs. 18 and 19! approaches.

Under these practical limitations arising for 3<m, we
consider a subset of Eqs.~10! comprising the entire first- and
second-order cumulants, which correspond tos1 ,s251,2,
s3 ,s4 ,s551. Hence, it is implied that the polaron groun
state wave function will be approximated in the cumula
correlation space using only the first- and the second-o
cumulants. From Eq.~11! these seven cumulants are expli
itly given by

^cduQkucd&5^cduPkucd&5^cduQkQkucd&

5^cduPkPkucd&50,

^cduQkQ2kucd&51/2F114US g~k!

vk
D U2

^drkdr2k&G ,
^cduPkP2kucd&51/2,

^cduQkPkucd5 i /2. ~14!

In order to reproduce Eqs.~14!, we propose the effective
wave function,

ucd
eff&5S~$j%!)

k
$ak1gkak

†a2k
† 1bk~ak

†!2~a2k
† !2%u0ph&

^ uce&, ~15!

where the phonon coordinates are coherently shifted for
calculation of second-order correlations according to the p
cedure outlined above. The wave function is normalized
uaku21ubku21ugku251, where we neglect the overall phas
of ucd

eff& by consideringak5āk , and

S~$j%!5expH 2(
k

~jkaka2k2 j̄kak
†a2k

† !J ,

jk5ujkuei2uk, S †5S21 ~16!

describes the two-particle coherent, translationally invari
unitary operator~squeezing operator in quantum optics15,16!.
The unitary transformation defined byS($j%) on the phonon
coordinates is given by
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S †~$j%!QkS~$j%!5@kk1Re$mk%#Qk1Im$mk%P2k ,

S †~$j%!PkS~$j%!5@kk2Re$mk%#Pk1Im$mk%P2k ,
~17!
-

f

e

am
te

s.

a

in
a

v
th
wherekk5cosh(2ujku) andmk5e2 i2uk sinh(2ujku) such that
ukku22umku251 as imposed by the unitarity ofS($j%).

Using the wave function in Eq.~15! and the properties in
Eqs.~17! we obtain
^cd
effuQkucd

eff&50,

^cd
effuPkucd

eff&50,

^cd
effuQkQkucd

eff&50,

^cd
effuPkPkucd

eff&50,

^cd
effuQkQ2kucd

eff&5Re$akgk~kk1mk!212bkḡk~kk1mk!2%1
1

2
~ak

213ugku215ubku2!ukk1mku2,

^cd
effuPkP2kucd

eff&52Re$akgk~kk2mk!212bkḡk~kk2mk!2%1
1

2
~ak

213ugku215ubku2!ukk2mku2,

^cd
effuQkPkucd

eff&5
i

2
$11~ k̄kmk2kkm̄k!~ak

213ugku215ubku2!%2Im$~gkak12bkḡk!~ k̄k
22m̄k

2!%. ~18!
al
d-

il-
The parametersak ,gk ,bk ,kk ,mk are determined by de
manding the equality of Eqs.~18! and Eqs.~14!. In fact,
independently from specific values ofak , gk , bk , andjk ,
the effective wave functionucd

eff& satisfies a larger set o
cumulants than given by the subset in Eqs.~18!. First of all,
the first two conditions onRs1

andPs2
in Eq. ~11! are very

strict, corresponding to the translational invariance ofucd&.
These are also respected for alls1 ,s2 by ucd

eff& independently
from ak , gk , bk and jk . Furthermore, we also hav
^cdu(Qk)

s5(Pk)
s5ucd&5^cd

effu(Qk)
s5(Pk)

s5)ucd
eff&5(i/2)s5s5!

for all s5 and for allarbitrary but realak , gk , bk , andjk .
Hence, we are motivated to find a solution where the par
eters are all real. Here, we switch to the polar coordina
bk5ubkuexp(iub), and similarly for the other parameter
From the last equations in Eqs.~18! and ~14!, we infer that

uk2um5mp with m50,1 and Im$gkak12bkḡk%50. For
real parameters this trivially impliesugkuakusinug5
22ubkuugkusin(ub2ug)50, hence,ug5rp (r 50,1), andub

5np (n50,1). With these conditions, there are five re
equalities in the simultaneous solution of Eqs.~18! and~14!
and four conditions~including two normalization conditions!
to be satisfied. We consider the fifth condition as the m
mization of the ground-state energy. Since all parameters
now real, we drop the absolute value signs, i.e.,uaku→ak
and similarly for the others. We now have an effective wa
function that respects the strict conditions imposed by
translational invariance indicated byRs1

andPs2
as well as

the last condition indicated byGs5
in Eqs.~10! at all orders.

Consistency between Eqs.~18! and ~14! now implies
-
s

l

i-
re

e
e

kk
22mk

251,

ak
21bk

21gk
251,

H ~21!rgk@ak12~21!nbk#1
1

2
~ak

213gk
215bk

2!J
3@kk1~21!mmk#2

51/2F114US g~k!

vk
D U2

^drkdr2k&G ,

H ~21!r 11gk@ak12~21!nbk#1
1

2
~ak

213gk
215bk

2!J
3@kk2~21!mmk#251/2. ~19!

This set of four equations will be closed by one addition
constraint from the ground-state minimization, which we a
dress in the following section.

B. Solution of the parameters and approximations
to the true ground-state energy

We now define the ground-state energy of the Ham
tonian in Eq.~8! by
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E05^cd
effuH 9ucd

eff&

5(
m,n

tm,n^sm,n&^cm
† cn&1(

k
V0~k!^drkdr2k&

1(
k

V0~k!n̄kn̄2k1(
k

vk

2
@~ ukku21umku2!

