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Abstract

In this paper, a distributed algorithm is proposed that realizes mutual exclusion among n nodes in a computer

network. No common or global memory is shared by the nodes and there is no global controller. The nodes of the

network communicate among themselves by exchanging messages only. The best-known algorithms so far, for the

distributed mutual exclusion problem, require O�pn� messages per mutual exclusion invocation. The proposed algo-

rithm is the ®rst to cross this O�pn� barrier and the message complexity achieved by our algorithm is O�n1=3� per mutual

exclusion. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The mutual exclusion problem consists of en-
suring that at most one process can access a shared
object at any time. For example, one process may
not write to a ®le while another is reading it.
Segments of code to be executed mutually exclu-
sively are referred to as critical sections (or critical

regions) in the literature [1±4] It is not too di�cult
to implement mutually exclusive use of objects if
the use of such objects is under a global or cen-
tralized controller. However, in a distributed or
network environment, due to the absence of a
global controller, the mutual exclusion algorithms
become far more complex than those for systems
with centralized control.

In this paper, we are concerned with a com-
puter network consisting of n nodes where the
nodes communicate solely by exchanging messages
and do not share any common or global memory.
There are n processes, each residing at a di�erent
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node, wanting to invoke mutual exclusion. For
convenience of presentation, we shall not distin-
guish between a node and its resident process. The
problem is to design a distributed algorithm that
realizes mutual exclusion among the nodes, i.e. at
any moment at most one node may be allowed to
remain in its critical section.

Lamport's algorithm, for this problem, re-
quires approximately 3(n ) 1) messages per mu-
tual exclusion invocation [5]. Later Ricart and
Agrawala [6] proposed an algorithm for this
problem that requires 2(n ) 1) messages, and then
Carvalho and Roucairol [7] presented an algo-
rithm that ful®lls similar requirements as Ricart
and Agrawala's solution, but it requires between 0
and 2(n ) 1) messages. A second algorithm by
Ricart and Agrawala uses either 0 or n messages
for the same problem [8]. Suzuki and Kasami's
algorithm, based on the concept of node privilege,
requires n messages per mutual exclusion invoca-
tion [9]. Maekawa [10] further reduces the number
of messages per mutual exclusion to c

p
n, where c

is a constant between 3 and 5. A distributed
mutual exclusion algorithm is presented by Helary
et al. that works for any arbitrary network [11].
The number of messages required by the algo-
rithm due to Helary et al. varies from n to
2e + n ) 1 depending on network topology,
where e is the number of links in the network.
Raymond proposed a tree-based algorithm for
distributed mutual exclusion which uses a span-
ning tree of the computer network and the aver-
age number of messages is O(log n) per mutual
exclusion [12]. An optimal algorithm for mutual
exclusion in mesh-connected computer networks
has been proposed by Chaudhuri [13]. This al-
gorithm requires 3.5

p
n messages per mutual ex-

clusion invocation under light demand which
reduces to approximately four messages only un-
der heavy demand. Very recently, Chaudhuri has
proposed a distributed mutual exclusion algo-
rithm for arbitrary networks which requires 3

p
n

messages per mutual exclusion and the message
requirement reduces to only

p
n under heavy de-

mand [14].
It appears that the best available algorithms so

far, for the distributed mutual exclusion problem,
achieved an upper bound of O�pn� for message
complexity [10,14]. In this paper, we propose an
algorithm for distributed mutual exclusion that
achieves a message complexity of O�n1=3� per
mutual exclusion invocation.

