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Abstract 

We present a new chaotic masking scheme by using synchronized chaotic systems. In this method, synchronization 
and message transmission phases are separated, and while synchronization is achieved in the synchronization phases, the 
message is only sent in message transmission phases. We show that if synchronization is achieved exponentially fast, then 
under certain conditions any message of any length could be transmitted and successfully recovered provided that the 
synchronization length is sufficiently long. We also show that the proposed scheme is robust with respect to noise and 
parameter mismatch under some mild conditions. @ 1999 Published by Elsevier Science B.V. 
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1. Introduction 

In recent years the idea of synchronization of 
chaotic systems has received a great deal of interest 

among scientists from various fields, see e.g. [ I-14]. 
One of the motivations for synchronization is the pos- 
sibility of sending messages through chaotic systems 
for secure communication, see e.g. Refs. [5,7,9]. 
Such synchronized systems usually consist of two 
parts: a generator of chaotic signals (drive system}, 
and a receiver (response system). The response sys- 
tem is usually a duplicate of a part (or the whole) of 
the drive system. A chaotic signal generated by the 
drive system may be used as an input in the response 

’ E-mail: morgul@ee.bilkent.edu.tr. 

? E-mail: feki@loria.fi. 

system to synchronize the common signals of both 

systems, see e.g. Ref. [ 21. After synchronization, one 
may add the message to the chaotic signal used for 
synchronization and send this signal to the receiver. 
This is called chaotic masking, see Ref. [ 8 f . and un- 
der certain conditions one may recover the message 
from the signals of the response system, see e.g. Ref. 

[91. 
Recently, a new synchronization scheme based on 

occasional coupling has been proposed in Ref. [ I I]. 
This scheme, as others proposed in the literature, has 
a potential application for secure communications. 
In this Letter we propose a chaotic masking scheme 
based on the occasiona synchronization proposed 
in Ref. [ 1 I] and present some simulation results 
concerning the message transmission. 

A related scheme for synchronization of chaotic sys- 
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terns was proposed in Ref. [ 121. In this scheme, the 

synchronization signal is used in the response system 
at discrete times. For a finite time step r > 0, response 

system states corresponding to the drive variables used 
in the synchronization signal are set to the values of 
corresponding drive variables at instances f = 127, II = 
1.2, . . ., and it was shown that for r sufficiently small, 

synchronization is possible. Hence, the synchroniza- 
tion signal is used only at certain instances in Ref. 

[ 121, whereas it is used in an interval in our scheme. 
We note that the length of this interval is of crucial 

importance in our analysis, see Section 2. As a result, 
some of the response system states are instantaneously 
set to the values of corresponding drive system states 
in Ref. [ 121, whereas both system states asymptoti- 
cally approach to each other in our scheme, see also 
Ref. [ 1 11. Both schemes use an interval in which the 

response system is autonomous, and the scheme of 
Ref. [ 121 may be related to our scheme in which the 
switching signal is impulsive, see Remark 2. 

This Letter is organized as follows. In Section 2 
we introduce our message transmission scheme, show 

that under some mild conditions successful message 
recovery is possible and that the scheme is robust with 
respect to noise and parameter mismatch. In Section 3 
we present some simulation results. Finally, we give 
some concluding remarks. 

2. Occasional coupling 

Let the chaotic master system be given by the fol- 

lowing equation. 

li=f(u,p) 1 (1) 

where u E EX” is the state of the master system, p E 
R” is a parameter vector, and f : IbY x IRf’ -+ KY is 

a smooth function. We assume that for certain values 
of ,x, the solutions of ( 1) exhibit chaotic behaviour. 
A certain function of u is assumed to be measurable 
and is sent to the slave system for synchronization. 
For simplicity, let us assume that this synchronization 
signal is given as o = cTu where c E lP is a constant 
vector, and the superscript T denotes the transpose. 
The slave system may be chosen as follows, 

ti=f(w,&+S(t)K(W)(O-cTW), (2) 

where w E ll?’ is the state of the slave system, s(t) = 
0, 1 denotes the switching signal, and K : Et” -+ IR” 
is the feedback gain vector. We assume that K is a 
smooth function of w. This form indicates that when 
s(t) = 0 (i.e., the switch is off), the slave system 
is a duplicate of the master system. We assume that 
when s(t) = 1 (i.e., the switch is on), the gain vector 

