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Abstract: In left truncation and right censoring models one observes i.i.d. samples

from the triplet (T, Z, δ) only if T ≤ Z, where Z = min(Y, C) and δ is one if Z = Y

and zero otherwise. Here, Y is the variable of interest, T is the truncating variable

and C is the censoring variable. Recently, Gürler and Gijbels (1996) proposed a

nonparametric estimator for the bivariate distribution function when one of the

components is subject to left truncation and right censoring. An asymptotic rep-

resentation of this estimator as a mean of i.i.d. random variables with a negligible

remainder term has been developed. This result establishes the convergence to a

two time parameter Gaussian process. The covariance structure of the limiting

process is quite complicated however, and is derived in this paper. We also con-

sider the special case of censoring only. In this case the general expression for the

variance function reduces to a simpler formula.
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1. Introduction

In survival or reliability studies, the observed data is typically censored
and/or truncated. Left truncation and right censoring (LTRC) together naturally
occur in cohort follow-up studies. In a recent work, Gürler and Gijbels (1996) pro-
pose an estimator of the bivariate distribution function F (y, x) of (Y,X) when the
component Y is subject to LTRC. The variable of interest is the lifetime variable
Y , but for several reasons one can observe samples of the random vector (T,Z, δ),
only if T ≤ Z, where Z = min(Y,C) and δ = I(Y ≤ C). Here T is the truncating
variable and C is the censoring variable which are assumed to be independent of
(Y,X). Their distribution functions are denoted by G and H respectively. Let
VZ denote the distribution function of Z. Then VZ = 1− (1 − FY )(1 − H), with
FY being the marginal distribution function of Y . Without loss of generality we
assume that all the random variables are nonnegative. The bivariate distribution
function F (y, x) is identifiable only if aG ≤ aVZ

and bG ≤ bVZ
, where we denote

aL = inf{t : L(t) > 0} and bL = inf{t : L(t) = 1} for any distribution function L.
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This condition is similar to the one stated in Woodroofe (1985) for the univariate
left truncated model.

Suppose Y is subject to LTRC and we observe (Zi,Xi, Ti, δi), i = 1, . . . , n,
for which Ti ≤ Zi. Let W 1

Z,X(z, x) denote the bivariate sub-distribution function
of the observed uncensored variables, i.e.

W 1
Z,X(z, x)=P (Z≤z,X≤x, δ=1|T ≤Z)=α−1

∫ ∞

0

∫ x

0

∫ z∧c

0
G(u)F (du, dv)H(dc),

where 0 < α = P (T ≤ Z), t∧ u = min(t, u) and t∨ u = max(t, u). The following
functions will be of use in what follows

W 1
Z,T (z, t) = P (Z ≤ z, T ≤ t, δ = 1|T ≤ Z) = α−1

∫ z

0
G(t ∧ u)H̄(u−)FY (du),

(1)
and

W 1
Z(z) = α−1

∫ z

0
G(u)H̄(u−)FY (du), (2)

where for any distribution function L we denote L̄(u) = 1 − L(u). Then,

W 1
Z,X(dz, dx) = α−1G(z)H̄(z−)F (dz, dx), (3)

which has the following marginal for Z,

W 1
Z(dz) = α−1G(z)H̄(z−)FY (dz).

Denote by

WT (t) = P (T ≤ t|T ≤ Z) and WZ(z) = P (Z ≤ z|T ≤ Z)

the distribution function of the observed random variables T and Z respectively.
Define

C(u) = P (T ≤ u ≤ Z|T ≤ Z) = WT (u) − WZ(u−),

and note that
C(u) = α−1G(u)F̄Y (u−)H̄(u−). (4)

From (3) and (4) it follows that

F (dy, dx) =
F̄Y (y−)
C(y)

W 1
Z,X(dy, dx) ≡ A(y)W 1

Z,X(dy, dx). (5)

Relation (5) motivates the following estimator for F (y, x):