2. Distributed mutual exclusion algorithm

We assume that the n node network is available
in the form of a three-dimensional mesh, i.e.,
(p ´ q ´ r) mesh. Although our algorithm works
for any values p, q, and r, we assume, for conve-
nience, p� q� r� n1=3. Each node of the network
is identi®ed by a triple (i.e. row number, column
number, plane number). The bidirectional links of
this three-dimensional mesh are used for message
passing. However, all these links are not used for
message passing. Such a three-dimensional mesh is
shown in Fig. 1. The links which are shown by
bold lines are actually useful for message passing.
Therefore, the total number of necessary bidirec-
tional links for message passing in order to realize
mutual exclusion among n nodes is 13 (n1=3 ) 1). If
the network is fully connected, we assume it as an
equivalent mesh by logically grouping the nodes to
form the three-dimensional mesh. In this case, all
the links other than those 13(n1=3 ) 1) links, as
mentioned earlier, are redundant so far as the re-
alization of mutual exclusion by the proposed al-
gorithm is concerned. From now on, we shall refer
to the network without considering the redundant
links as a three-dimensional equivalent mesh
(TDEM). The proposed algorithm relies on some
kind of token circulation and is also based on the
concept of plane privilege. These are explained in
Section 2.1.
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2.1. Token circulation strategy

In this subsection, we establish the basis of the
algorithm by explaining the rules for token circu-
lation among the nodes and introducing the no-
tions of privilege state and privilege plane.

To each node (0,0,k), k� 0,1,. . .,n1=3 ) 1, we
assign a token which can assume one of the three
colours: green, red, and yellow. Initially, node
(0,0,0) of the TDEM is assigned with a token of
colour green and each other node (0,0,k),
k� 0,1,. . .,n1=3 ) 1, is assigned with a token of
colour red. No token is assigned, initially, to the
remaining nodes. Fig. 2 shows a typical TDEM
with n� 27 and the initial token assignment. A
plane of the TDEM can be in either of the fol-
lowing two states.

Privileged state: A plane x (i.e., all the nodes with
k� x) of the TDEM is said to be in the privileged
state if node (0,0,x) has either a green or a yellow
token. Such a plane is referred to as a privileged
plane. The initial token assignments to each node, as
indicated above, ensures that at the beginning there
exists exactly one privileged plane in a TDEM.
Later in this paper, it is shown that at any time
during the execution of the algorithm there cannot
exist more than one privileged plane in a TDEM.

Nonprivileged state: Any plane of the TDEM
other than the privileged plane is said to be in the
nonprivileged state. Such a row will be referred to
as a nonprivileged plane.

The main idea behind our algorithm is that a
node (i, j, k) can invoke mutual exclusion if node (i,
j, k) has received a PERMIT message (de®ned in
Section 2.2), i.e., plane k is the privileged plane and
node (i, j, k) has got its turn among all the nodes of
plane k. If plane k is not the privileged plane, then
one and only one plane q (q ¹ k) must be the
privileged plane. In this case, plane k will become
the privileged plane ®rst, upon interchanging the
tokens of node (0,0,k) and node (0,0,q). Node
(0,0,k) upon receiving the green token from node
(0,0,q) sends a PERMIT message to node (i,0,k)
and changes its colour to yellow indicating that
this plane has the privilege and a node of this plane
is now in its critical section. When no node in this
plane would be in its critical section, the colour of
the token in node (0,0,k) would be turned back to
green. The PERMIT message eventually reaches to
node (i,j,k), since it is transmitted through all the
nodes of row i. Clearly, as long as a PERMIT
message exists in a row of the privileged plane k,
the colour of the token with node (0,0,k) remains
yellow. Thus, one of the assumptions on which our
algorithm is based is as follows.

Assumption A1. A node (i,j,k,) for i,j,k 2 {0,1. . .,
n1=3 ) 1} can be inside its critical section if plane k
is the privileged plane.

Fig. 1. A three-dimensional mesh with n � 27 nodes. The links

shown by bold lines are only used by the proposed algorithm

for message passing.
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From the above discussion, we have seen that
token interchange can take place only in the z-di-
rection, and between a pair of nodes ± one of
which has a green token and the other with a red
token. The token distribution and the token in-
terchange (or movement) among nodes (0,0,k),
k� 0,1,. . .,n1=3 ) 1, in the TDEM can be restricted
by ensuring that the algorithm must maintain the
following set of invariants at any time during the
execution.