K(w) could be chosen so that the synchronization 
error e ( I) = u ( t ) - w ( t ) decays exponentially to zero, 

that is there exist some M 3 1, (Y > 0 such that for 
any to 3 0, e( to) E IF!“, the following holds, 

ile(l)ll 6 Me-acf-‘“)ile(ta)II, f 3 to, (3) 

where 11. II denotes the standard Euclidean norm in KY. 
We note that in some cases (3) may hold only locally, 
i.e. for []e( to) ]I 6 r for some Y > 0, in which case we 

say that the synchronization holds only locally. 
We note that under certain conditions such a gain 

vector could be found in a systematic way, and that 

most of the synchronization schemes proposed in the 
literature satisfy this assumption, see Ref. [ 141. The 
synchronization scheme given by (2) is similar to 
the observer based synchronization proposed in Refs. 
[ 13,141. In this scheme we assume that the system 
given by ( 1) is in the following form, 

li = f(u> P) = A(P)u + g(u, pu) , (4) 

where for each ,u E Iwp, A E IPx”, is a constant 

matrix and g( .) : R” --f Et” is a smooth function. 
By using (2)) (4) and assuming that K is a constant 

vector, we obtain the following error dynamics in the 
coupling phase (i.e., when s(t) = I), 

P = (A(p) - KcT)e + g(u,p) - g(w,p) , (5) 

where we used o = cTu. If, for a fixed p, the pair (A, c) 
is observable then there exists a constant gain matrix 
K E LR” such that A, = A - KcT is stable, see Refs. 
[ 13,141. Moreover, assume that g( .) is Lipschitz, i.e., 
the following holds, 

lIg(u* P) - g(w, P) II 6 kllu - 4 1 
L&WEIR”, p. E w , (6) 

for some k > 0 in a region 0 C IV x IP in which the 
solutions are bounded. If k > 0 is sufficiently small, 
then the synchronization error e decays exponentially 
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to zero, i.e. (3) holds; if k is not smaIl but A and g(a) 
are in some special form, then (3) still holds for a 
particular choice of K, see Refs. [ 13,14 1. In any case, 
if lie(te) jj is sufficiently small, we may expect (3) to 
hold. We note that in this paper we assume that the 
feedback gain K may be a function of w, whereas it 
is assumed to be constant in Refs. [ 13,14 1. 

Remark 1. TQ emphasize the consequences of as- 
sumption (3), let us consider the “error system” in 
terms of the error e. By using ( 1) and (2), one can 
obtain the error dynamics, and (3) implies that e = 0 
is an exponentially stable equilibrium point of the 
error system. Since the exponentially stable systems 
are robust with respect to small changes in the system 
dynamics, see Ref. [ 151, we expect that the message 
transmission technique which wiIl be given below is 
robust with respect to noise and parameter mismatch. 
This point was proven in Refs. [ i 1,13,14]. We also 
note that for most of the synchronization techniques 
proposed in the literature the exponential synchroniza- 
tion property given by (3) is satisfied. By using this 
fact one can prove the robustness of these techniques 
with respect to noise and parameter mismatch. 

Our chaotic masking scheme by using the occa- 
sional couphng proposed in Ref. {l I] is based on 
changing the switching signal s(t) between 0 and 1, 
peri~ical~y. More precisely, let m(t) denote the mes- 
sage to be transmitted, let T, > 0 and Tm > 0 denote 
the intervals for synchronization and message trans- 
mission phases, respectively. Then, for j = 1,2,. . ., 
our scheme is as follows: 

(i) m (jth synchronization phase) For (j- 1) (TV+ 
7;,,) < t < j;i-, f (j - l)T,, use the master system 
given by ( I ) and the slave system given by (2)) with 
s(r) = 1. 

(ii) (jth message transmission phase) For JT$ + 

(j - 1) TV, < t < j( T, 4 T,), use the master system 
given by ( 1) and the sIave system given by (2), with 
s(t) = 0, and send the masked message y(t) + m(r). 