3~113ugku218ubku2!14akugkuukkuumku

3Re$ei ~uk1um2ug!%18ugkuubkuukkuumku

3Re$ei ~uk1um1ug2ub!%#, ~20!

whereV0(k)5 1
2 Vc(k)2 $ug(k)u2/vk%, is the baree-e inter-

action, and, the last sum in Eq.~20! is the result of
(kvk/2^cd

effu(ak
†ak1akak

†ucd
eff&. The contribution from the

multiphonon operator is more tedious to calculate, for wh
we obtain

^cd
effusm,nucd

eff&5)
k

exp~2Ak!@ak
21ugku2~11Ak!2

1ubku2/4~4212Ak
21Ak

4!12Ak Re$akḡk%

1Ak
2 Re$akb̄k%1Ak~22Ak!2 Re$gkb̄k%#,

~21!

with Ak5 1
2 @g(k/vk#2e24jk(12coskx •a2cosky •a) where

a describes the lattice constant, which we take to be un
For the lowest possible energy we must satisfy in Eq.~20!

p5uk1um2ug ,

p5uk1um1ug2ub ,

ubku5
1

2
ugkuukkuumkuY ~ ukku21umku2!, ~22!

where the last one in Eqs.~22! is obtained by minimizing the
phonon part in Eq.~20! with respect toubku. The first two
yield ub22ug50, thus ub50. Using this as well asug
5rp obtained previously we find two possible solutions

ug50, ub50, uk50, um5p, and

ug5p, ub50, uk50, um50. ~23!

Since the phases are all fixed, we turn to the calculation
the density fluctuation correlations. The ground-state ene
in Eq. ~20!, as well as the parameters of the wave function
Eqs. ~19! and ~22! are functions of̂ drkdr2k&, which we
determine using the dielectric functione(k,v) formalism as

V0~k!^drkdr2k&52E
0

` dv

p
ImS 1

e~k,v! D . ~24!

In the RPA,e(k,v) is given by

e~k,v!512
V0~k!P~k,v!

11V0~k!P~k,v!
. ~25!

The electron polarizationP(k,v) is obtained in the standar
formulation by
h

y.

of
y

n

P~k,v!52(
p

u@2jp2Sp#2u@jp1k1Sp1k#

v1jp2jp1k1Sp2Sp1k1 id
, ~26!

where jk5teff(k)2m, teff52t^s&(12coskx2cosky). Since
ak , bk , gk , and jk are not determined at this level, w
consider inteff , the zeroth-order approximation where w
replace ^s& by its LF limit ^s&LF5exp$21/2ug(k)u2/vk

2%.
The chemical potentialm is fixed self-consistently by the
zero-temperature constraint,

n05(
k

u@2jk2S~k!#, ~27!

with S(k)52(k8V(k82k)u@2jk82S(k8)# describing the
exchange contribution to one particle energy renormali
tion. Since we are confined here to zero-temperature form
ism, S~k! is independent fromk and just renormalizes the
chemical potential. Hence the exchange contribution is in
fective in the denominator of Eq.~26!.

1. Density fluctuation correlations

We obtain the solution Eqs.~24–27! numerically in two
dimensions using Einstein phononsvk5v0 andk indepen-
dent dimensionless baree-ph couplingl5(g/v0)2. All en-
ergies are normalized byv0 . The dependence of^drkdr2k&
on the dimensionless parametersl, g, and Vc(p,p)/v0 is
shown in Figs. 1~a–c! at k5(p,p) and at half-filling, for the
valuesVc(p,p)/v050, 1, 2, 3, 4, andg50.05, 0.1, 1 with
0<l<2. In each curve the solid line, open circles, op
triangles, solid circles, and solid triangles represent value
Vc(p,p)/v0 as, respectively, indicated above. A quantit
tive comparison of the figures for a fixed Coulomb intera
tion strength indicates that, as the adiabaticityg is decreased,
there is an overall suppression in the magnitude of the fl
tuation correlations. This effect is also enhanced further
stronge-ph coupling particularly in the strongly antiadiabat
~i.e.,g!1! ranges. On the other hand, asg increases towards
the adiabatic range, correlations gradually increase for st
ger e-ph coupling. This picture qualitatively agrees with th
results obtained by direct-diagonalization calculations on
nite systems where a cooperation is observed in the antia
batic range between the decreasing adiabaticity and the
creasing coupling constant to suppress the quan
fluctuations. The overall effect of the increasing repuls
Coulomb interaction is to overcome the phonon-induced
laron attraction, which amounts to suppressing the fluct
tions for small couplings and enhancing them in the stro
coupling ranges. At this level, we solve Eqs.~19! and ~22!
for the parameters of the effective wave function before
calculate the ground-state energy.