Invariant I1. There cannot exist more than one
node in the TDEM with green or yellow token at
any time. The plane to which this node belongs is
the privileged plane.

Invariant I2. There cannot exist both green and
yellow tokens in TDEM at the same time.

The token state of node (0,0,k), k� 0,
1,. . .,n1=3 ) 1, and possible transitions is shown in
Fig. 3. In order to develop the distributed algo-

Fig. 3. The token state of node �0; 0; k�; k � 0; 1 . . . ; n1=3 ÿ 1,

and possible transitions.

Fig. 2. A 27-node TDEM with initial token distribution to nodes (0,0,k), k � 0; 1; 2. Initially, plane 0 is the privileged plane.
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rithm, in addition to assumption A1, we need the
following assumption.

Assumption A2. The messages are received without
errors in the order sent and require a ®nite time to
move from a node to its neighbour.

2.2. Messages used

In this subsection, ®rst we describe the struc-
tures of the messages and the type of the variables
used by the algorithm, and then present a more
formal description of the algorithm based on the
ideas of Section 2.1.

A set of three di�erent types of messages is used
by our algorithm. A general syntactic description
of these messages is as follows.

The meaning of the di�erent types of messages are
explained below.

REQUEST: The parameter ®eld of a RE-
QUEST message carries only the ánode idñ of the
sender. A REQUEST message from node (i,j,k),
whose ®nal destination is always node (0,0,k),
implies that the sender wants to enter into its
critical section and is waiting to receive the PER-
MIT message from node (0,0,k). A node
(x,y,z) ¹ (0,0,k) upon receiving the REQUEST
message from a neighbour node simply passes it to
its neighbour which is closer to node (0,0,k), i.e., to
node (x,y ) 1,k) when x� 0, and to node
(x ) 1,y,k), when x ¹ 0. On the otherhand, node
(0,0,k) upon receiving a REQUEST message from
its neighbour does one of the following: (i) If the
colour of its token is green then it changes the
token colour to yellow and sends a PERMIT
message to the initiator of the REQUEST mes-

sage, (ii) If the colour of its token is yellow then it
inserts the REQUEST into its queue, (iii) If the
colour of its token is red then it sends REQUEST
messages to its neighbours in other planes.

PERMIT: The parameter ®eld of a PERMIT
message carries only the ánode idñ of the ®nal
destination node which has been granted the per-
mission for its critical section entry. A PERMIT
message can be initiated by a node having a green
token. Assuming node (0,0,k) as the initiator of a
PERMIT message, its ®nal destination may be
either a node (i,j,k) in the same plane or a node
(0,0,z) in a di�erent plane z ¹ k. A node (p,q,k)
upon receiving a PERMIT message from its
neighbour, whose ®nal destination is (u,v,k) passes
it to node (p + 1,q,k) when q� v, and to node
(p,q + 1,k), when q ¹ v. A node (0,0,z) upon re-
ceiving a PERMIT message either passes it to its
other neighbour in a di�erent plane if the ®nal
destination of the PERMIT message is not itself,
or changes the colour of its token to green.

RELEASE: The parameter ®eld of a RE-
LEASE message is redundant; however, to keep
the uniformity of the message body the sender
ánode idñ is included in it. The RELEASE message
is initiated by a node, other than the node having a
yellow token, upon completion of its critical sec-
tion processing. If node (i,j,k) initiates a RE-
LEASE message then its ®nal destination is always
node (0,0,k). Every other node except node (0,0,k)
simply passes the RELEASE message to its
neighbour that is closer to node (0,0,k), whereas
node (0,0,k) changes the colour of its token from
yellow to green.

Other than the set of triples for various ánode
idñ's, the following variables are used by the al-
gorithm.

