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Fig. 6. Left to right: outputs of the proposed scheme (N = 64) and classical
full-search vector quantization (N = 256) for image Man.

Significant power savings are achieved during both coding and
decoding. The fact that the power required for the decoding is
decreased in comparison to classical vector quantization is of great
significance as the decoder is usually the mobile part in portable
applications (wireless applications) where power consumption is the
overriding issue. Image quality comparable to or better than the
corresponding of full-search vector quantization is achieved. For
specific codebook sizes, coding speed is also improved in comparison
to classical full-search vector quantization (on a basis of acceptable
image quality).

The dominant tradeoff in the proposed scheme is between image
quality and power consumption. This tradeoff becomes more critical
in applications with low-power consumption requirements, such as
portable applications. From the experimental results, it is straight-
forward that the codebook size is the factor that mainly determines
this tradeoff.
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Robust Adaptive Filtering Algorithms
for -Stable Random Processes

Gül Aydı́n, Orhan Aŕıkan, and A. Enis ¸Cetin

Abstract—A new class of algorithms based on the fractional lower
order statistics is proposed for finite-impulse response adaptive filtering
in the presence of�-stable processes. It is shown that the normalized
least mean p-norm (NLMP) and Douglas’ family of normalized least
mean square algorithms are special cases of the proposed class of
algorithms. A convergence proof for the new algorithm is given by
showing that it performs a descent-type update of the NLMP cost
function. Simulation studies indicate that the proposed algorithms provide
superior performance in impulsive noise environments compared to the
existing approaches.

Index Terms—Adaptive filtering, alpha-stable random processes, im-
pulsive signals, LMS algorithm.

I. INTRODUCTION

In many signal processing applications, the noise is modeled as
a Gaussian process with significant simplification in the required
processing. To justify this assumption, the central limit theorem (CLT)
is usually quoted. However, a large class of physical observations
exhibits non-Gaussian behavior, such as low frequency atmospheric
noise, man-made noise, and underwater acoustic noise [1]–[4]. Typ-
ical realizations of such random signals contain a large number of
outliers. Due to this reason, the Gaussian noise model for these
signals cannot be justified. Recently,�-stable processes, which are
the limiting distributions for a more general CLT, were proposed to
model this type of impulsive noise environment [5].

The �-stable distributions do not have closed form probability
density functions except the cases� = 1 (Cauchy distribution) and
� = 2 (Gaussian distribution). However, they have closed form
characteristic functions given by

�(t) = expfiat� 
jtj�[1 + i� sign(t)w(t; �)]g (1)

where� (0<� � 2) is the characteristic exponent,a is the location
parameter,� (�1 � � � 1) is the index of skewness,
 > 0 is the
dispersion parameter,sign(�) denotes the signum function, and

w(t; �) =
tan

��

2
; if � 6= 1

2

�
log jtj; if � = 1:

(2),

The distribution is called symmetric�-stable (S�S), if � = 0:
The parameter� controls the tails of the distribution. For0<�< 2,
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the distributions have algebraic tails which are significantly heavier
than the exponential tail of the Gaussian distribution. The smaller the
value of the�; the heavier the tails of the distributions. This property
makes the�-stable distributions an appealing model for impulsive
noise environments. It is well known that algorithms developed under
the Gaussian assumption may produce unacceptable results [5], [6],
if the noise is impulsive.

Due to the heavy tails, stable distributions do not have finite
second- or higher-order moments, except the limiting case of� = 2:
More precisely, forX, an�-stable random variable with0<�< 2

EEE[jXjp] = 1; if p � �: (3)

However, for0 � p<�, the fractional lower order moment (FLOM)
is finite, i.e.,

EEE[jXjp]<1; if 0 � p<�: (4)

If � = 2;, then

EEE[jXjp]<1; for all p � 0: (5)

The fractionalpth-order moment [5] of an S�S random variable
with zero location parameter,a = 0; is given by

EEE[jXjp] = C(p; �)
p=�; for 0<p<� (6)

where

C(p;�) =

2p+1�
p+ 1

2
�(�p=�)

���(�p=2)
: (7)

In (7), �(�) denotes the gamma function.
Since the variance of an�-stable process is infinite for�< 2; �-

stable processes cannot be treated in a Hilbert space framework which
requires the existence ofL2 norm. However, it is possible to use a
Banach space framework for the geometrical treatment of the�-stable
processes, where only the existence ofLp norm forp<� is required
[5], [7].