Fn(y, x) =
1
n

n∑
i=1

F̄Y,n(Zi−)
Cn(Zi)

I(Zi ≤ y,Xi ≤ x, δi = 1), (6)
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where

F̄Y,n(y) =
∏

i:Zi≤y

[
1 − s(Yi)

nCn(Yi)

]δi
with nCn(u) = #{i : Ti ≤ u ≤ Zi},

and for u > 0, s(u) = #{i : Zi = u}. The estimator Fn(y, x) is a bivariate
distribution function and reduces to the univariate product limit estimator when
x → ∞.
Define

Li(z) =
I(Zi ≤ z, δi = 1)

C(Zi)
−

∫ z

0

I(Ti ≤ u ≤ Zi)
C2(u)

W 1
Z(du) and L̄n(z) =

1
n

n∑
i=1

Li(z).

Let

W 1
Z,X,n(z, x) =

1
n

n∑
i=1

I(Zi ≤ z,Xi ≤ x, δi = 1)

be the empirical counterpart of W 1
Z,X(z, x).

The following theorem of Gürler and Gijbels (1996) provides a strong i.i.d.
representation for the estimator Fn(y, x) given above. Such a representation for
the univariate LTRC data was established in Gijbels and Wang (1993).

Theorem 1. Assume F (y, x) is continuous in both components, b < bVZ
and

let Tb = {(y, x) : 0 < y < b; 0 < x < ∞}. Then Fn(y, x) admits the following
representation:

Fn(y, x) − F (y, x) =
∫ y

0
A(u)[W 1

Z,X,n(du, x) − W 1
Z,X(du, x)]

−
∫ y

0

{A(u)
C(u)

[Cn(u) − C(u)] + A(u)L̄n(u)
}
W 1

Z,X(du, x)

+Rn(y, x) ≡ ξ̄n(y, x) + Rn(y, x) (7)

and (i) If aG < aVZ
, then

sup
(y,x)εTb

|Rn(y, x)| = O(n−1 log2 n) a.s.

(ii) If aG = aVZ
, and

∫
G−3(u)VZ(du) < ∞, then

sup
(y,x)εTb

|Rn(y, x)| = O(n−1 log3 n) = o(n−1/2) a.s.

The covariance structure of the limiting process is quite complicated, particularly
due to both truncation and censoring effect. However, for the right truncation
model with no censoring, this function takes a somewhat simpler form and is
presented in Gürler (1996). In this paper, we first provide in Section 2 the
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covariances of the main processes involved. Using these we can then derive the
general expression for the covariance function in Section 3. This expression is
quite complicated and the special case of no truncation is treated separately.
Outlines of the proofs of the presented results are deferred to Section 4. For
details of the proofs see the technical report by Gijbels and Gürler (1996).

2. Covariances of the Main Processes

In this section we derive the covariance structure of the main processes in-
volved in expression (7). Define the processes:

F̃n(y, x) =
√

n[Fn(y, x) − F (y, x)] W̃n(y, x) =
√

n[W 1
Z,X,n(y, x) − W 1

Z,X(y, x)]
C̃n(y) =

√
n[Cn(y) − C(y)] L̃n(y) =

√
nL̄n(y).

The scaled version of the representation given in Theorem 1 can now be written
in the following form, which renders the covariance structure more visible.

F̃n(y, x) = W̃n(y, x)A(y) −
∫ y

0
W̃n(s, x)A(ds)

−
∫ y

0

A(s)
C(s)

C̃n(s)W 1
Z,X(ds, x) −

∫ y

0
A(s)L̃n(s)W 1

Z,X(ds, x) + R∗
n(y, x)

≡ ξ̄∗n(y, x) + R∗
n(y, x).