ámes-
sageñ

::� áátypeñ, ánode idññ

átypeñ ::� REQUEST | PERMIT | RELEASE
ánode idñ::� triple (row no., column no., plane

no.)

token (i,j,k) It can assume one of the three
di�erent values, denoted in the al-
gorithm as three di�erent colours:
green, yellow, and red.
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We also require the following operations and
assume that standard procedures corresponding to
them are available.

2.3. The algorithm

Each node has four procedures. Procedure P1 is
called when a node attempts to invoke mutual
exclusion. Each of the procedures P2, P3, and P4
is executed indivisibly whenever a REQUEST,
PERMIT, and RELEASE message, respectively,
arrives. The detailed algorithm for node (i,j,k), i,j,k
2 {0,1,. . .,n1=3 ) 1} is given below.

Algorithm DISTRIBUTED_MUTEX:

/�Initialize�/
mutex :� FALSE
if i� j� 0 then do
Q :� /
if k� 0 then token (i,j,k) :� GREEN
else token (i,j,k) :� RED
® od ®

Procedure P1;
/�This procedure invokes mutual exclusion for
this node�/

/�Request entry for critical section�/
if i� j� 0 then

if token (i,j,k)�GREEN then do

token (i,j,k) :� YELLOW
mutex :� TRUE

od

else if token (i,j,k):� RED then do

enqueue (Q,(i,j,k))
send <REQUEST, (i,j,k)> to (i,j,q),
q� k � 1

od

else enqueue (Q,(i,j,k)) ® ®

else if i� 0 then send <REQUEST, (i,j,k)> to
(i,j ) 1,k)
else send <REQUEST, (i,j,k)> to (i ) i,j,k)
® ®

wait for (mutex�TRUE)
/�Critical section processing can be performed
at this point�/
/�Release critical section�/
mutex :� FALSE;
if i� j� 0 then do

token (i,j,k)�GREEN
if Q ¹ / then do

dequeue (Q,(x,y,z))
grant_permission (x,y,z)
od ® od

else send <RELEASE, (i,j,k)> to (0,0,k)
®
Procedure P2;
/�<REQUEST, (u,v,w)> is received�/
if i� j� 0 then do

enqueue (Q,(u,v,w))
if u� v� 0 then

if w < k then send <REQUEST>, (u,v,w)>
to (i,j,k + 1)
else send <REQUEST,(u,v,w)> to
(i,j,k ) 1) ®

else if token (i,j,k)�RED then

send <REQUEST, (i,j,k)> to (i,j,q),
q� k � 1 ® ®

if token (i,j,k)�GREEN then do

enqueue (Q,(x,y,z)) Inserts (x,y,z) into the rear
of queue Q

dequeue (Q,(x,y,z)) Deletes an element from the
front of queue Q and returns
it as (x,y,z)

delete (Q,(x,y,z)) Deletes element (x,y,z) from
queue Q

mutex A local Boolean variable which is
TRUE if corresponding node has
got its turn to enter into its critical
section and mutex remains TRUE
until the critical section operation is
completed.

Q Queue of ánode idñs of the RE-
QUEST messages
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dequeue (Q,(x,y,z)
grant_permission (x,y,z)
od ® od

else if i� 0 then send <REQUEST, (u,v,w)>
to (i,j ) 1,k)

else send <REQUEST, (u,v,w)> to
(i ) 1,j,k)
® ®

Procedure P3;
/�<PERMIT, (u,v,w)> is received�/
if (u,v,w)� (i,j,k) then

if i� j� 0 then do

token (i,j,k) :� GREEN
if Q ¹ / then do

dequeue (Q,(x,y,z))
grant_permission (x,y,z)
od ® od

else mutex:� TRUE ®

else if u� v� i� j� 0 then do

delete (Q,(u,v,w))
if w < k then send <PERMIT, (u,v,w)> to
(i,j,k ) 1)

else send <PERMIT, (u,v,w)> to
(i,j,k + 1) ® od

else if v� j then send <PERMIT, (u,v,w)> to
(i + 1,j,k)

else send <PERMIT, (u,v,w)> to
(i,j + 1, k)
® ® ®

Procedure P4;
/�<RELEASE, (u,v,w)> is received�/
if i� j� 0 then do

token (i,j,k):� GREEN
if Q ¹ / then do

dequeue (Q,(x,y,z)
grant_permission (x,y,z)
od ® od

else if i� 0 then send <RELEASE (u,v,w)> to
(i,j ) 1,k)
else send <RELEASE, (u,v,w)> to (i ) 1,j,k)
® ®

The following is the details of procedure
grant_permission which has been called by each of
the above four procedures.