(iii) (message recovery) In the jth message trans- 
mission phase, the recovered message m,(t) can be 
computed as 

m,(r) =0(t) +m(t) -cTw(l). (7) 

Note that with s(t) = 0, the response system given 
(2) becomes an autonomous system in the message 

transmission phase. Since in the synchronization 
phase, the error decays to zero exponentially fast 
(see (3)), at the end of this phase the error becomes 
extremeIy small, provided that Ts is sufficiently large. 
Hence, for the message ~ansmission phase we could 
exchange the signals of the drive system used for 
synchronization with the corresponding signals of the 
response system, which is the rationale behind using 
s(t) = 0 in (2). We have the following result for the 
message transmission. 

T~e~rern 1. Consider the systems given by ( I ), (2) 
and the message transmission scheme given above. 
Assume that f(u, CL) is Lipschitz in U, i.e. satisfies 
an inequality similar to (6) with a Lipschitz bound 
k,,, and that (3) holds. Let the initial error satisfy 
\le(O)II < r for some r > 0, and let (the precision 
number) E > 0 be given. Then, for any message of 
length T,, > 0, there exists a synchronization interval 
T, > 0 such that in the message transmission phase 
we have 

llmr(O - m(t) II -G E f (8) 

where j7;. + (j - i)T,, G t < j(‘& + T,,g), and j = 
1,2,.... 

Prc.x$ For simplicity, we define the beginning of jth 
synchronization and message transmission phases T; 
and Tr, respectively, as follows, 

T;=(j-l)(T~+Tr,,), v’=jT,+(j- l)T,,,, 

j= 1,2,... . (9) 

From (3) it is clear that the following holds in the jth 
synchronization phase, 

]]e(t)J] 6 Me-“+r;)(]e(~))/ , 

Tf < t < ri”’ . (10) 

From ( 1) and (2) it follows that the following holds 
in the jth message ~ansmission phase, 

r_ 
Ty < t < rj”+, . (11) 

By using Lipschitz inequality, taking norms and using 
the Bellman-~ronwall lemma, we obtain 



lle( t) jj < ek”“-T~)Ile(T~)“)IJ , 
T!” < t < T! 

.I ’ ./+I . (12) 

By using ( 12) and ( i0) successively, and noting that 

the error is continuous, we obtain 

//“r(r) - @r(g)ll = llcTe(t)ll < ~lc~l~l~(~~~~ * (14) 

see (7). It follows from ( 13) and ( 14) that (8) holds 
if the following is satisfied for all j, 

j= 1,2,... . (I.51 

If lnE/r]Jc]] < 0, then (IS) is satisfied provided that 
the following holds, 

In M + k,T,,, - aT, < In -?- 
+-Ii . 

(16) 

On the other hand, if lnE/r\]c/] 2 0, then (15) is 
satisfied provided that the following holds, 

In N + k,,T,,? - ~4 6 0. f 17) 

Once T,, > 0 is selected arbitrarily, the required 7; > 
0 could be found from ( 16) or ( 17). cl 

The result stated in Theorem 1 hoIds in the ideal 
case when the signal transmitted (i.e., 5) is not cor- 
rupted by noise and when the parameter vectors (i.e., 
p) are the same in the drive and the response sys- 
tems. In the sequel we consider the nonideal case and 
prove that the scheme given above is robust with re- 
spect to noise and parameter mismatch under certain 
conditions. First note that in the nonideal case, the re- 
sponse system given by (2) should be replaced with 

the following, 

tit= ,f(w,&) + s(t)K(KJ)(o+n - crw> , (18) 

where y’ is the parameter vector for the response sys- 
tem, and IZ is a (random) noise term in the measure- 
ments. Then we have the following robustness result. 

Theorem 2. Consider the drive and response systems 
given by ( 1) and ( 18)) respectively. Assume that 
the solutions remain in a bounded set. Assume that 
f( U, ,u) is Lipschitz in both variables. Let the noise n 

satisfy /ln( t) 11 6 IZ,, for some nn, > 0 for t 2 0 and let 
us define A@ = ,u - pt. Then in the synchronization 
phases (i.e., for s(t) = I), the error asymptotically 
(i.e., as t ---+ M) satisfies the following inequality, 

Ildt)li G Cln,, + GllA~ll 7 (19) 

where Ci > 0 and CZ > 0 are some constants. 