In this paper, we introduce new algorithms for adaptive filtering
under additive�-stable noise with finite mean corresponding to the
case of1 � �< 2: These adaptive algorithms are based on fractional
lower order statistics (FLOS). The performance of the algorithms is
compared to those of the normalized least mean square (NLMS)-type
algorithms which are developed under the Gaussian assumption and
the NLMP norm algorithm which is based on FLOS.

II. SOME RELATED ADAPTIVE FILTERING ALGORITHMS

The NLMS algorithm, also known as the projection algorithm [9],
has the following update equation:

WWW k+1 =WWW k + �
ek

M�1

m=0

x2k�m

XXXk (8)

whereWWW k = [w0;k � � �wM�1;k]
T are the tap weights of the adaptive

filter at timek;XXXk = [xk � � � xk�M+1]
T are theM samples of the

input data in filter memory at timek; ek = dk�WWWT
kXXXk is the error

between the adaptive filter output and the desired signaldk; and� is
the step size which should be appropriately determined.

Recently, Douglas [11] proposed a family of algorithms of the form

WWW k+1 =WWW k + �ekFq(XXXk)

[Fq(XXXk)]i =

jxk�ij;
q�1 sign(xk�i)

M�1

m=0

jxk�mjq

; if 1 � q <1

1

xk�n
�i�n; if q = 1

(9)

where[Fq(�)]i denotes theith element of the vector-valued function
Fq(�); n is any one of the integers0; 1; � � � ;M�1 such thatjxk�nj =
max0�j�M�1 jxk�j j; and �j is the Kronecker delta function. The
above update equation can be rewritten more compactly as

WWW k+1 =WWW k + �
ek

kXXXkk
q
q
XXX
hq�1i
k (10)

whereXXXhq�1i
k = [x

hq�1i
k � � � x

hq�1i
k�M+1]

T andh�i operator corresponds

to zhbi
�
= jzjb sign(z) for any real numberz andb � 0: For q = 2;

this algorithm reduces to the NLMS algorithm of (8). Also, forq = 1;
it reduces to the well known normalized sign algorithm which was
proposed to decrease the computational complexity of the NLMS
algorithm [10]. Using any validq and taking� = 1 the family
of algorithms in (9) is shown to be the solution of the following
optimization problem [11]:

minimize kWWW k+1 �WWW kjjp (11)

subject to dk �WWWT
k+1XXXk = 0 (12)

wherek � kp denotes theLp norm, andp satisfies1=p + 1=q = 1:
Therefore, the adaptation algorithm of (10) provides the minimum
change in theLp-norm sense of the tap weights to exactly satisfy the
filtering relationship between the input data and the desired response
at timek; similar to the projection in theL2-norm case.

It can be shown that in the presence of�-stable distribution, the
variance of the update term of (9) is not finite. We also experimentally
observe this fact as discussed in Section III-A.

Another gradient descent algorithm which can be used in the
presence of�-stable distributions has been derived to minimize the
following p-norm cost function (hence known as least meanp-norm
(LMP) or LMP algorithm)

Jk = EEE[jekj
p] (13)

and it has the following update equation [5]:

WWW k+1 =WWW k + �e
hp�1i
k XXXk (14)

for 1 � p<�: The normalized version of the LMP algorithm, which
will be referred to as NLMP, has the following update equation [7]:

WWW k+1 =WWW k + �
e
hp�1i
k

kXXXkk
p
p + �

XXXk: (15)

In the next section, we introduce a more general adaptation
algorithm and then compare its performance to that of the algorithms
summarized in this section.