Procedure grant_permission (x,y,z);
/� This procedure grants permission to node
(x,y,z) either for mutual exclusion entry
(when the request is from the same plane as
node (i,j,k) or for changing the colour of
its token to green (when the request is from
another plane) �/
if z� k then do

token (i,j,k):� YELLOW
if x� y� 0 then mutex:� TRUE
else if y� j then send <PERMIT, (x,y,z)> to
(i + 1,j,k)

else send <PERMIT, (x,y,z)> to (i,j + 1, k)
® ® od

else do

token (i,j,k):� RED
if z < k then send <PERMIT (x,y,z)> to
(i,j,k ) 1)
else send <PERMIT, (x,y,z)> to (i,j,k+1)
® od ®

3. Correctness of the algorithm

Correctness of algorithm DISTRIBUT-
ED_MUTEX is established through the following
lemmas.

Lemma 1. Algorithm DISTRIBUTED_MUTEX
ensures that a node can be inside its critical section
if it is in the privileged plane.

Proof. According to algorithm DISTRIBUT-
ED_MUTEX a node (i,j,k) can enter its critical
section if and only if it receives a PERMIT
message from node (0,0,k). It can be veri®ed from
the algorithm that when node (0,0,k) has a green
token then only it can initiate a PERMIT message.
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If node (i,j,k)'s request is the oldest then the ®nal
destination of this PERMIT message would be
node (i,j,k). Once node (0,0,k) generates a PER-
MIT message it changes the colour of its token to
yellow thereby ensuring that it would not generate
any more PERMIT message until the colour of its
token becomes green again. This change of token
colour from yellow to green can happen only after
node (i,j,k), upon completion of its critical section
processing, sends a RELEASE message to node
(0,0,k). By de®nition, a plane k is a privileged
plane if node (0,0,k) has either a green token or a
yellow token. Therefore, algorithm DISTRIBUT-
ED_MUTEX ensures that a node can be inside its
critical section if it is in the privileged plane. �

Lemma 2. Algorithm DISTRIBUTED_MUTEX
ensures that there cannot be more than one privi-
leged plane in the TDEM at any time.

Proof. Algorithm DISTRIBUTED_MUTEX ini-
tializes the token colour for each node of the
TDEM in such a manner that at the beginning of
the algorithm plane 0 becomes the privileged
plane. Assume that at some point in time plane k
has become the privileged plane, i.e., node (0,0,k)
has a green token. Now, if a node (x,y,z) in a
nonprivileged plane wants to invoke mutual ex-
clusion then it will have to wait until plane z
becomes the privileged plane (by Lemma 1). We
know that in a nonprivileged plane (say, plane z)
the token of node (0,0,z) has colour red. Therefore,
in order to become privileged, plane z must
interchange the token of node (0,0,z) with that of
node (0,0,k). For this purpose, node (0,0,z) has to
receive a PERMIT message from node (0,0,k) in
response to its REQUEST message. Node (0,0,k)
upon ®nding that the REQUEST message received
from node (0,0,z) is the oldest among all the
pending REQUEST messages in its queue, ®rst
changes the colour of its token to red and then only
sends a PERMIT message to node (0,0,z). Upon

receiving this PERMIT message, node (0,0,z)
changes the colour of its token to green. During
this transition, i.e., the period after node (0,0,k),
changes its token colour to red and node (0,0,z)
upon receiving the PERMIT message from node
(0,0,k) changes its token colour to green, all the
planes of the TDEM remain nonprivileged. This
does not violate any of the invariants I1 and I2.
Therefore, algorithm DISTRIBUTED_MUTEX
ensures that there cannot be more than one
privileged plane in the TDEM at any time. �

Lemma 3. Algorithm DISTRIBUTED_MUTEX
ensures mutual exclusion.