We present below the covariance functions of the processes C̃n(y), W̃n(y, x) and
L̃n(y), from which that of ξ̄∗n(y, x) can be calculated. We first introduce some
further notation. Let

a1(t, x) =
t∫
0

W 1
Z,X(dv,x)

G(v) b(t) =
t∫
0

W 1
Z(dv)

C2(v)

a2(t, x) =
t∫
0

G(v)
C(v)F (dv, x) h(t) =

t∫
0

G(v)
C2(v)

W 1
Z(dv)

b1(t, x) =
t∫
0

W 1
Z,X(dv,x)

C(v) d(u, v, x) =
u∧v∫
0

[a1(u, x) − a1(s, x)]h(ds).

Lemma 1. Suppose
∫

FY (du)/G(u) < ∞. Then

(i) Cov (C̃n(u), C̃n(v)) = C(u ∨ v)
G(u ∧ v)
G(u ∨ v)

− C(u)C(v)

(ii) Cov (L̃n(u), L̃n(v)) =
∫ u∧v

0

W 1
Z(dz)

C2(z)

(iii) Cov (W̃n(u1, u2), W̃n(v1, v2)) = W 1
Z,X(u1 ∧ v1, u2 ∧ v2)

−W 1
Z,X(u1, u2)W 1

Z,X(v1, v2)
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(iv) Cov (C̃n(u), L̃n(v)) = −C(u)
G(u)

∫ u∧v

0

G(z)
C2(z)

W 1
Z(dz)=−C(u)

G(u)
h(u∧v)

(v) Cov (C̃n(u), W̃n(v, x)) = G(u)
∫ v

u∧v

W 1
Z,X(dz, x)
G(z)

− C(u)W 1
Z,X(v, x)

=G(u)[a1(v, x)−a1(u ∧ v, x)]−C(u)W 1
Z,X(v, x)

(vi) Cov (L̃n(u), W̃n(v, x)) =
∫ u∧v

0

W 1
Z,X(dz, x)
C(z)

−
∫ u∧v

0

G(s)
C2(s)

∫ v

s

W 1
Z,X(dz, x)
G(z)

W 1
Z(ds)

= b1(u ∧ v, x) −
∫ u∧v

0
[a1(v, x)−a1(s, x)]h(ds).

The concise proofs of items (i), (iv) and (v) of Lemma 1 are provided in Section
4.1. The proofs of the other items are quite similar and are not given. Further
details of the proof can be found in Gijbels and Gürler (1996).

3. Covariance of the Bivariate Distribution Function Estimator

Starting from the covariance structures provided in Lemma 1 of Section 2,
we can now derive the covariance function for the bivariate estimator defined in
(6). Since A(z)W 1

Z,X(dz, x) = F (dz, x), we can write

F̃n(y, x) = W̃n(y, x)A(y) −
∫ y

0
W̃n(s, x)A(ds) −

∫ y

0

C̃n(s)
C(s)

F (ds, x)

−
∫ y

0
L̃n(s)F (ds, x) + R∗

n(y, x)

= ξ̄∗n(y, x) + R∗
n(y, x).

Also, E[ξ̄∗n(y, x)] = 0, implies

Cov (y1, y2, x1, x2) ≡ Cov (ξ̄∗n(y1, x1), ξ̄∗n(y2, x2)) = E[ξ̄∗n(y1, x1)ξ̄∗n(y2, x2)].

In order to give the expression for the covariance function we need some further
notation: Let

T1(y1, y2, x1, x2) = −a2(y2, x2)
∫ y1

y1∧y2

A(u)a1(du, x1)−
∫ y1∧y2

0
A(u)a2(u, x2)a1(du, x1)

T2(y1, y2, x1, x2) = −
∫ y1∧y2

0
[F (y2, x2) − F (u, x2)]A(u)b1(du, x1)

T3(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
[d(y1, v, x1) − d(u, v, x1)]A(du)F (dv, x2)

T (y1, y2, x1, x2) = T1(y1, y2, x1, x2) + T2(y1, y2, x1, x2) + T3(y1, y2, x1, x2)
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K(u, v) =
G(u ∧ v)

G(u ∨ v)C(u ∧ v)
− h(u ∧ v)

G(u) + G(v)
G(u)G(v)

+ b(u ∧ v)

X (y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
K(u, v)F (du, x1)F (dv, x2).

