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For a dipole radiation, the set of generalized Stokes parameters and corresponding Stokes op
are discussed. A qualitatively new behavior of quantum fluctuations of the Stokes paramet
predicted. The possibility to check this behavior in the eight-port operational measurement is s
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The polarization properties of a classical radiation a
usually specified by the set of Stokes parameters
determined for a transverse field either in the line
polarization basis or in the circular polarization basis. T
quantum counterpart is provided by the Stokes operat
which can be obtained from the Stokes parameters
standard quantization of the field amplitudes [2,3]. Let
stress here that within the quantum optics, describing
radiation as a beam of photons, the polarization sho
be determined as a given spin state of photons, form
the beam. Spin of a photon is defined as the minimu
value of the angular momentum and is equal to1 (e.g.,
see [4]). Thus, it has three projections and therefore j
three spin states and corresponding polarizations sho
be taken into consideration.

An example is provided by a dipole radiation when
due to the selection rules, the photons with the angu
momentum1 are emitted. It is well known that even in
the classical picture, the dipole radiation always has a lo
gitudinal component in addition to the transversal comp
nents [5]. Since this component decays with the distan
quite rapidly, it is neglected in the far zone where th
standard Stokes parameters for a completely transve
field are determined. Thus, the conventional definitio
of the Stokes parameters of the dipole radiation sho
be considered as an approximation which is known
be valid in the far zone. However, it is not a case
the quantum domain where one cannot neglect the l
gitudinal componenta priori. Actually, even in the far
zone, where the longitudinal component with the pr
jection of spin m ­ 0 contains very few photons and
could be approximated by the vacuum state, it may co
tribute into the quantum fluctuations of different physic
parameters. Therefore, it seems to be important to e
mate the contribution of the longitudinal component wi
no resort to the transverse field approximation.

In view of this aim, let us consider the classical tens
of polarization [6] with the components which are slowl
varying bilinear forms with respect to the complex electr
field amplitudes$Eljm where the indexl shows the type of
radiation (either electric or magnetic) andj, m sjmj # jd
are the indexes of the multipole expansion [5]. In th
case of a dipole radiationj ­ 1, m ­ 0, 61. The modes
with m ­ 61 correspond to the circularly polarized com
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ponents with the opposite helicities whilem ­ 0 specifies
the linearly polarized longitudinal component. Hence, th
tensor of polarization has nine components and as usua
is represented as a superposition of a diagonal and Her
tian parts. Therefore, the polarization is specified by fiv
real parameters. Actually, we have the intensities of thr
components and the phase differences between the com
nentsDmm0 such that

P
m Dmm11 ­ 0 as the independent

parameters. Let us stress the difference with the case
purely transversal field when the tensor of polarization h
only four components and polarization is specified by thr
real parameters (two intensities and one phase differen

It is now a straightforward matter to arrive at th
following relations, determining the generalized Stoke
parameters of the dipole radiation [7]:

s0 ­
X
m

j $Ep
m ? $Ej2,

s1 ­ Re
X
m

s $Ep
m ? $Edps $Ep

m11 ? $Ed ,

s2 ­ Im
X
m

s $Ep
m ? $Edps $Ep

m11 ? $Ed , (1)

s3 ­ j $Ep
2 ? $Ej2 2 j $Ep

1 ? $Ej2,

s4 ­ 2j $Ep
0 ? $Ej2 2 sj $Ep

1 ? $Ej2 1 j $Ep
2 ? $Ej2d .

Herem ­ 0, 61, $Em ­ $El1m, and

$E ­
X
ljm

saljm
$Eljm 1 c.c.d ,

aljm ­
Z

r2 dr dV $Ep
ljm ? $E .

Then the generalized Stokes operators can be obtai
from (1) by quantization of the field amplitudes in th
representation of spherical photons [8] as follows:

S0 ­
X
m

â1
m âm ,

S1 ­
1
2

fsâ1
1 1 â1

2dâ0 1 â1
2â1 1 H.c.g ,

S2 ­
2i
2

fsâ1
1 2 â1

2dâ0 1 â1
2â1 2 H.c.g , (2)

S3 ­ â1
2â2 2 â1

1â1 ,

S4 ­ 2â1
0 â0 2 sâ1

1â1 1 â1
2â2d .
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Here the operatorŝam describe the dipole photons with
the angular momentumj ­ 1 and projectionm.