Proof. On the contrary, assume that two nodes
(i,j,k) and (x,y,z) are both in their critical sections
at the same time. Now, there are only two cases
possible.

Case 1 (k� z): Both the nodes are in the same
plane of the TDEM. By Lemma 1, plane k must be
the privileged plane. According to algorithm
DISTRIBUTED_MUTEX, a node (i,j,k) can en-
ter into its critical section if it receives a PERMIT
message from node (0,0,k). Only one PERMIT
message can be generated by node (0,0,k) at a time
addressing a speci®c node whose REQUEST
message is the oldest. To ensure that node (0,0,k)
does not generate more than one PERMIT mes-
sage at a time, it changes the colour of its token
from green to yellow at the time of generating the
PERMIT message and remains yellow until it re-
ceives a RELEASE message. The REQUEST
messages of node (i,j,k) and node (x,y,k) are stored
in the queue of node (0,0,k) as per their arrival
order (Assumption A2) and hence it is ensured at
node (0,0,k) that the node whose REQUEST is the
oldest receives the PERMIT message ®rst. When
this node is in its critical section then the other
node cannot enter in its critical section, since it has
to wait for the PERMIT message. This can happen
only after the node that is currently in the critical
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section completes its critical section operation and
then sends a RELEASE message to node (0,0,k).
Node (0,0,k) then can change its token colour
from yellow to green and then only proceed to
generate a PERMIT message. Hence, node (i,j,k)
(or (x,y,k)) receives the PERMIT message and can
enter its critical section only when no other node
of this plane is in the critical section. Therefore,
both the nodes of (i,j,k) and (x,y,z) cannot be in
their critical sections which contradicts the initial
assumption. Hence, the lemma holds if both nodes
(i,j,k) and (x,y,z) are in the same plane.

Case 2 (k ¹ z): The nodes (i,j,k) and (x,y,z) are
in the di�erent planes of the TDEM. By Lemma 1,
a node (i,j,k) can be inside its critical section if
plane k is the privileged plane. Now, if nodes (i,j,k)
and (x,y,z) are both in their critical sections at the
same time then both planes k and z are privileged.
This means the violation of invariant I1 and
Lemma 2 shows that this is not possible. Hence,
nodes (i,j,k) and (x,y,z) both cannot remain inside
their critical sections at the same time if k ¹ z
which contradicts the initial assumption about
nodes (i,j,k) and (x,y,z).

Combining both, cases 1 and 2, the lemma
clearly holds. �

Lemma 4. Algorithm DISTRIBUTED_MUTEX is
deadlock-free.

Proof. Assume the contrary, that deadlock is
possible. This means that all requesting nodes are
unable to proceed to enter into their critical
sections because none of them is receiving the
PERMIT message. In the ®rst part of the lemma,
we prove that a plane of the TDEM trying to
become the privileged plane cannot be delayed
inde®nitely by other planes. Finally, we prove that
once a plane becomes privileged, there cannot be a
circular waiting among the nodes requesting mu-
tual exclusion in the same plane.