Theorem 2. Suppose
∫

FY (du)/G(u) < ∞. Then

Cov (y1, y2, x1, x2) =
∫ y1∧y2

0
A2(u)W 1

Z,X(du, x1 ∧ x2)

+T (y1, y2, x1, x2)+T (y2, y1, x2, x1)+X (y1, y2, x1, x2). (8)

Proof. See Section 4.2.

For applications, the variance function of the bivariate distribution function
estimator (6) is of special interest. We therefore explicitly present it below.

Corollary 1. Under the condition of Theorem 2,

Var (y, x) = Cov (y, y, x, x) =
∫ y

0
A2(u)W 1

Z,X(du, x) + 2T (y, x) + X (y, x), (9)

where

X (y, x) =
∫ y

0

∫ y

0
K(u, v)F (du, x)F (dv, x),

and

T (y, x) = −
∫ y

0
A(u)a2(u, x)a1(du, x) −

∫ y

0
[F (y, x) − F (u, x)]A(u)b1(du, x)

+
∫ y

0

∫ y

0
[d(y, v, x) − d(u, v, x)]A(du)F (dv, x).

The variance function in (9) should of course reduce to the variance function
found for the censoring only case. In the special case of no truncation, α = 1
and G(x) = 1 for all x. This leads to simplifications of all quantities involved.
Straightforward calculations yield the result in Corollary 2. Note that if there is
only censoring, the integrability condition of Theorem 2 always holds.

Corollary 2. For the right censoring model

Var (y, x)=
∫ y

0
A2(u)W 1

Z,X(du, x)−2
∫ y

0
[F (y, x)−F (v, x)]

[ 1
C(v)

−b(v)
]
F (dv, x).

This expression is similar to the expression obtained by Gürler (1997) in
the case of truncation only (see Corollary 3 in that paper) with appropriate
replacements for the definitions of the quantities A(u), C(v) and b(v).
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In the case of no censoring and no truncation, we have in addition to the
previous simplifications that H(x) = 0 for all finite x. Straightforward calcula-
tions lead to the well-known expression for the variance function. (See Gijbels
and Gürler (1996) for details.)

4. Proofs

4.1. Proof of Lemma 1

(i). Denoting Ci(u) = I(Ti ≤ u ≤ Zi) we can write

Cov (C̃n(u), C̃n(v)) = E [Ci(u)Ci(v)] − C(u)C(v)

= P (T ≤ u ∧ v, Z ≥ u ∨ v|T ≤ Z) − C(u)C(v)

= C(u ∨ v)
G(u ∧ v)
G(u ∨ v)

− C(u)C(v).

(iv). Since E[L̃n(v)] =
√

nE[L̄n(v)] = 0 and E[C̃n(u)] = 0 we have

Cov (C̃n(u), L̃n(v)) = E
[
C̃n(u)L̃n(v)

]
= E [Ci(u)Li(v)]

=
∫ v

u

∫ u

0

1
C(z)

W 1
Z,T (dz, dt)

−
∫ v

0
P (T ≤ u ∧ t, Z ≥ u ∨ t|T ≤ Z)

1
C2(t)

W 1
Z(dt)

= (I) − (II). (10)

We deal with these two terms separately. From (1) and (4) it is easily obtained
that

(I) =
∫ v

u

∫ u

0

1
α−1G(z)F̄Y (z−)H̄(z−)

α−1H̄(z−)FY (dz)G(dt)

= G(u)
∫ v

u

1
G(z)F̄Y (z−)

FY (dz), (11)

provided u < v. When u ≥ v it is obvious from (10) that (I) = 0. For the
second term in expression (10) note that P (T ≤ u ∧ t, Z ≥ u ∨ t|T ≤ Z) =
α−1G(u ∧ t)H̄((u ∨ t)−)F̄Y ((u ∨ t)−) and therefore