2. Parameters of the effective wave function

Once fluctuation correlations are determined, the pho
effective ground-state parametersak , gk , bk , andjk can be
calculated from Eqs.~19, 22! for two branches as characte
ized by Eqs.~23!. The solutions corresponding to these tw
branches are identical forak , bk , and gk and only differ
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very slightly for kk and mk . In this subsection, we only
present the results for the first branch, whereas, both s
tions will be explicitly used in the calculation of the approx
mate ground-state energy. In Figs. 2~a–d! the parameters o
the effective wave function are plotted fork5(p,p) at half-
filling in the samel range as in Fig. 1. As thee-ph interac-
tion is increased, a strong competition is observed betw

FIG. 1. The solution of the density fluctuation correlations
k5(p,p) and at half-filling as a function of thee-ph coupling for
Vc /v050,1,2,3,4 as represented by solid line, open circles, o
triangles, solid circles, and solid triangles, respectively.
u-

en

the strengths of the pure two-particle coherent compon
given byap,p and the pair excitations on this state given
gp,p . In the intermediate ranges of thee-ph coupling~i.e.,
l&1!, the pair excitation strength becomes comparable
the strength of the underlying two particle coherent com
nent. The four particle excitation given bybp,p is limited in
strength in the wholel range. On the other hand, Fig. 2~d!
represents the parameters within the two-particle cohe
component. For increasinge-ph interaction a rapid reduction
is observed in exp(22ujp,pu). We observe that, because of th
non-negligible strength ofgp,p , the whole picture here is
quite contrary to the common practice of replacing the eff
tive phonon ground state by a variational pure two-parti
coherent~squeezed! component~in which case we would
have ak[1, gk5bk[0 for all k! in the intermediate and
strong coupling regimes. In Figs. 3~a–d! the same param
eters are calculated forg50.05. As the system is shifted t
increasingly antiadiabatic ranges~i.e., g!1!, the relative
strengthap,p of the pure two-particle coherent component
approximately maintained in the entire coupling range w
respect to the two- and four-particle correlated excitatio
represented bygp,p and bp,p , respectively. Hence, in this
range of the interaction parameters, the two-particle cohe
componentap,p dominates the wave function where th
two- and four-particle correlated excitationsgp,p and bp,p
compete only with each other. Within the two-particle coh
ent component@as indicated in Fig. 3~d!# there is a also an
increasing tendency to overlap with the conventional phon
vacuum. Nevertheless, we observe that exp(22ujp,pu) satu-
rates around 70%, implying that the overlap with the vacu
does not exceed 30%@see Fig. 3~d!# even for such a strong
antiadiabaticity asg50.05. Note that, a strong overlap of th
dynamical partucd

eff& with the vacuum would indicate tha
the coherent partufc& is dominating the ground-state wav
function. These results are in qualitative agreement with
direct diagonalization results of Ref. 5 where the observ

t

n

ectively.

FIG. 2. The parameters of the effective wave function atk5(p,p) for g51 and at half-fillingn051 as a function of thee-ph coupling

for various Coulomb strengths asVc /v050,1,2,3,4 represented by solid, dotted, dashed, long-dashed, and dotted-dashed lines, resp
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FIG. 3. The same as in Fig. 2 forg50.05 at half-fillingn051.
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convergence of the true ground state to the Lang-Fir
small polaron limit~indicated by the pure coherent partufc&!
is weaker than expected and strongly adiabaticity depend
As the system is driven to even more antiadiabatic rang
the charge fluctuations reduce their overall amplitude as
fluctuating componentucd

eff& of the polaron wave function
develops an ever increasing overlap with the conventio
vacuum@i.e., as implied by the saturation inap,p at approxi-
mately 90% withgp,p ,bp,p saturating at limited strength
as well as the tendency of exp(22ujp,pu) to stay closer to
unity in Fig. 3~d!#. Hence the ground-state polaron wa
function gradually becomes more coherent and localiz
nevertheless, we also observe that the convergence to
limit is weaker than conventionally expected.

As the dependence of this overall picture on the elect
concentration is concerned, the first observation we mak
v

nt.
s,
e

al

d;
his

n
is

that, whenn̄k[n0 is shifted away from half-filling the influ-
ence of the Coulomb interaction becomes weaker on all
rameters. In addition, the relative strength of the correla
pair excitations~i.e., gp,p! with respect to the two-particle
coherent component~i.e.,ap,p! becomes weaker as shown
Figs. 4~a,b! for n0.0.6. The four-particle correlations a
given bybp,p in Fig. 4~c!, maintain their negligible strength
We also observe in the same result that the parameters o
two-particle coherent component as indicated in Fig. 4~d! are
not too sensitive to changes in the electron concentratio
this range.

3. Approximate ground-state energy

In Figs. 5~a,b! the ground-state energy difference calc
lated in reference to the noninteracting limit~i.e., l50! and
FIG. 4. The same as in Fig. 2 forg51 at electron concentrationn050.6.
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FIG. 5. ~a! The ground-state energy differenceDE05E0(l)2E(l50) as calculated by Eq.~20! for g51 at half-filling and for the two
solutions of the wave-function parameters as determined by the values of the phases in Eq.~23!. Here, for the second solution the sam
symbols are used as in Fig. 1 for the same parameter values. Since the first solution and the second one meet on the vertical sca
corresponding to a particular value ofVc the second solution for eachVc can be identified easily. For the sake of clarity we thus repres
all second solutions with dotted lines.~b! Same as in part~a! for g50.05 at half-filling.
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corresponding to each phonon branch as a function ofl is
plotted for the same parameter values as the previous fig
at half-filling. Note that in this section, we intentionally in
clude the results of both branches in Eqs.~23!. To clearly
demonstrate the influence of the charge fluctuation corr
tions, the ground-state energy of the background unifo