According to algorithm DISTRIBUT-
ED_MUTEX, a node in a nonprivileged plane
(say, plane z) whose node (0,0,z) has a token of
colour red must send a REQUEST message to
each node (0,0,k), k 2 {0,1,. . .,n1=3 ) 1}. Each
node (0,0,k), k 2 {0,1,. . .,n1=3 ) 1}, upon receiving
this REQUEST message preserves the identity of
the requesting node in its queue. Assume that
plane w be the current privileged plane. Now node
(0,0,w) in the privileged plane upon receiving
RELEASE message from a node (u,v,w) say, ®nds
the oldest REQUEST from its queue and proceeds
to send the PERMIT message. Since node (0,0,z)
of plane z seeking the token interchange permis-
sion sends REQUEST message to node (0,0,k),
"k 2 {0,1,. . .,n1=3 ) 1}, within a ®nite amount of
time a privileged plane will ®nd this REQUEST as
the oldest and accordingly PERMIT message will
be issued granting the token interchange permis-
sion to change the token colour of node (0,0,z) to
green. Therefore, a plane trying to enter into the
privileged state (and hence become the privileged
plane) cannot be delayed inde®nitely by other
planes of the TDEM.

To complete the proof, we now prove that
there cannot be a circular waiting among the
nodes requesting mutual exclusion in the privi-
leged plane. This follows immediately because in
the privileged plane, the PERMIT message is is-
sued to the oldest REQUEST and whenever the
PERMIT message reaches the speci®ed node it
can enter into its critical section. Since a node
cannot remain into its critical section inde®nitely,
a requesting node will ®nd its REQUEST as the
oldest within a ®nite amount of time and even-
tually receive the PERMIT message. Therefore,
there cannot exist a waiting cycle with respect to
the privileged plane and hence the lemma fol-
lows. �

Lemma 5. Algorithm DISTRIBUTED_MUTEX is
starvation-free.
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Proof. The starvation of a node occurs when it is
waiting inde®nitely for the PERMIT message to
enter into its critical section although other nodes
are receiving the PERMIT message and perform-
ing their critical section operations. From Lemma
4, it is clear that a plane trying to enter into the
privileged state cannot be delayed inde®nitely by
other planes and whenever a plane becomes
privileged the PERMIT message is issued to the
oldest REQUEST in this plane. Since a node
cannot remain into its critical section inde®nitely,
if a node in the same plane of the starving node
receives the PERMIT message then within a ®nite
amount of time the REQUEST of the starving
node will be the oldest. Hence the PERMIT
message will eventually reach the starving node
and it can no longer starve. Therefore, the lemma
holds. �

Theorem 1. Algorithm DISTRIBUTED_MUTEX
is correct.

Proof. Follows directly from Lemma 3±5. �

4. Algorithm complexity

According to algorithm DISTRIBUT-
ED_MUTEX, a node (i,j,k) requesting critical
section entry sends a REQUEST message to node
(0,0,k) and waits for the PERMIT message from
node (0,0,k). Node (i,j,k) upon completing its
critical section processing sends the RELEASE
message to node (0,0,k). If node (i,j,k) is already in
the privileged plane then no more messages, other
than those indicated above, will be required for
node (i,j,k) to enter into its critical section. In the
worst-case, each of these messages will be required
to travel a distance of 2(n1=3 ) 1). So, in this case
the total number of messages required is
6(n1=3 ) 1) in the worst-case. If node (i,j,k) is in a
nonprivileged plane then node (0,0,k) has a red

token. Therefore, in order to become the privileged
plane, node (0,0,k) sends REQUEST message for
token interchange permission to each node (0,0,z),
z 2 {0, 1,. . .,n1=3 ) 1} ) {k}. Finally, a node
(0,0,w),w 2 {0,1,. . .,n1=3 ) 1} ) {k}, granting the
token interchange permission sends the PERMIT
message to node (0,0,k). Node (0,0,k) upon re-
ceiving the PERMIT message changes the colour
of its token to green, while other nodes which have
received the same PERMIT message remove the
REQUEST of node (0,0,k) for token interchange
permission from their queues. Thus, an additional
2(n1=3 ) 1) messages are required, in the worst-
case, for node (i,j,k) for entering and completing
its critical section processing when plane k is
nonprivileged. Therefore, in all 8(n1=3 ) 1) mes-
sages are required per mutual exclusion invocation
in the worst-case.

Theorem 2. Algorithm DISTRIBUTED_MUTEX
requires only 8n1=3 messages per mutual exclusion
invocation, where n is the number of nodes in the
network.

