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Abstract 

Efficient algorithms utilizing the Fractional Fourier Trans- 
formation (FrFT) are proposed for fast computation of the 
Ambiguity Function (AF) and the Wigner Distribution (WD) 
on arbitrary line segments. For a signal with time-bandwidth 
product N, the complexity of the algorithms is O(N log N) . 

1 Introduction 

Time-frequency signal processing is one of the fundamental 
research areas in signal processing. Wigner distribution plays 
a central role in the theory and practice of time-frequency 
signal processing [l, 2, 31. Likewise, the ambiguity function, 
which is the 2-D Fourier Transform (FT) of the Wigner dis- 
tribution, plays a central role in radar and sonar signal pro- 
cessing [4, 5, 61. 

Because of the availability of efficient computational algo- 
rithms, both the Wigner distribution and ambiguity function 
are usually computed on Cartesian grids. By exploiting the 
relationship of Wigner distribution and ambiguity function 
with the fractional Fourier transformation] in this paper, we 
propose efficient algorithms which can be used to compute 
the Wigner distribution and ambiguity function On arbitrary 
line segments. With repeated use of these algorithms, it is 
possible to obtain samples of the Wigner distribution and am- 
biguity function on non-Cartesian grids such as polar grids 
which are the natural sampling grids of chirp like signals. 

2 Preliminaries on the Wigner Distribu- 
tion and the Ambiguity Function 

Discrete time-frequency analysis is the primary investiga- 
tion tool in the synthesis] characterization and filtering of 
time-varying signals. Among the alternative time-frequency 
analysis algorithms, those belonging to the Cohen’s class are 
the most commonly utilized ones. In this class, the shift- 
invariant time-frequency distributions of a signal x ( t )  are 
given by: 

P z ( t , f )  = ~ ~ T r ( 7 1 v ) A r ( 7 , v ) e ~ z n ( u t - - r f ) d ~ d v  (1) 

where the function K(T, v) is called the kernel [3] and the func- 
tion Az(7, v) is called the (symmetric) ambiguity function 

(AF) which has found important application a r e a  including 
radar signal processing: 

Az(7 ,  v) = x ( t  + 7 / 2 ) 2 * ( t  - ~ / 2 ) e - ~ ~ ~ ~ ~  dt . ( 2 )  

Most remarkable member of Cohen’s class of distributions is 
the Wigner Distribution (WD) which is obtained by choosing 
the kernel as K(T, v) = 1. From (1) it follows that, WD is the 
2-D inverse Fourier transform of the AF: 

I 

Wz(t,  f) = {F-’Az}(-f1t) ( 3 4  

E / x ( t  + t’/2)a* (t  - t’/2)eCJzTft’ dt’ . (3b) 

Because of its nice energy localization properties, the WD 
has been widely used in practice. The definition (3) has been 
generalized to define the cross-Wigner distribution (CWD) 
of two signals e(t)  and y(t)  as: 

Wz,(t, f) = / z ( t  + t ’ / 2 ) y * ( t  - t’/2)e-32nft’ dt’ . (4) 

The properties of the cross-Wigner distribution has been in- 
vestigated in detail [1, 21. 

Similar to the cross-Wigner distribution] the cross- 
ambiguity function (CAF) of e( t ) ,  y(t)  is defined as 

Azy(7, v) = x( t  + 7/2)y* (t  - 7/2)e-J2m”t dt . (5) 

As in (3), the cross-ambiguity function is related to the cross- 
Wigner distribution through the 2-D Fourier transformation: 

S 

Wz,(tl f ) e - J 2 * ( v t - T f )  dtdf . (6) 

3 Fast Computation of the Ambiguity 
Function on Arbitrary Line Segments 

In this section, we will provide an efficient algorithm to com- 
pute uniformly spaced samples of the ambiguity function lo- 
cated on an arbitrary line segment. By using the proposed 
algorithm, for an input sequence of length N ,  it is possible to 
compute the samples of the AF on an arbitrary line segment 
in O(N log N) flops. 
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The presentation of the proposed approach will be as fol- 
lows: first the well known projection-slice relationship be- 
tween the WD and the AF domains will be given. Then, 
the projections in the WD domain will be related to the frac- 
tional Fourier transformation of the signals involved. Finally, 
the obtained continuous-time relationship will be discretize'd 
to allow the use of a fast fractional Fourier transformatioo 
algorithm. 