distribution @i.e., V0(k)n̄kn̄2k# is subtracted in both Figs
5~a!, and 5~b!. The first solution obtained for the paramete
is identified for each Coulomb strength, by a solid li
(Vc /v050), an open circle (Vc /v051), an open triangle
(Vc /v052), a solid circle (Vc /v053), and a solid triangle
(Vc /v054), respectively, in accordance with symbols us
in Fig. 1. The second solution is represented by dotted lin
for all Coulomb strengths. At weake-ph coupling strength, a
finite positive contribution to the energy is present from Co
lombic charge fluctuations. A common feature of all groun
state energy solutions in Fig. 5~a! is that at a fixed Coulomb
interaction strength, a slightly lower ground-state energy
obtained with the second branch for coupling strengthsl
&1 than with the first branch. In the approximate range
&l the first branch yields a lower ground-state energy th
the second one. In the transition from one branch to the o
no discontinuity is present. In addition to the continuous
ture of the transition, a kinklike feature is also present n
l51, where the transition is observed. The continuity of
ground-state energy is widely accepted on grounds of dir
diagonalization studies on finite systems5–8 as well as varia-
tional calculations.9–11 The kinklike feature has also bee
reported in one-dimensional calculations but it was attribu
to the finite-size effects.8 We also observe, in accordanc
with Ref. 8 that, as the system parameters are driven
antiadiabatic ranges~i.e., g!1! the kinklike feature disap-
pears as shown in Fig. 5~b!, and the fluctuations calculated
es

a-

d
s,

-
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n
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-
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e
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distinct Coulomb interaction strengths become less viable
the ground-state energy due to the suppression of the
namical fluctuations.

III. EFFECTIVE CHARGE-TRANSFER AMPLITUDE

It has been shown in the direct-diagonalization calcu
tions on finite systems5 that the convergence of the intersi
charge-transfer amplitude to the conventional Lang-Firs
~LF! limit is weak particularly in the intermediate couplin
weakly antiadiabatic regimes. In the conventional LF a
proach the adibaticity does not play a role in the renorm
ization of theteff . The reason behind the independence ofteff

from g is that the standard LF polarons are renormaliz
only with respect to the lattice site on which the polaron
located; whereas, this approximation is only expected to
manifest in the extreme antiadiabatic strong-coupling lim
On the other hand, the response time scale for the pho
cloud to follow the charge is expected to be a monotonou
increasing function of adiabaticity. This implies that in th
strongly adiabatic ranges the renormalization of the effec
charge-transfer amplitude by the following phonon cloud
expected to be weaker than it is for weakly adiabatic a
nonadiabatic ranges. Hence, the localizing effect of
strong e-ph coupling should be a function of adiabaticit
This means thatteff /t, as a measure of the kinetic-energ
renormalization scale for electrons, is expected to be a
notonously decreasing function wheng decreases, which
was indeed observed in the numerical calculations of Ref
7, and 8. In another way of saying it, the expected renorm
ization of teff with respect tog is itself a strong result agains
the use of the LF approach in the large and intermed
adiabatic ranges and the generality of the argument requ
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FIG. 6. ~a! The effective charge transfer amplitudeteff /t as a function ofl for the indicated value of interaction parameters.~b! The
adiabaticity dependence ofteff /t.
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that a similar scenario is expected to hold for the many-b
case.

We define the effective charge transfer amplitudeteff us-
ing Eq. ~21! as

teff5t^cd
effus~m,n!ucd

eff&. ~28!

Note that the coherent CDW sectorufc& would have no con-
tribution in Eq.~28! if it was included in the wave function
In Eq. ~28!, or in its explicit form in Eq.~21!, the Lang-
Firsov limit would only correspond toak[1, gk5bk5jk
[0, yielding the standard Holstein band reductionteff
5t exp(2l/2). It can be seen that this limit is unphysical
our dynamical approach here. The reason is that, since
parameters are definite functions ofl, the limit ak[1, gk
5bk5jk[0 would only be obtained if noe-ph coupling
was present. Hence, deviations from the standard LF
proach is an inherent feature of the dynamical approach
self. Since the parameters ofucd

eff& are known by Eqs.~19!
and ~22!, we can examine Eq.~28! as thee-ph coupling
constant and the adibaticity are varied. In Fig. 6~a!, the cou-
pling constant dependence of the renormalized cha
transfer amplitude is plotted forg50.05, 0.1, 1. Given the
general argument discussed above and the previous re
obtained for finite systems, our results in Fig. 6~a! could be
qualitatively anticipated, i.e.,teff decreases monotonous
with decreasing adiabaticity. To indicate that the adiabatic
dependence is a manifestation of charge fluctuation corr
tions, Eq. ~28! as well as the Lang-Firsov-normalize
charge-transfer amplitudeteff /(te

2l/2) are plotted in Fig. 6~b!
as a function ofg for l50.1, 0.5, 1. The connected poin
with solid circles, solid triangles, and solid squares repres
the solution of Eq.~28! for l50.1, 0.5 andl51 respec-
tively. The LF-normalized solutions are indicated with t
same type of unconnected points for the samel values. The
difference between the full and LF-normalized solutions
weaker for small couplings as expected. More importan
the difference is also a function of the adiabaticity, decre
y

all

p-
it-

e-

lts

y
la-

nt

s
,

s-

ing monotonously for decreasingg. Hence, the qualitative
features of Figs. 6~a! and 6~b! reasonably agree with those i
Refs. 5, 7, and 8.