Proof. Follows from the above discussion. �

Theorem 3. Under heavy demand algorithm DIS-
TRIBUTED_MUTEX requires only 3n1=3 messages
per mutual exclusion invocation.

Proof. Under heavy demand, we may assume that
whenever a plane becomes privileged almost all of
its n2=3 nodes invoke mutual exclusion (of course,
one at a time) before this plane again becomes
nonprivileged. A node (i,j,k) in the privileged plane
k requires a total 3(i + j), i,j, 2 {0,1,. . .,n1=3 ) 1}
REQUEST, PERMIT, and RELEASE messages
to enter and complete its critical section process-
ing. So, the total number of messages required by
all n2=3 nodes in plane k to perform their critical
section processing is given by

P
i

P
j (i + j)� 3n2=3
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(n1=3 ) 1), where 0 6 i, j 6 n 1=3 ) 1. As discus-
sed earlier, another 2(n1=3 ) 1) messages are re-
quired for plane k to become privileged. So, under
this condition, the number of messages required
per mutual exclusion invocation is given by (3n2=3

(n1=3 ) 1) + 2(n1=3 ) 1)) /n2=3 @ 3 (n1=3 ) 1). This
proves the theorem. �

The following theorem provides the upper
bounds to the message length and the queue length
used by the algorithm.

Theorem 4. To implement algorithm DISTRIBUT-
ED_MUTEX, (i) the maximum length of the
messages required is bounded from above by
O�log n� bits; (ii) the maximum space required by
a node is bounded from above by O�n2=3log n� bits.

Proof. (i) In algorithm DISTRIBUT-
ED_MUTEX, three types of messages are used.
Each of these messages has only the ``type'' ®eld
and the ``node id'' ®eld. For the ``type'' ®eld 2 bits
are su�cient, while for the ``node id'' ®eld to
specify three integers (i,j,k), each in the range from
0 to n1=3 ) 1, 3 log n1=3 bits are required. There-
fore, the message length is bounded from above by
(3 log n1=3 + 1) bits @ O(log n) bits.

(ii) According to algorithm DISTRIBUT-
ED_MUTEX, each of the n1=3 nodes with node
number (0,0,k), k 2 {0,1,. . .,n1=3 ) 1}, requires to
maintain a queue to store the node numbers cor-
responding to the pending REQUEST messages.
Each of the n nodes of the network also requires 1
bit for the Boolean variable mutex. The maximum
possible number of REQUEST messages received
by a node (0,0,k), k 2 {0,1,. . .,n1=3 ) 1} is
n1=3(n1=3 + 1). Therefore, the length of the queue at
each node (0,0,k), k 2 {0,1,. . .,n1=3 ) 1}, is
bounded from above by 3n1=3 (n1=3 + 1) log n1=3

bits. Therefore, to implement algorithm DIS-
TRIBUTED_MUTEX, the maximum space re-
quired by a node is bounded from above by (3n1=3

(n1=3 + 1) log n1=3) + 1 bits @ O(n2=3 log n ) bits.
Hence, the theorem follows. �

5. Conclusion

A non probabilistic algorithm is presented that
implements mutual exclusion among n nodes in a
computer network. In the worst-case, algorithm
DISTRIBUTED_MUTEX requires 8n1=3 messag-
es per mutual exclusion. However, under heavy
demand the message requirement reduces to 3n1=3

only. Thus, our algorithm outperforms all the ex-
isting algorithms for distributed mutual exclusion.
The algorithm is shown to be free from deadlock
as well as from starvation and exhibits fully dis-
tributed control. We also claim our algorithm to
be symmetrical in the sense that all the n processes
residing at n di�erent nodes are identical, i.e., each
node (i,j,k), for i,j,k 2 {0,1,. . .,n1=3 ) 1}, has an
identical copy of the process described by algo-
rithm DISTRIBUTED_MUTEX.
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