(II) =
∫ v

0

α−1G(u ∧ t)H̄((u ∨ t)−)F̄Y ((u ∨ t)−)
C2(t)

W 1
Z(dt). (12)

For u < v this leads to

(II) =
∫ u

0

α−1G(t)H̄(u−)F̄Y (u−)
C2(t)

W 1
Z(dt) +

∫ v

u

α−1G(u)H̄(t−)F̄Y (t−)
C2(t)

W 1
Z(dt),

(13)
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where the first term in the above expression equals [C(u)/G(u)]
∫ u
0 [G(t)/C2(t)]

W 1
Z(dt). Using (2) it is easily seen that the second term in (13) can be written

as follows

α−1G(u)
∫ v

u

H̄(t−)F̄Y (t−)α−1G(t)H̄(t−)
C2(t)

FY (dt)=G(u)
∫ v

u

1
G(t)F̄Y (t−)

FY (dt).

(14)
Combining (10), (11), (13) and (14) we get that for the case u < v

Cov (C̃n(u), L̃n(v)) = −C(u)
G(u)

∫ u

0

G(t)
C2(t)

W 1
Z(dt).

If u ≥ v then (I) = 0 and moreover, from (12), we find that (II) = [C(u)/G(u)]∫ v
0 [G(t)/C2(t)]W 1

Z(dt). Hence in general we have

Cov (C̃n(u), L̃n(v)) = −C(u)
G(u)

∫ u∧v

0

G(t)
C2(t)

W 1
Z(dt),

which is the stated result.
(v). In order to calculate the covariance between C̃n(u) and W̃n(v, x) we first
derive the joint distribution function of the observed uncensored observations,
i.e.

W 1
Z,X,T (z, x, t)

= P (Z ≤ z,X ≤ x, T ≤ t, δ = 1|T ≤ Z)

= α−1
∫ +∞

0

∫ c∧z

0

∫ x

0
G(y ∧ t)F (dy, dx)H(dc)

= α−1
[∫ z

0

∫ c

0
G(y ∧ t)F (dy, x)H(dc) +

∫ +∞

z

∫ z

0
G(y ∧ t)F (dy, x)H(dc)

]

= α−1
[∫ z

0
G(y ∧ t)[H(z) − H(y−)]F (dy, x) +

∫ z

0
G(y ∧ t)H̄(z)F (dy, x)

]

= α−1
∫ z

0
G(y ∧ t)H̄(y−)F (dy, x)

= α−1
∫ z∧t

0
G(y)H̄(y−)F (dy, x) + α−1G(t)

∫ z

z∧t
H̄(y−)F (dy, x).

Using the above expression we find

Cov (C̃n(u), W̃n(v, x))
= E {I(Ti ≤ u ≤ Zi, Zi ≤ v,Xi ≤ x, δi = 1)} − C(u)W 1

Z,X(v, x)
= W 1

Z,X,T (v, x, u) − W 1
Z,X,T (u−, x, u) − C(u)W 1

Z,X(v, x)

= α−1G(u)
∫ v

u∧v
H̄(y−)F (dy, x) − C(u)W 1

Z,X(v, x)

= G(u)
∫ v

u∧v

1
G(y)

W 1
Z,X(dy, x) − C(u)W 1

Z,X(v, x),
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which proves the stated result.