IV. EFFECTIVE ELECTRON-ELECTRON INTERACTION

The effective electron-electron interaction will be calc
lated from

Veff
e-e~k,v!5

V0~k!

e~k,v!
, ~29!

wheree(k,v) is given by Eq.~25!. At half-filling, the cal-
culations are shown for the Coulomb dominated bare in
action in Figs. 7~a,b! for the real and imaginary parts of th
inverse dielectric function, Since Re$1/e% is even and
Im$1/e% is odd inv, we only include the positive excitation
energies. In the Coulomb dominated region, high-energy
citations across the Fermi surface@i.e., v;2m and k
5(p,p)# are strongly susceptible to a sharp singularity
the electron density of states where a strong enhanceme
the effectivee-e coupling is observed. In the same lim
Im$1/e% has a coherent peak for excitations across the Fe
energy, which is consistent with the known presence of hi
energy dynamical CDW fluctuations. In this regime, the qu
siparticle screening is inactive and the charge fluctuations
dominated by high-energy processes. We observe that
weaker bare Coulomb interaction strength the enhancem
is also weaker~not shown in Fig. 7!. As the baree-ph cou-
pling is increased, the peak position shifts to lower energ
due to the quasiparticle band narrowing and the CDW p
amplitude is much less pronounced. In contrast, in the lo
energy excitation range~i.e., v&m!, one enters the particle
hole continuum where the screening is active. In this regim
Re$1/e%,1, which suppresses the effectivee-e coupling be-
low its bare strength.

At the other limit, where the net baree-e coupling is
phonon dominated, as shown in@Figs. 8~a,b!#, the high en-
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FIG. 7. ~a! The real part of the vertex renor
malization for the effectivee-e coupling as a
function of the excitation energyv in the Cou-
lomb dominated regime at indicated values of t
interaction parameters.~b! Same as~a! for the the
imaginary part.
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ergy excitations become incoherent and the coherent C
instability disappears. Note the presence of a minus sign
the vertical scale in Fig. 8~a! to indicate that the effectivee-e
coupling is attractive (0,Re$1/e%). In this regime, the
particle-hole continuum is narrowed from below to interm
diate excitation energies where the screening is effect
resulting in a net suppression of the attractive coupling. T
limitation of the particle-hole continuum at the low-ener
end is dictated by the small polaron formation where a str
enhancement of the attractive coupling is observed. As
baree-ph coupling is increased, the effective polaron mas
strongly enhanced within a low-energy window and the
teractions are dominated by low-energy exchange proces
With increasing bare attractive coupling, the low-ener
window is compressed to even lower energies, appare
approaching to ad-like peak atv50 for 1!l. For an in-
creasing baree-ph coupling constant, the divergence in t
behavior of Re$1/e% is also consistent with the gradual d
velopment of the sharp low-energy peak in Im$1/e% in Fig.
8~b!. We believe that this is an indication of the existence
a very narrow band, itinerant, small~quasilocalized! polarons
in this low-energy regime. In the ultimate limit of very larg
e-ph coupling the small polaron band is reduced complet
the effective adiabaticity is strongly decreased and, the ef
tive e-e coupling is strongly renormalized signaling
gradual transition from the itinerant, fluctuating low-ener
small polaron picture to self-trapped polarons. Since the c
pling is strongly attractive, bipolaron bound-state formati
is also likely to happen within this range.
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Figures 7~a,b! and 8~a,b! confirm the general wisdom2–4,20

that, the electron self-energy as well as vertex corrections
particularly strong across the Fermi surface both in the hi
energy Coulombic and low-energy phonon dominating
gimes. To complete the picture at half-filling, thek depen-
dence of the dielectric function is plotted in Figs. 9~a,b! for
v/v058.05, l50, Vc(p,p)/v054, and Figs. 10~a,b! for
v/v050.05, l51.6, Vc(p,p)/v050. These particularv
values correspond to the vicinity of excitation energies
Figs.7~a,b! and 8~a,b! where the peak positions are observe
Hence, Figs. 9~a,b! and 10~a,b! give representative sampling
of the dielectric function in the extreme high-energy Co
lombic and low-energy phonon dominated regimes a
where the strongestv,k dependence is expected. In th
former @Figs. 9~a,b!# a relatively smooth and dispersionle
CDW gap is present on the Fermi surface. Across the Fe
surface atk5(p,p) there is an enhancement both in Re$1/e%
and Im$1/e% indicating the dynamical CDW peak in Figs
7~a,b!. On the other hand, we find in the latter case@Figs.
10~a,b!# that in the presence of a strong attractive coupl
the gap fluctuates at very low energies~e.g., v/v0;0.05!,
and it is strongly anisotropic on the bare Fermi surface.
instance, atk5(0,p), and at~p,0! the Re$1/e% it is rather flat
and narrow with no structure in the imaginary part, where
across the bare Fermi surface towardsk5(p,p) it is
stronglyk dependent and dynamical with the large dynam
cal small polaron peak atk5(p,p) @see also Figs. 8~a,b!#.

An extension of these results to the case away from h
filling as well as different values of the bare charge-trans
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FIG. 8. ~a! The real part of the vertex renor
malization for the effectivee-e coupling as a
function of the excitation energyv for the pho-
non dominated regime at the indicated interacti
parameter values.~b! Same as~a! for the imagi-
nary part.
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amplitude also indicate that thev,k dependence of the self
energy and vertex corrections maintain their full validity a
qualitative level. Because of the strongv,k dependence o
high-energy excitations in the Coulombic case, the posit
and the amplitude of the dynamic CDW peak is stron
sensitive to slight changes in the electron concentration.
observed that in the region where low-energy phonon do
nated excitations are strong, there is an overall suppres
in the magnitude of the low-energy excitations on the Fe
surface as well as atk5(p,p) when the concentration i
shifted away from the half-filling.

The density of states on the Fermi surface is stron
dependent on the strength of the charge-transfer amplit
For t50.7, at half-filling and in the Coulomb dominate
case, we observed an order of magnitude enhancement o
Fermi surface in the effectivee-e interaction. The last ex-
ample is the extreme phonon dominated region att50.7 at
low energies. There, the previously observed low ene
small polaron peak is enhanced and broadened in the vic
of k5(p,p). In addition to that, two dynamical peaks a
pear in symmetric position atk5(0,p) and ~p,0!. In all ex-
amples we examined, relatively more structure is observe
the k space in the phonon dominated regions than in
Coulombic ones.