Proo$ Since the solutions remain in a bounded set, 

llK( w) // remain bounded in this set as well. Hence we 
have 

where kl = max{ I/ K( w) II}. Then the proof follows 
from the exponential stability assumption (3) and the 
Theorem 2 of Ref. [ I 11. q 

Theorem 2 proves that in the presence of noise 
and/or parameter mismatch, the synchronization error 

remains bounded, hence the proposed scheme is ro- 
bust in the nonideal case. Moreover, the error bound is 
linear in noise and parameter mismatch bounds; hence 

as these bounds decrease, the synchronization error 

bound also decreases. Also note that here we have an 
asymptotic result, i.e. (19) hoids as t --+ cm. From 
practical point of view we may assume that ( 19) holds 
if T, is suf~ciently large. We note that the conclusions 
of Theorem 2 remains true if c’ # c is used in f 18), 
provided that a term Csllc -- c’J/ is added to ( 19). 

Theorem 3. Consider the drive and response systems 
given by ( I) and ( 18), respectively, and let s(t) = 

0 (i.e., in message transmission phase). Assume that 
f(u, h) is Lipschitz in both variables. Assume that T, 

is sufficiently large so that ( 19) is satisfied. Let E > 0 
be a given precision level which satisfies 

Ilcll(C~&, + C~lbIl) < f. (20) 

Then there exists a maximum allowable message trans- 
mission interval T > 0 such that for Tnl 6 T, (8) 

holds. 
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Proof: The proof follows from the analysis presented 

in Ref. [ 111. a 

We note that some other factors such as finite reso- 
lution of simulations or experiments (e.g., A/D con- 
verters) may also contribute to the error bound given 

above, hence may affect T,,. 

Remark 2. In Ref. [ 121, an occasional synchro- 

nization scheme based on impulsive coupling was 
proposed. More precisely, let the given chaotic sys- 

tem is = f(u) be decomposed as lit = ft (~1, UZ), 
it2 = ~~(u,,EQ). Let T > 0 be given and use a 
similar response system, i.e. 11, = fi(~t~,zl~~), 

tilr = ~~(u,~,uz~). Assume that u,,(O) = Q(O), and 

U2r(O) = u2 (0) + 6, where 6 is sufficiently small. 

For t = nr,n = 1,2,. . .) set externally urr(127) = 

tlr (nr), and for r # nr, use the response system 

given above. It was shown in Ref. [ 121 that for 
r > 0 sufficiently small, synchronization is possi- 
ble. To see that the coupling is impulsive, we write 

lilr = ft(~r~,~z~) + s(t)(~r - ~1~) where s(t) = 
c,“, S( I - rz~), and S( .) is the Dirac delta function. 
If we formally integrate this equation in [rzr-, nr+] , 

we obtain (formally) t-lt,(n~+) = ui (nr). We note 
that in our scheme the switching signal is a square 
wave which is drastically different from an impulse, 

and we do not make any assumptions on initial con- 
ditions. Consequently, the results presented in Ref. 
] IZ] and here cannot be deduced from each other. 

Moreover, the length of the synchronization interval 
TV > 0 is of crucial importance for our scheme, and 

our results do not hold for T,. = 0, see ( 16), ( 17). 
Also note that when s(t) = 1, i.e. a unit step, our 
scheme for synchronization is the same as the scheme 

in Refs. [ 8,9]. 