3.1 The Radon-Cross-Wigner Transform 
The Radon-Wigner transform (RWT) or Radon transforma- 
tion of the Wigner distribution has been introduced for th'e 
analysis and classification of multicomponent chirp signals in 
noise. In a series of papers, Woods and Barry investigate9 
RWT and some of its applications in multi-component signal 
analysis, time-varying filtering and adaptive kernel design 
[7, 8, 91. As a generalization, the Radon-cross-Wigner trans- 
form (RCWT) of two signals y(t) and z ( t )  can be defined & 
the Radon transform of their cross-Wigner distribution: 

Pyz(r,+) = ~ W , , ( r c o s + - s s i n + , r s i n + + s c o s + ) d s  . (7) 

The projection-slice theorem establishes an important link 
between the projections of the CWD and the slices of the 
CAF: the 1-D Fourier Transform of the projection Pyz(r,  4) 
with respect to the variable r is the radial slice of the cross- 
ambiguity function at an angle @ + n-/2: 

where Atz (A,  4) A,,(Acos 4, Asin 6) is the polar repre- 
sentation of the CAF. Therefore, once we have the projec- 
tion Pyz(r, +), we can use FFT to efficiently approximate the 
samples on the radial slice of the CAF. However, to have 
a practically useful algorithm, we have to efficiently obtain 
the RCWT as well. Fortunately, PYz(r, $), can be computed 
directly from the time signals y(t) and z ( t )  by using the FracL 
tional Fourier Transformation (FrFT): 

Pyz (r,  4) = ya (r)zct ( T )  , for a = - 24 (9) 

where Pyz(r, 6) is the +-Radon projection of the CWD given 
by (7), and za(r), y,(r) are the ath-order FrFTs [lo] of the 
signals y ( t )  and z ( t ) .  Based on this relationship, in the next 
section we will provide an approximate but efficient algorithm 
for the computation of AF samples located on an arbitrary 
(and possibly non-radial) line segment. 

n- 

3.2 Computation of the Ambiguity Func- 
tion Along Arbitrary Line Segments 

Let us consider the case of computing the samples of the AF 
 ax(^, f )  along the line segment LA shown in Fig. 1 .  The 
following parameterization for the line segment LA will be 
used in the derivations: I 

L A  = ( ( r , v ) ~ ~ = ~ , - A s i n + , v = v , + ~ c o s ~ , ~ ~    AI,^]} 1, 

where ( T , , V ~ )  is an arbitrary point which lies on LA and 
q5 + r / 2  is the angle between L A  and r-axis. Using this 

parameterization of LA and the definition of the AF, the non- 
radial slice of the AF which lies on the line segment LA can 
be written as 

A,(~ , -As in@,v ,+Xcos~)  rAE,(X,@+n/2) , (10) 

where A;, (A, 4+7r/2) is the radial slice of the cross-ambiguity 
function of the following time-domain signals y(t) and ~ ( t )  

y(t) = z( t  + ~ ~ / 2 ) e - ~ ~ ~ ~ ~  (W 
z ( t )  = z ( t  . 

Thus, the non-radial slice of AX(7,v) is equal to the radial 
slice of the Aye(r, v) where both of the two slices are in paral- 
lel. Hence, using (8) and (9) in (lo),  we obtain the following 
expression for the non-radial slice of the AF Ax(r, Y ) :  

A,(T,- Asin+,vo + Acos+) = ya(r)z:(r)e-32TrXdT. (12) 

To obtain a form suitable for digital computation, we will 
replace the above integral with its uniform Riemann sum- 
mation. For an equally valid approximation at all angles 4, 
in the rest of this paper, we assume that prior to obtain its 
samples, z ( t )  is scaled so that the Wigner domain supports 
of z ( t ) ,  y(z) and z ( t )  are approximately confined into a cir- 
cle with radius A,/2 centered at the origin. For z ( t )  with 
approximate time and band-width of (At) and (A,) respec- 
tively, the required scaling is z ( t / s )  where s = Ill]. 