The strong sensitivity of the vertex corrections as fun
tions of v,k on the bare interaction parameters and the e
tron concentration renders the analysis delicate particul
near the instabilities. It has been argued that, in the pres
of strong short-range Coulombic or magnetic correlatio
the strong enhancement in the phonon-mediated effectiv
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traction can drive the system into superconductivity near
dynamical CDW instability.20 We believe that this mecha
nism might be more likely to happen~if it does! in the
strongly antiadiabatic ranges in otherwise the same reg
where the phonon excitation energies are more compa
with the electronic ones. On the other hand, Coulomb do
nated strong coupling antiadiabatic ranges, where the ex
tions are on the order of bare phonon frequency or sma
with exchange momenta on the order ofk5(p,p), are also
favored by the small polaron formation. Hence the comp
tion in this regime between the superconductivity a
quasilocalized polarons, must be decided by the effec
adiabaticity as well as the coupling constants. This rend
the analysis of the competing effects of the vertex (leff) and
phonon (Vk) self-energy against the electron self-ener
(teff) renormalizations to be particularly critical near the
instabilities.

V. RENORMALIZED PHONON SUBSYSTEM

A. Phonon number distribution

We now examine the distribution of the number
phononsp(nk) in the approximate ground stateucd

eff& by

p~nk!5u^nkn2kucd
eff&u2. ~30!

Since ucd
eff& is defined in terms of pair excitations we co

sidernk5n2k , which allows us to use Yuen’s formula,15,16



n

-
tl

n

a
ly
la
in

on
la
be
te
e

t i
in

th

-
ps
th

in
.

en
e
ra
ll

h

ges
.
he
ical

tly.
n
the

uc-
his

ld
on
n

,
e

. In
he

e
e

PRB 58 3789DYNAMICAL PROPERTIES OF THE TWO-DIMENSIONAL . . .
^nk ,nkuS~$j%!u0&5
A~2nk!!

nk!

@ tanh~2ujku!#nk

@cosh~2ujku!#1/2, ~31!

in the calculation of Eq.~30!. We find that

^nkn2kucd
eff&5^nk ,nkuS~$j%!u0&$ak1gkkkmk~2nk11!

1bkkk
2mk

2~3nk
213nk11!%

1^nk21,nk21uS~$j%!u0&gkkk
2nk

1^nk11,nk11uS~$j%!u0&gkmk
2~11nk!

1^nk22,nk22uS~$j%!u0&kk
4nk~nk21!

1^nk12,nk12uS~$j%!u0&mk
4~nk11!

3~nk12!. ~32!

Using Eq.~32! and ~31!, the phonon number distribution i
Eq. ~30! is plotted for different values ofl and g, n0 and
Vc /v0 at k5(p,p) in Figs. 11~a–d!. The values of the cou
pling constants are chosen sufficiently below and sufficien
above the critical crossover of the two solutions nearl.1 in
Fig. 5~a! so thatp(nk) is calculated using the first solutio
for l1 andl2 and the second one forl3 . A common feature
of Figs. 11~a–d! is that, for sufficiently small~i.e., l5l1!,
the phonon probability distribution is always the largest
nk50. As l increases, the maximum value is smooth
shifted towards finite number of phonons and the over
with the vacuum state decreases. As the system is driven
antiadiabatic ranges, as shown in Fig. 11~b!, there is an over-
all decrease in the dynamical charge fluctuation correlati
where the phonon distribution is narrower and the over
with the vacuum is strongly increased. A comparison
tween Figs. 11~a! and 11~b! indicates that there is a delica
competition betweeng andl to determine the shape of th
probability distribution. The decreasingg tends to compress
the distribution towardsnk50 by increasing the vacuum
component. On the other hand, a weak~i.e., l5l1 ,l2! but
increasingl broadens the distribution and attempts to shif
away from the vacuum, where it fights against the stabiliz
effect of the decreasingg. Whereas, ifl is strong~i.e., l
5l3!, the increasingl cooperates with the decreasingg to
stabilize the coherent polaron formation as indicated by
increasingnk50 component inp(nk). We identify the co-
operation of increasingl and decreasingg as the correct
route to the Lang-Firsov limit in which the dynamical com
ponent of the probability distribution very strongly overla
with the vacuum where the phonon statistics is driven by
dominating coherent part.

A similar competition is observed in Figs. 11~a! and 11~c!
between thee-ph and the Coulomb interactions, as well as
Figs. 11~a! and 11~d! for different electron concentrations
Whenl is weak, increasingl competes with the stabilizing
effects of Coulomb interaction or reduced electron conc
tration. Whenl is strong, it cooperates with them to stabiliz
the coherent polaron formation. We observe that the ove
picture here is also consistent with the results of de Me
and Ranninger in Ref. 5.

It should be noted that the nonclassical structure ofp(nk)
is entirely a manifestation of the dynamical fluctuations. T
fluctuating part given byucd

eff& in Eq. ~15! of the true ground-
y
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state wave function does not support any structural chan
@i.e., ^cd

effuQkucd
eff&5^cd

effuPkucd
eff&50 as also enforced by Eqs

~18!#. Hence, the decomposition of the wave function in t
correlation space also enables one to examine the dynam
and static parts of the distribution function independen
The true probability distribution is obtained by a convolutio
between the dynamical and static coherent sectors of
wave function. The static coherent sector yields the nonfl
tuating Poisson distribution, which is not addressed in t
paper.