3. Simulation results 

For an application of the ideas given above, we con- 
sider the well-known Lorenz system for the drive sys- 
tem, see Ref. [ 21. Since the state variables of Lorenz 
equations may vary in a wide dynamical range, for 
simulation purposes following Ref. [ 81, we use the 
following “scaled” Lorenz system, 

k = a(y - X) , 

$= -20xz +rx-y, 

i = 5x-y - bz . (21) 

We choose the parameters (+, r and b so that the Lorenz 
system (21) is in the chaotic regime. The solution 
X( t ) of (2 1) will be used to synchronize the solutions 
of the following response system, see Ref. [ 81, 

xr = dy, - &> , 

jr== -2Ox,z,+rx,-_y,+s(t)(-202,+r)(x-x,), 

t, = Sx,y, - bzr + Ss(t)y,(x - n,) . (22) 

In our notation we have u = (X y z)~, w = 

(x, y,. z,.)~, o = X, hence we have c = (1 0 O)T. 

Note that (22) is of the form (2) with K(w) = 

(0 - 202, + r 5yr)T. Moreover, when s(t) = 1, 

(22) becomes 

jr = -2Oxz, + rx - yr , 

i, = Sxyr - bz, t (23) 

which is the response system used in Refs. [ 2,8]. By 
using a suitable Lyapunov function, it could be shown 
that (21) and (22) synchronize exponentially fast, i.e. 

(3) ho1dsseee.g. Refs. [11,13,14]. 
For longer messages we could choose the synchro- 

nization interval rY su~ciently long so that the error 
made in the signal recovery is arbitrarily small. Al- 

ternatively, we could divide the message into smaller 
parts, if possible, and send each part in a message 

transmission phase, followed by a synchronization 
phase. 

Next we present some numerical simulation results 

which indicate that the suggested method can be used 
for successful message transmission and recovery. In 
the first two simulations, we considered the ideal case 

(i.e., no noise and no parameter mismatch). In the 
first simulation, as the message to be sent, we used 
the speech signals corresponding to the sounds of let- 
ters “A” and “B”. This message is obtained by using 
the sound tools available in Sun Sparcstations. In this 
simulation, we use v = 10, r = 20, b = 1, T, = 15 sec. 
and T,, = 20 sec. This message is recovered with good 
listening quality. The simuIation results can be seen 
in Fig. 1. In the second simulation, the message to be 
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tme 

Fig. I. Transmission of sounds “A” and ‘3” was received with 

perfect listening quality. (a) Drive versus response signals; (b) 

transmitted versus recovered messages (data was plotted after 

transient time); (c) transmitted message versus time; (d) received 

message versus time. 

sent is the coded version of the word “chaos”. For cod- 

ing, we used the standard international alphabet code 
no. 2, see e.g. Ref. [ 161. As it is seen in Fig. 2, mes- 
sage recovery is very successful. In this experiment, 
we choose u = 16, r = 46, b = 4, T, = 10 sec. and 
T,,, = 10 sec. In both simulations, message amplitude 

is not small as compared to that of the drive signal. 
The message level is not important in this case, with 

arbitrary message levels one can recover the message 
successfully. In Fig. 2d, the signal transmitted to the 
receiver is also plotted. As can be seen, although the 

message level is comparable to that of the chaotic car- 
rier, it is well masked, and the switching instances 
are not detectable. Most of the message transmission 

techniques proposed in the literature require that the 
message level be sufficiently smaller than the chaotic 

signal level, and this may be a problem when noise is 
also present, since then the message level should also 
be sufficiently bigger than the noise level for success- 

ful message recovery. Our aim in these simulations is 
to show that even if the message level is comparable 
with the chaotic signals, one can still recover the mes- 
sage successfully in our scheme. 

In the remaining simulations we considered the non- 
ideal case. For the noise, we used Gaussian noise with 
zero mean (and scaled magnitude), generated by com- 
puter. In the third simulation, we considered the trans- 
mission of the sentence “wish you good luck” in the 
nonideal case. This sentence is coded by using the 

Fig. 2. (a) Transmitted message; (b) recovered message; (c) 

error in message recovery; (d) signal transmitted to the receiver. 