To establish contact with the standard definitions of th
Stokes parameters and operators, let us putj $E0j ­ 0 in
(1). Under this assumption, Eqs. (1) formally coincid
with the definition of ordinary Stokes parameters in th
circular polarization basis (e.g., see [1,5]). Since th
above assumption corresponds to the transverse w
approximation (in far zone), one can quantize the reduc
Eqs. (1) with respect to the “plane photons” with give
linear momentum to get the standard Stokes operators
of the form

S0 ­ â1
1â1 1 â1

2â2 ,

S1 ­
1
2

sâ1
2â1 1 â1

1â2d ,

S2 ­
1
2i

sâ1
2â1 2 â1

1â2d ,
(3)

S3 ­ â1
1â1 2 â1

2â2 .

Here the operatorŝa6 ­ sâx 6 iâydy
p

2 describe the
photons with two possible helicities in terms of the
photons with two linear polarizations in the transvers
field [3].

Let us compare the definitions (2) and (3). Suppo
that the longitudinal component of the dipole radiation
in the vacuum state (far zone). Then the averaging w
respect to the state of radiation field leads to the equalit

kS0l ­ 2kS4l ­ kS0l ,

kSkl ­ kSkl, k ­ 1, 2, 3 ,
(4)

expressing the fact that the standard definition of th
Stokes parameters follows from more general formul
(1). In a particular case of some considerable intere
when both circularly polarized components are in th
coherent states with one and the same intensity we get

kS1l ­ jaj2 cosD12 ,

kS2l ­ jaj2 sinD12 , (5)

kS0l ­ 2jaj2, kS3l ­ 0 ,

where a6 is the parameter of corresponding cohere
state,ja6j ; jaj, andD12 ; arga1 2 arga2.

At the same time, Eqs. (2) and (3) determine very di
ferent operator constructions. Although both sets cons
of the Hermitian operators, they have different com
mutation relations, determining different possibilities o
measurement. SincefS1, S2g fi 0, corresponding Stokes
parameters cannot be measured simultaneously. In vi
of the classical interpretation, it seems to be a bit strang
As a matter of fact, the Stokes parameterskS1,2l determine
the cosine and sine of the classical phase differen
between two circularly polarized components [1]. Thi
interpretation is consistent with Eqs. (5). Therefore
one could expect to haveS1 and S2 as the commuting
operators since they are the functions of one and the sa
argument.
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On the contrary,fS1, S2g ­ 0 and fS1,2, S0g ­ 0 so
that these three generalized Stokes parameters can
measured at once. Moreover, the operatorsS1, S2 are
directly connected with the operators of cosine and sine
the azimuthal phase of angular momentum of the dipo
radiation [7,9] and can be obtained from the conservatio
of the angular momentum in the process of radiation. Th
difference in the commutation properties can be trace
in the most clear way in the quantum fluctuations of th
Stokes parameters. Precisely, in the case of generaliz
Stokes operators (2) we get for the variance

V sS1d ­ jaj2
µ

1 1
1
2

cosD12

∂
, (6)

while V sS1d ­ jaj2y2. Thus, the quantum fluctuations
of S1 are much stronger than that forS1. Moreover, they
are qualitatively different because of the dependence
D12 in (6). A similar result can be obtained forS2 and
S2 as well. Let us stress that the fluctuations of the tot
intensitiesS0 andS0 have the same magnitude in the cas
of the vacuum longitudinal field under consideration.

Thus, it is shown that the contribution of the longitudi
nal component of dipole radiation into the quantum fluc
tuations of the Stokes parameters is important even if th
component is taken in the vacuum state when it does n
contribute into the Stokes parameters per se. Because
the commutation properties of the operators (2), the eigh
port operational scheme [10,11] might be used to dete
the variancesV sS1,2d to make sure of theD dependence
predicted by Eq. (6). The above results are valid for bo
electric and magnetic dipole radiation. Similar results ca
be obtained for other multipole radiations.

One of the authors (A. S.) thanks Dr. V. Rupasov from
the University of Toronto for stimulating discussions.
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