B. Renormalized frequency of vibrations

In principle, the phonon frequency renormalization shou
be calculated by finding the corresponding effective phon
Hamiltonian for which the dynamical polaron wave functio
in Eq. ~15! is the lowest eigenstate. This would be a tedious
but relatively straightforward inverse eigenproblem if w
could write the operator in Eq.~15! in the form of aninvert-
ible unitary operator acting on the phonon vacuum state
the following, we will present our results instead, using t
RPA where the phonon self-energyP(k,v) is calculated by

FIG. 9. ~a! The real part of the vertex renormalization for th
effective e-e coupling in the Coulomb dominated regime at th
peak valuev/v0552m/v058 in k space forVc /v054, l50,
g51 andn051. ~b! Same as~a! for the imaginary part~note the
negative sign on the vertical scale!.
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P~k,v!5V0~k!P~k,v!, ~33!

whereP(k,v) is the electron polarization given by Eq.~26!.
We will present our results for the phonon dominated regi
without Coulomb interaction. HenceV0(k)52l. The RPA
is known to yield compatible results to the self-consist
ME calculations2,4 in the relatively weak-coupling constan
rangesl&0.5 whereas it strongly overestimates the dyna
cal phonon softening for 0.5,l as compared to more reli
able QMC simulations.2 In the conventional RPA the renor
malized phonon frequency is given by

Vk5Avk
212vkP~k,vk!, ~34!

where bare electron Green’s functions are normally use
the calculation ofP(k,v). Using Eq.~34!, we plot in Fig. 12
the renormalized phonon frequencyVk in the RPA ~thin
solid lines! as a function ofl for g50.3, 0.4, 1 and for no
Coulomb repulsion. The ME calculations~dotted lines! and
QMC results~with error bars! of Ref. 2 for g51 are also
included for comparison. It is known that the convention
RPA overestimates the charge fluctuation correlations du
neglected corrections of the self-consistent renormalizat

FIG. 10. ~a! The real part of the vertex renormalization for th
effectivee-e coupling in the phonon dominated regime at the pe
valuev/v050.05 in k space forVc /v050, l51.6, g51 andn0

51. ~b! same as~a! for the imaginary part.
e

t

i-

in

l
to
s

in the electron self-energy and the coupling constant.2–4,20

This is reflected in an unbounded negative increase of
phonon self-energy, which in turn derives the renormaliz
phonon frequency into an instability for the intermediate a
strong-coupling ranges 1&l.

If the vertex corrections are properly included, in the
tractive case, the effectivee-ph coupling constantleff
5l Re$1/e(k,v)% is suppressed for high frequency excit
tions due to the charge screening effect and is enhance
the low frequency range due to the small polaron format
@see the coupling constant renormalization in Sec. IV F
8~a,b!#. On the other hand the electron self energy is a
reflected upon the renormalization of the charge transfer
plitude teff of which the band narrowing effect, according
Fig. 6~a!, is to derive the system into an effectively nonad
batic range. Hence a physically more relevant calculat
should properly includeboth corrections which is suggeste
by replacingP(k,vk)→Peff(k,Vk) in Eq. ~34! where the
latter is calculated witht^s&LF→teff whereteff is now given
by Fig. 6~a!, and, with l→leff where leff
5l Re$1/e(k,vk)% is calculated in Fig. 8~a!. The self-
consistent solution of

Vk5Avk
212vkPeff~k,Vk!, ~35!

which we term as the corrected RPA~CRPA!, is technically
different from those calculations using finite lattice and ele
tron degrees of freedom where it is numerically feasible
maintain the self-consistency from the beginning.4 The solu-
tion of the CRPA is depicted in Fig. 12 with the thick sol
line as a function of the bare coupling constantl. In the
solution of CRPA, we were not able to beyondl.1.6 due to
an unstability in the numerical calculations in Eq.~35!. Nev-
ertheless, the agreement with the QMC results for a reas
ably large range ofe-ph coupling clearly indicates the im
portance of the vertex as well as the self-energy correcti
in the antiadiabatic strong-coupling case. The picture can
made more transparent if one divides thel range in Fig. 12
by imaginary lines into the weak-couplingl&0.5,
intermediate-coupling 0.5&l&1.2, and strong-coupling 1.2
&l sectors and compare theg51 RPA solution where such
renormalizations are not present with theg51 CRPA solu-
tion where they are included. In the weak sector, the pho
softening is weak and typical excitation energies are on
order of bare phonon frequency where the charge scree
effects weakly suppress the coupling constant~i.e., Re$1/e%
,1!. By the weak screening in this sector, further soften
of phonons is slightly delayed to the larger couplin
strengths. In the intermediate range, the charge fluctuat
become important where the electron self-energy and ve
corrections compete to determine the phonon softening. T
can be qualitatively understood by the following argume
As l is increased in the intermediate range, the band narr
ing effect of the electron self-energy corrections tend to
pose further softening, but in the intermediate sector the p
non frequency is already sufficiently softened and the lo
energy excitations slowly start dominating as a precurso
the fluctuating polaronic regime where the large low-ene
vertex corrections enhance the effective coupling cons
1,Re$1/e%. Hence, more softening is observed. On the ot
hand, in the third sector at relatively large coupling co