After the scaling, the band-width of the signal ya(r)z; ( T )  

is given as 2Ax. Therefore the integral (12) can be approxi- 
mated with a discrete-Fourier transformation. This discrete- 
Fourier transformation relation can be further discretized (in 
the variable A) to obtain the following expression for the N' 
uniformly spaced samples of AF on the line segment LA:  

s 

where ( ~ k ,  vk) 4 (T, - A k  sin+, v, + ~k  COS^), A k  k + 
After the discretization, the obtained form lends itself for 

an efficient digital computation since the required samples 
of the FrFTs, ya(n/2Ax), za(n/2AX), -N 5 n 5 N ,  can 
be computed using the recently developed fast computation 
algorithm [ll] in O(N1ogN) flops', and the summation in 
(13) can be computed in O(N log N) flops' using the chirp- 
z transform algorithm [12]. Therefore the overall cost of 
computing the samples of the AF along any line segment 
is O(N1og N) flops. 

k X 2 - X  for 0 5 k 5 N' - 1 and N 2 A: is an integer. 

4 Fast Computation of the Wigner Dis- 
tribution on Arbitrary Line Segments 

In the rest of this paper, we will present the dual development 
for the Wigner distribution. In the next section we intro- 
duce the dual of the Radon Wigner Ti-ansform: the Radon- 
Ambiguity Function Transform (RAFT). Then, we derive the 
relationship between the RAFT and FrFT. As in the compu- 
tation of AF samples, this relationship will naturally lead 
us to the fast computation algorithm for the required WD 
samples. 

Complex multiplication and addition. 
2The computational complexity is given for N' 5 N, which is 

usually the case. 
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4.1 Radon-Ambiguity Function Transform 
We introduce the Radon-Ambiguity Function Transform of a 
signal y ( t )  as the Radon transform of its ambiguity function: 

Q y ( r , $ )  = /  A,(rcos$-ssin+,rs in$+scos+)ds , (14) 

Using the projection-slice theorem, the radial slice of the WD 
at an angle q!+.rr/2 can be written as the FT of Q y ( r ,  4) with 
respect to the variable r: 

1 Q y ( r ,  q4)e--32rrx dr = W,”(X, 4 + 7r/2) , (15) 

where W,”(X,4) !i W,(Xcos$, Asin$) is the polar representa- 
tion of the WD. Also, an important relationship between the 
RAFT and the FrFT can be derived, by substituting (3) into 
(15) and then making a change of the integration variables: 

Q y ( r , 4 )  = y a ( r / 2 ) d ( - r / 2 )  for a = -4 . (16) 

In the following section, based on the above relationships we 
propose an efficient algorithm to compute samples of the WD 
on arbitrary line segments. 

2 
7r 

4.2 Computation of the Wigner Distribu- 
tion Along Arbitrary Line Segments 

Suppose that we want to compute samples of the WD of a 
waveform z ( t ) ,  along an arbitrary line segment Lw as shown 
in Fig. 1. Since the line segment LW may not pass through 
the origin, we cannot immediately use the results of the pre- 
vious section. However, as in Section 3.2, what we will do 
is to express the required non-radial slice as the radial slice 
of the WD of an other function which allows us to use the 
results of the previous section. 

In the following derivation we parameterize the line seg- 
ment LW as: 

LW = { ( t ,  f)lt = to - Xsin 4, f = fo + X cos q5, X E [ X I ,  A,]) 

In this expression (to, fo) is an arbitrary point which lies on 
LW and 4 + 7r/2 is the angle of LW with the t-axis. Using 
this parameterization of L w ,  the non-radial slice of the WD 
can be expressed as 

Wz(to -Xsin$,fo+Xcos$) W,(-Asin$,Xcos$) , (17) 

where y ( t )  = z(t+t,)e-32“fot and W,(-Xsin$,Xcos$) is the 
radial slice of the WD of y(t). By using the projection-slice 
theorem given in (15), we obtain the non-radial slice of the 
WD as 

W,(to-Xsin4,Xcos4+fo) = Q ? , ( r , ~ ) e - - 3 2 n r x d r ,  (18) 

where Q y ( r ,  4) is the $-Radon projection of the Wigner dis- 
tribution W Y ( t ,  f ) .  Since the required $-Radon projection 
satisfies the FrFT relationship given in (16), it can be ef- 
ficiently computed by using the fast FrFT algorithm given 
in Algorithm 1. The details of the O(N1ogN) algorithm is 
given in Algorithm 3. Note that, unlike Pyz(r ,  $) which is the 
$-Radon projection of the CWD given by (7), the bandwidth 

I 

of Q y ( r ,  4) is A,. 