4.2. Proof of Theorem 2

We can write

Cov (y1, y2, x1, x2) =
16∑
i=1

E[Ti(y1, y2, x1, x2)],

where

T1(y1, y2, x1, x2) = A(y1)A(y2)W̃n(y1, x1)W̃n(y2, x2)

T2(y1, y2, x1, x2) = −A(y1)
∫ y2

0
W̃n(y1, x1)W̃n(u, x2)A(du)

T3(y1, y2, x1, x2) = −A(y1)
∫ y2

0
W̃n(y1, x1)

C̃n(v)
C(v)

F (dv, x2)

T4(y1, y2, x1, x2) = −A(y1)
∫ y2

0
W̃n(y1, x1)L̃n(v)F (dv, x2)

T5(y1, y2, x1, x2) = −A(y2)
∫ y1

0
W̃n(y2, x2)W̃n(u, x1)A(du)

T6(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
W̃n(u, x1)W̃n(v, x2)A(du)A(dv)

T7(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
W̃n(u, x1)

C̃n(v)
C(v)

A(du)F (dv, x2)

T8(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
L̃n(v)W̃n(u, x1)A(du)F (dv, x2)

T9(y1, y2, x1, x2) = −A(y2)
∫ y1

0
W̃n(y2, x2)

C̃n(u)
C(u)

F (du, x1)

T10(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
W̃n(v, x2)

C̃n(u)
C(u)

A(dv)F (du, x1)

T11(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0

C̃n(v)
C(v)

C̃n(u)
C(u)

F (du, x1)F (dv, x2)

T12(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0

C̃n(u)
C(u)

L̃n(v)F (du, x1)F (dv, x2)

T13(y1, y2, x1, x2) = −A(y2)
∫ y1

0
W̃n(y2, x2)L̃n(u)F (du, x1)

T14(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
L̃n(u)W̃n(v, x2)A(dv)F (du, x1)

T15(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0

C̃n(v)
C(v)

L̃n(u)F (du, x1)F (dv, x2)

T16(y1, y2, x1, x2) =
∫ y1

0

∫ y2

0
L̃n(v)L̃n(u)F (du, x1)F (dv, x2).
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From the covariance structures provided in Lemma 1 of Section 2, we can calcu-
late the expectations of the above terms and obtain

E[T1(y1, y2, x1, x2)] = A(y1)A(y2)
[
W 1

Z,X(y1∧y2, x1∧x2)

−W 1
Z,X(y1, x1)W 1

Z,X(y2, x2)
]

≡ (1.1) + (1.2);

E[T2(y1, y2, x1, x2)] = −A(y1)A(y2)W 1
Z,X(y1 ∧ y2, x1 ∧ x2)

+A(y1)F (y1 ∧ y2, x1 ∧ x2)

+A(y1)A(y2)W 1
Z,X(y1, x1)W 1

Z,X(y2, x2)

−A(y1)W 1
Z,X(y1, x1)F (y2, x2)

≡ (2.1) + (2.2) + (2.3) + (2.4);

E[T3(y1, y2, x1, x2)] = −A(y1)
∫ y2

0
[a1(y1, x1) − a1(v ∧ y1, x1)]a2(dv, x2)

+A(y1)W 1
Z,X(y1, x1)F (y2, x2) ≡ (3.1) + (3.2);

E[T4(y1, y2, x1, x2)] = −A(y1)
∫ y2

0
b1(v ∧ y1, x1)F (dv, x2)

+A(y1)
∫ y2

0

∫ v∧y1

0
[a1(y1, x1) − a1(s, x1)]h(ds)F (dv, x2)

≡ (4.1) + (4.2);

E[T5(y1, y2, x1, x2)] = −A(y1)A(y2)W 1
Z,X(y1 ∧ y2, x1 ∧ x2)

+A(y1)A(y2)W 1
Z,X(y1, x1)W 1

Z,X(y2, x2)

+A(y2)F (y1 ∧ y2, x1 ∧ x2) − A(y2)W 1
Z,X(y2, x2)F (y1, x1)

≡ (5.1) + (5.2) + (5.3) + (5.4);

E[T6(y1, y2, x1, x2)] = A(y1 ∧ y2)A(y1 ∨ y2)W 1
Z,X(y1 ∧ y2, x1 ∧ x2)

−A(y1)F (y1 ∧ y2, x1 ∧ x2) − A(y2)F (y1 ∧ y2, x1 ∧ x2)