k
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FIG. 11. The dynamical phonon distribution in the effective wave function for the indicated values of the parameters.
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stants, the outcome of the competition between the elec
self-energy and vertex corrections is decided by the b
adiabaticity parameterg. At this point, it is necessary to g
back and examine the renormalization of the charge-tran
amplitude in Fig. 6~a! for various values ofg. For interme-
diate and large values ofl, the band reduction is opposed b
the suppression factor exp(24jk) in Eq. ~21! arising from the
strong presence of the two-particle coherent~i.e., 0,jp,p ,
ap,p,1! and, the two-particle pair excitations~i.e., 0
,gp,p! in the ground state. The net effect of the coher
two-particle pair excitations is to slow down the rapid red
tion of the electron band asl increases. The influence of th
factor has also been noticed in the variational calculation
the intermediate and strong couplings as well as intermed
and low excitation energies in the phonon spectrum.21,22 We
observe in Fig. 6~a! that, this effect is visible forg51 by the
presence of a bulge nearl50.6 and the decrease ofteff /t for
increasingl is much slower for the larger values ofg. This
implies that, a smallerg yields a more rapid band reductio
resulting in a stronger suppression of the charge fluctuati
In the strongly antiadiabatic regime, the increasinge-ph cou-
pling cooperates with the strong nonadiabaticity@as also ob-
served in Fig. 11~b!# and the phonon softening is complete
destroyed. This is indicated in Fig. 12 by the thin solid lin
corresponding tog50.4 and 0.3. On the other hand, f
largerg, the phonon softening can continue in the prese
of marginal charge fluctuations. For instance, forg51 and
for the CRPA solution, asl is increased further, the charg
fluctuations decrease, leading into a finite saturation reg
where the phonon softening is relatively unchanged withl.

VI. CONCLUSIONS

In this work, we improved and extended the dynami
charge fluctuation based effective wave-function schem
on
re

er

t
-

in
te

s.

e

e

l
of

our previous work in Ref. 13 to the normal state in the tw
dimensional Holstein-Hubbard model in the intermediate
teraction ranges. In particular, the possibility of represent
the effective wave function in the decoupled subspaces
n-phonon cumulant correlations is exploited and applied
the first two cumulants of the polaron wavefunction. T
differences of this approach from the diagrammatic phon
correlator technique of Ref. 12 as well as the standard La
Firsov approaches are emphasized by showing that the
merically observed weak convergence to the LF theory in
strong-coupling antiadiabatic limit is inherently built in th
model. With the effective cumulant approximation, one
able to construct an effective many-body wave function a
compare the results at a qualitative level with the recent
merical studies on direct diagonalization, QMC, and var
tional approaches. The effective wave function provide
clear picture of the dynamical coupling of the correlated ph
non pair fluctuations to those in the CDW. In this respect,
consider the current work as a possible dynamical ma
body extension of these studies.

As far as the general polaron problem is concerned,
decoupled nature of the effective wave function in the cum
lant correlation space might be a promising tool to und
stand the properties of the polaron ground state at a de
level. This procedure also decouples the static coherent
tor from the dynamical fluctuating part of the wave functio
In this article we took this as an advantage to study
dynamical sector independently. The authors believe that
possible improvements of this extended LF-like approa
can be done in two directions. At first one can realize th
the true ground state@as suggested by the multiphonon sc
tering operators(m,n)# has corrections to the coherent pa
even at the dynamical level, and, the true ground-state w
function includes a dynamically shifted mixture of cohere
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states of the phonon coordinateQk and momentumPk . The
static contribution is aQk coherent state, which is precise
what we calledufc& in this article. Inufc& we have neglected
these pure dynamical corrections, although a more rigor
treatment should also embody those effects self-consiste
A second means of improvement is in the understanding
ucd& itself. At this point, some formal difficulties arisin
from the formulation of the unitary generators of th
m-phonon cumulant correlations for 3<m have to be over-
come. The cumulant correlation corrections for 3<m also
depend heavily on the corrections to the Landau-Fermi liq
picture. The reason behind this is that higher cumulants

FIG. 12. The phonon softening comparatively studied for
~corrected! random-phase approximation, Migdal-Eliashberg
well as quantum Monte Carlo calculations of Ref. 2 for the in
cated parameter values atk5(p,p) and at half-filling.
et

B

us
ly.
of

d
in

ucd& are more susceptible to deviations from the stand
assumption of Gaussian density fluctuation correlations
the Landau-Fermi liquid. This assumption was indeed u
in the calculation of Eqs.~11!. In this respect, these two
corrections to phonon as well as fermion statistics should
attacked simultaneously in a more refined self-consis
frame. Possible advances made in this direction might rev
the importance of these deviations and might also shed l
on the likely presence of the not-completely-understo
strongly nonlinear self-trapping regime both in the Coulo
bic high-energy and phonon dominated low-energy secto

Although the revival of the Holstein-Hubbard model
the past 15–20 years was heavily stimulated by the prog
in high-temperature superconductivity, we did not enter in
such discussions in this article. Using an oversimplifi
model, it was suggested in Ref. 13 that the low-tempera
Tc-dependent phonon anomalies observed in certain Cu
based compounds might be connected with the dynam
vibrational fluctuations self-consistently coupling to the p
laronic charge fluctuations in the superconducting phase
should be noted that a more realistic model for hig
temperature superconductors is suggested by the Holst
t-J model in the presence of strong Coulomb correlatio
with the electron concentration being slightly shifted aw
from half-filling where the vibrational fluctuations strong
couple in a self-consistent frame to charge but also spin fl
tuations in the Cu-O planes. One then has to incorporate
self-energy and vertex corrections in the Coulomb domina
regime, both for the fluctuations in the charge and spin
grees. Hence, one possible direction to take in the super
ducting phase is to examine the Holstein–t-J model within
the ~charge and spin! fluctuation-based effective cumulan
approach presented here.
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