5 Simulations 

In this section we illustrate the accuracy of the algorithms in 
digitally computing the WD of a Gaussian pulse. The plots 
(a) and (b) in Fig. 2 are obtained by repeated application 
of the Algorithm 3. In plot (a) the WD is computed over 
a full and in plot (b) it is computed over a partial polar 
grid. To show the accuracy of the proposed algorithm, we 
computed samples of the Wigner distribution of the same 
Gaussian pulse over the non-radial line-segment shown in 
Fig. 2.(c). The obtained samples and the approximation error 
are plotted in (d) and (e) respectively. 

6 Conclusions 

Based on the relationship of Wigner distribution and ambigu- 
ity function with the fractional Fourier transformation, effi- 
cient algorithms are proposed for the computation of Wigner 
distribution and ambiguity function samples on arbitrary line 
segments. The proposed algorithms make use of an efficient 
computation algorithm of fractional Fourier transformation 
to compute N uniformly spaced samples in O(N1og N) flops. 
The ability of obtaining samples on arbitrary line segments 
provides significant freedom in the shape of the grids used in 
the Wigner distribution or in ambiguity function computa- 
tions. The proposed algorithms are potentially very useful in 
the development of new approaches for the analysis, filtering 
and synthesis of signals. 
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Figure 1: Non-radial slices of the ambiguity function (left 
and the Wigner distribution (right). 
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Figure 2: The digital computation of the WD of a Gaussia 
pulse. 

Algorithm 1 The Fast Fractional Fourier Transform Algo- 

Steps of the algorithm: 
Interpolate the input samples by 2: f ( n / A , )  -+ f(n/2A,) 
if la1 $ [0.5, 1.51 then 

end if 4 := Ea  

a : = a - 1  

a := cot4 
p := csc4 
A$ := exp(--jn sgn(sin $) /4+ j@/2)  

% Compute the following signals: 
.- .- e3*(a-P)(m/2A,)z for l m l  5 N 

c2 [ml ._ .- e3r0(.m/2A,)2 for Iml I 2N 
gIm1 := ~;[m]f (m/2&) for Jml 5 N 
h,(m/2A,) := &cl[m](cz * g ) [ m ]  for ImJ I N 
%In the last step FFT is used to compute the convolution 
in O(N log N )  flops. 
if Jal $! [0.5, 1.51 then 

I s in@l l /2  

c1 [ml 

% Compute samples of the ordinary FT using FFT. 
fa(m/2Ax) := {F1h,}(m/2A,) 

fa(m/2At) := ha(m/2Az) 
else 

end if 

Algorithm 2 The Fast Computation of the Ambiguity Func- 
tion on Arbitrary Line Segments 
Steps of t h e  algorithm: 

i f  a radial slice then 
za[n] := {Faz}(n/2Az) 

1 '" 
A~(TI,,vI,) := - pa[n]e-3&";-Xn 

2Ax n=-N 

for 0 5 IC 5 N ' -  1 

where (TI,, VI,) 
XI + k w ,  is computed using the CZT algorithm. 

(ro - XI, sin 4, v, + XI, cos 4) and XI, 

Algorithm 3 The Fast Computation of the Wigner Distri- 
bution on Arbitrary Line Segments 
Steps of the algorithm: 

if a radial slice t h e n  
y[n] := .(n/A,) 

else 
y[n;] := z(n/A, + t,)e-32"fo(n/Az) 

end if 
pa[.] := {Faa}(n/2Az) for In/ 5 N 

where ( t k ,  fk) 
A1 + kw, is computed using the CZT algorithm. 

(to - X I ,  sin 4, f0 + X I ,  cos 4) and X I ,  4 
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