+
∫ y1∧y2

0
A2(u)W 1

Z,X(du, x1 ∧ x2)

−A(y1)A(y2)W 1
Z,X(y1, x1)W 1

Z,X(y2, x2)

+A(y1)W 1
Z,X(y1, x1)F (y2, x2)+A(y2)W 1

Z,X(y2, x2)F (y1, x1)

−F (y1, x1)F (y2, x2) ≡
8∑

k=1

(6.k);

E[T7(y1, y2, x1, x2)] =
∫ y1

0

∫ y2

0
[a1(u, x1) − a1(u ∧ v, x1)]A(du)a2(dv, x2)

−W 1
Z,X(y1, x1)A(y1)F (y2, x2) + F (y1, x1)F (y2, x2)

≡ (7.1) + (7.2) + (7.3);
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E[T8(y1, y2, x1, x2)] =
∫ y1

0

∫ y2

0
b1(u ∧ v, x1)A(du)F (dv, x2)

−
∫ y1

0

∫ y2

0

∫ u∧v

0
[a1(u, x1)−a1(s, x1)]h(ds)A(du)F (dv, x2)

≡ (8.1) + (8.2);

E[T9(y1, y2, x1, x2)] = −A(y2)
∫ y1

0
[a1(y2, x2) − a1(v ∧ y2, x2)]a2(dv, x1)

+A(y2)W 1
Z,X(y2, x2)F (y1, x1) ≡ (9.1) + (9.2);

E[T10(y1, y2, x1, x2)] =
∫ y1

0

∫ y2

0
[a1(v, x2) − a1(u ∧ v, x2)]A(dv)a2(du, x1)

−W 1
Z,X(y2, x2)A(y2)F (y1, x1) + F (y1, x1)F (y2, x2)

≡ (10.1) + (10.2) + (10.3);

E[T11(y1, y2, x1, x2)] =
∫ y1

0

∫ y2

0

C(u ∨ v)G(u ∧ v)
C(u)C(v)G(u ∨ v)

F (du, x1)F (dv, x2)

−F (y1, x1)F (y2, x2)
≡ (11.1) + (11.2);

E[T12(y1, y2, x1, x2)] = −
∫ y1

0

∫ y2

0

h(u ∧ v)
G(u)

F (du, x1)F (dv, x2) ≡ (12);

E[T13(y1, y2, x1, x2)] = −A(y2)
∫ y1

0
b1(v ∧ y2, x2)F (dv, x1)

+A(y2)
∫ y1

0

∫ v∧y2

0
[a1(y2, x2) − a1(s, x2)]h(ds)F (dv, x1)

≡ (13.1) + (13.2);

E[T14(y1, y2, x1, x2)] =
∫ y1

0

∫ y2

0
b1(u ∧ v, x2)A(du)F (dv, x1)

−
∫ y1

0

∫ y2

0

∫ u∧v

0
[a1(v, x2)−a1(s, x2)]h(ds)A(dv)F (du, x1)

≡ (14.1) + (14.2);

E[T15(y1, y2, x1, x2)] = −
∫ y1

0

∫ y2

0

h(u ∧ v)
G(v)

F (du, x1)F (dv, x2) ≡ (15);

E[T16(y1, y2, x1, x2)] =
∫ y1

0

∫ y2

0
b(u ∧ v)F (du, x1)F (dv, x2) ≡ (16).

Observe now that the following terms cancel:

(1.1) −→ (2.1) (2.4) −→ (3.2) (5.3) −→ (6.3) (6.8) −→ (7.3)
(1.2) −→ (2.3) (5.1) −→ (6.1) (5.4) −→ (6.7) (9.2) −→ (10.2)
(2.2) −→ (6.2) (5.2) −→ (6.5) (6.6) −→ (7.2) (10.3) −→ (11.2)