same code used above. To show the arbitrariness of the 

message level, this time we chose the maximum mes- 
sage level as 0.05 and we considered both noise and 
parameter mismatch. Since in this case we could not 
send arbitrarily long messages in our scheme, we di- 
vided the message into four parts, and sent each word 
in one message transmission interval, which is then 

followed by another synchronization interval. We use 
g = 10, r = 20, b = 1, T, = 25 sec., T,, = 30 sec. for 
the following simulations. For the noise amplitude and 

the parameter mismatch, we considered two cases. In 
the first case, noise amplitude is scaled to 10h5 and 

all parameters are changed by 0.02% in the response 
system (i.e., multiplied by 1.0002). The results are 
given in Figs. 3a,d. As can be seen, the message is re- 

covered successfully. In the second case, noise ampli- 
tude is scaled to 10m3 and all parameters are changed 
by 0.2% in the response system. The results are given 
in Figs. 3b,e. We also performed various simulations 
with bigger noise and parameter mismatch values. Ac- 
cording to these simulations, as those values become 
bigger, we could still recover the message with suf- 
ficient accuracy by increasing T, and decreasing T,,,. 
Obviously, the message level should be sufficiently 
bigger than the noise level. 

4. Conclusion 

In this paper we considered a chaotic masking 
scheme by using synchronized chaotic systems. As in 



Fig. 3. (a) Error in message recovery for case 1 (n,, = lo-“. 
p = 0.02% parameter mismatch); (b) error in message recovery 
for case 2 (n, = IO-‘, p = 0.02%); (c) transmitted message; (d) 
recovered message for case I; (e) recovered message for case 2. 

most synchronization schemes, we assume that a drive 
system generates chaotic signals and some of these 
signals are used in the response system for synchro- 
nization. In our scheme, communication is divided 
into synchronization and message transmission inter- 
vals, and while the drive and the response systems are 
only synchronized in the synchronization interval, the 
message is only sent and recovered in the message 
transmission interval. In the latter interval, the re- 
sponse system is switched to an autonomous system, 
and we showed that under certain conditions one can 
recover the message successfully. We note that the 
proposed technique is quite general and could be used 
with any synchronized chaotic system, as long as the 
stated assumptions hold. We presented some theoreti- 
cal and simulation results indicating that the proposed 
technique may be used in some applications. 

We did not investigate the security of our scheme. 
In Ref. [ 171, the security of communication schemes 
based on chaotic carriers when the hidden information 
signal is buried at the order of -30 dB with respect to 
the chaotic carrier were analyzed and it was concluded 
that such systems may be useful to increase privacy, 
but may not provide a high level of security. It was 
also concluded in Ref. [ 171 that the hidden signals 
added to the chaotic carrier at low power make it even 
easier to recover the hidden signal. We do not claim 
any level of security for our scheme, and probably the 
conclusions of Ref. [ 171 apply to our scheme as well 

when the message level is low. But we note that our 
results are independent of the message level, whereas 
in most of the chaotic masking schemes the message 
level is required to be sufficiently lower than that of 
the chaotic carrier. In view of the results of Ref. [ 171, 
the flexibility in adjusting the message level might 
improve the security of our scheme. However, this 
point requires further research. 

We also did not consider the problem of synchro- 
nization of the switching signal s(t) between the drive 
and the response systems. Since s(t) is a periodic sig- 
nal, oscillators which generate the same s(t) could be 
built, tuned and used at transmitter and receiver. Such 
oscillators could be triggered by a signal transmit- 
ted through the data channel prior to communication, 
preferably several periods before the actual transmis- 
sion. Other schemes may also be possible, but since 
this is not our main aim, we do not discuss this prob- 
lem in detail here. 

Several improvements on the scheme proposed in 
this paper are possible. The estimate given by ( 15) 
appears to be very conservative. Instead of using the 
Lipschitz constant k, in ( 15), one might use an ap- 
propriate Lyapunov exponent associated with the drive 
system, cf. ( lo), ( 12). Then, by choosing the param- 
eters (i.e., cr, b, r) appropriately, one might obtain 
small positive Lyapunov exponents. This may affect 
the maximum message transmission interval r,,,. We 
expect that as the positive Lyapunov exponents be- 
come smaller, Tm becomes larger. An optimum relation 
between Ts and 7’, may also be obtained. The relations 
between the Lyapunov exponents, intervals T,, T,, and 
the security level of our scheme should also be ana- 
lyzed. An electronic circuit implementation may also 
be possible, see Ref. [8]. Work along these lines is in 
progress and the results will be presented elsewhere. 
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