Also observe here that, among the remaining terms, expressions (3.1), (4.1), (4.2),
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(7.1), (8.1) and (8.2) are similar to (9.1), (13.1), (13.2), (10.1), (14.1) and (14.2)
respectively, except that y1 and y2 are interchanged as well as x1 and x2. In the
following part, we will therefore consider only the first group of terms in detail.
Before getting to these terms, which are more complicated, we observe that

(11.1)+(12)+(15)+(16) =
∫ y1

0

∫ y2

0
K(u, v)F (du, x1)F (dv, x2) ≡ X (y1, y2, x1, x2).

Now, consider (3.1). It is easy to see that

(3.1) = −A(y1)
∫ y1∧y2

0
[a1(y1, x1) − a1(v, x1)]a2(dv, x2)

= −A(y1)a1(y1, x1)a2(y1 ∧ y2, x2) + A(y1)
∫ y1∧y2

0
a1(v, x1)a2(dv, x2).

A similar calculation yields

(7.1) = a2(y2, x2)
∫ y1

0
a1(u, x1)A(du) − a2(y2, x2)

∫ y1∧y2

0
a1(u, x1)A(du)

+
∫ y1∧y2

0
a1(u, x1)d[A(u)a2(u, x2)] − A(y1)

∫ y1∧y2

0
a1(v, x1)a2(dv, x2).

Then we can write

(3.1) + (7.1) = a2(y2, x2)
∫ y1

y1∧y2

a1(u, x1)A(du)+
∫ y1∧y2

0
a1(u, x1)d[A(u)a2(u, x2)]

−A(y1)a1(y1, x1)a2(y1 ∧ y2, x2).

Observe that for y1 < y2 the above equation reduces to

−
∫ y1

0
A(u)a2(u, x2)a1(du, x1),

and for y2 < y1

(3.1) + (7.1) = a2(y2, x2)
∫ y1

y2

a1(u, x1)A(du) +
∫ y2

0
a1(u, x1)d[A(u)a2(u, x2)]

−A(y1)a1(y1, x1)a2(y2, x2)

= −a2(y2, x2)
∫ y1

y2

A(u)a1(du, x1) −
∫ y2

0
A(u)a2(u, x2)a1(du, x1).

So that, in general we have

(3.1) + (7.1) = T1(y1, y2, x1, x2).

For the term (4.1) we can write

(4.1) = −A(y1)
∫ y1∧y2

0
b1(v, x1)F (dv, x2)

−A(y1)b1(y1 ∧ y2, x1)[F (y2, x2) − F (y1 ∧ y2, x2)],
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and for the term (8.1) we find

(8.1) =
∫ y1∧y2

0
[F (y2, x2) − F (u, x2)]b1(u, x1)A(du)

+
∫ y1∧y2

0
[A(y1) − A(u)]b1(u, x1)F (du, x2).

Summing the above two terms we obtain

(4.1) + (8.1) = −A(y1)b1(y1 ∧ y2, x1)[F (y2, x2) − F (y1 ∧ y2, x2)]

+
∫ y1∧y2

0
[F (y2, x2) − F (u, x2)]b1(u, x1)A(du)

−
∫ y1∧y2

0
A(u)b1(u, x1)F (du, x2).

Applying integration by parts and after some simplification we get

(4.1) + (8.1) = −
∫ y1∧y2

0
[F (y2, x2) − F (u, x2)]A(u)b1(du, x1) = T2(y1, y2, x1, x2).

The terms (4.2) and (8.2) are more messy and we write their sum in the following
compact form

(4.2) + (8.2) =
∫ y1

0

∫ y2

0
[d(y1, v, x1) − d(u, v, x1)]A(du)F (dv, x2)

= T3(y1, y2, x1, x2).

Now observe that

(3.1) + (4.1) + (4.2) + (7.1) + (8.1) + (8.2) ≡ T (y1, y2, x1, x2)

(9.1) + (13.1) + (13.2) + (10.1) + (14.1) + (14.2) ≡ T (y2, y1, x2, x1).

Then adding the remaining term (6.4), we obtain expression (8).
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