III. A F AMILY OF ADAPTATION ALGORITHMS BASED ON FLOS

As a generalization of the NLMP update equation, we propose the
following update equation:

WWW k+1 =WWW k + �
e
hai
k

kXXXkk
qa
qa + �

XXX
h(q�1)ai
k (16)

which reduces to the NLMP update ifa andq are chosen asp�1 and
p=a, respectively. In the presence of an�-stable process, the above
update equation can be used with0<a � � � 1 and1 � q: Also,
the update in (10) can be obtained as a special case with the choice
of a = 1 and � = 0:

The proposed update can be further motivated by observing that
it corresponds to a gradient descent adaptation approach to the
following cost function:

Jk = EEE[jekj
a+1]; for 0<a<�� 1: (17)

A proof of this observation can be obtained by showing that the inner
product of the weight update vector in (16) and the instantaneous
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gradient estimate of the above cost function is nonpositive [8]. This
will naturally lead to the conclusion that for sufficiently small�,
the update is of gradient descent type. It can be shown easily that
instantaneous gradient estimate of the cost function in (17) atWWW k is

rWWWJk = �(a+ 1)e
hai
k XXXk: (18)

The inner product of the instantaneous gradient estimate and the
weight update vector in (16) is

frWWWJkg
T�

e
hai
k

kXXXkk
qa
qa + �

XXX
h(q�1)ai
k

= �(a+ 1)�
e
hai
k

kXXXkk
qa
qa + �

M�1

i=0

jxk�ij
(q�1)a+1 (19)

where the right-hand side is nonpositive as claimed. Therefore,
although the update directions of the NLMP [wherep = (a+1)] and
the proposed algorithm are not the same, both of them correspond to
the descent direction of the cost. Hence, for a sufficiently small�,
the proposed iterative update converges as well [7].

The algorithms of (15) and (16) can also be investigated in terms
of their computational efficiency. The only difference between the
two algorithms is the nonlinear transformation of the input vector in
(16). Since the vectorXXXh(q�1)ai

k can be rewritten as

XXX
h(q�1)ai
k =

x
hqai
k

xk
� � �

x
hqai
k�M+1

xk�M+1

T

=
x
hqai
k

xk
XXX

h(q�1)ai
k�1 (1: M � 1)

T

(20)

only the termxhqaik =xk is needed for recursive evaluation ofkXXXkk
qa
qa

at each time step. The termxhqaik =xk can be computed by power
series expansion, and it can be closely approximated by using a few
multiplications independent of the filter lengthM: Therefore, the
complexity of both NLMP- and FLOS-based algorithms are the same.

A. Simulation Studies

In the following set of simulations, we compare the performances
of the adaptation algorithms considered in this paper in a prediction
problem where the input sequence is an AR(M) �-stable process,
which satisfies the following all-pole model

xk =

M

i=1

aixk�i + uk (21)

where ai’s are deterministic coefficients anduk is an i.i.d. noise
process with symmetrical�-stable (S�S) distribution. It has been
shown that iffaig is an absolutely summable sequence, then random
variablexk is also an S�S with the same parameters ofuk [5], [12].
Hence, the input sequence in (21) is a sequence of correlated�-stable
random variables. In the following prediction simulations, the desired
signal sequencedk is set toxk+1: Also, it is assumed that exactAR
model orderM of the input sequence is known. Therefore, in the
case of a successful adaptation, the adaptive filter weights should
converge to the coefficient vector[a1a2 � � � aM ]T :

Here, we will first present the comparison study between FLOS-
based adaptive filtering algorithms of (9) and (16). The input sequence
is chosen as anAR(2) sequence with coefficientsa1 = 0:99 and
a2 = �0:1: In order to investigate the dependence on the exponent
of the �-stable process, we provide the results obtained with the
three different exponents 1.1, 1.2, and 1.5, respectively. For more
reliable results, throughout the paper all of the algorithms are run
over 100 independent realizations of the input process. In Fig. 1,

Fig. 1. Transient behavior of tap weight adaptations of (9) and the proposed
FLOS-based algorithm of (16) (dashed line) for� = 1:1; � = 1:2; and
� = 1:5; respectively. TheAR(2) process parameters area1 = 0:99 and
a2 = �0:1:

Fig. 2. Transient behavior of tap weight adaptations for the proposed
FLOS-based algorithm (dashed line) of (16), and the NLMP algorithm
(solid line) of (15) for� = 1:1; � = 1:2; and� = 1:5: TheAR(2) process
parameters area1 = 0:99 and a2 = �0:1:

average tap weights of both algorithms are shown as a function
of time. Subfigures correspond to the exponents 1.1, 1.2, and 1.5,
respectively. For� = 1:1; the value of the parameterp in (11) is
taken as 12/11 and for� = 1:2; and 1.5,p is taken as 7/6. We also
show the performance of the FLOS-based algorithm of (16) on the
same plot. As can be seen, the performance of the NLMS algorithm of
(9) is far from satisfactory and gets worse for the lower values of�,
while the FLOS-based algorithm of (16) converges to the optimum
values around 2000 time steps.
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Fig. 3. The system mismatch,kWWWk �WWW �k22; for the “momentum” FLOS-based algorithm of (22) (dashed line), and the “momentum” NLMP algorithm of
(25) (solid line) for� = 1:2: TheAR(5) process parameters area1 = 0:89; a2 = �0:152; a3 = 0:1; a4 = �0:197; anda5 = 0:097:

The same system identification problem is considered for the
simulation studies of the proposed algorithm and NLMP algorithm of
(15) in Fig. 2. We plot the performance of the proposed FLOS-based
algorithm of (16) and the NLMP algorithm of (15) for� = 1:1; 1:2;
and 1.5, respectively. As can be seen from the figure, the proposed
algorithm converges to the optimum value around 3000 time steps
while the NLMP algorithm converges around 4000 time steps. To
get a fair comparison between the algorithms, the step size of the
algorithms is adjusted so that the steady state variances of the tap
weights are equal.

The proposed algorithms are all based on the instantaneous value
of the gradient vector. When the signals are Gaussian and stationary,
ignoring the past and using only the instantaneous gradient at timek

is a reasonable approximation [13]. In impulsive noise environments,
the current observation may be an outlier resulting in a significant
deviation from the actual gradient of the cumulative cost function.
The use of more than one term to estimate the gradient improves the
robustness of convergence behavior of the algorithm. Therefore, we
also investigated the following “momentum”-type update:

WWW k+1 =WWW k + �f(tttk�j ; � � � ; tttk) (22)

where

tttn =
e
hai
n

kXXXnk
qa
qa + �

XXX
h(q�1)ai
n (23)

and

f(tttk�j ; � � � ; tttk) =

k

n=k�j

tttn: (24)

The above update is compared to similarly obtained “momentum”-
type NLMP algorithm given by

WWW k+1 =WWW k + �f(zzzk�j; � � � ; zzzk) (25)

where

zzzn =
e
hp�1i
n

kXXXnk
p
p + �

XXXn; for k � j � n � k (26)

andf(�) is given in (24). These “momentum” versions of the update
equations requires additional memory to store the past estimates of
the gradient, and an additional scalar vector multiplication. Therefore,
their use can be justified easily, if their performance is better than
the instantaneous gradient-based approaches.

In Fig. 3, we plot the system mismatch for� = 1:2 by generating
anAR(5) �-stable random process for the “momentum” FLOS-based
algorithm of (22) and for the “momentum” NLMP algorithm of (25)

(a)

(b)

Fig. 4. Algorithms forj = 0 (heavy solid line),j = 1 (dashed line),
j = 3 (dash-dot line), andj = 5 (solid line). (a)“Momentum” FLOS-based
algorithms of (22). (b) “Momentum” NLMP algorithm of (25).

to compare their relative performances. TheAR(5) �-stable process
parameters area1 = 0:89; a2 = �0:152; a3 = 0:1; a4 = �0:197;
and a5 = 0:097: We takej = 2 in this plot. It is clear that the
proposed “momentum” FLOS-based algorithm of (22) performs better
in this case. In Fig. 4, we plot for the system mismatch of theAR(5)
process defined above for variousj values of the algorithms (22) and
(25), respectively. Forj = 1, the proposed FLOS-based algorithm
of (22) converges around 2500 time steps, whereas forj = 5; it
converges around 1000 time steps. Similarly, the algorithm of (25)
converges in 3000 time steps forj = 1 and 1000 time steps for
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j = 5: However, increasingj means also decreasing the space
in the memory. From the plots it is observed that there is a great
improvement in results whenj is increased from 1 to 3. However,
there is not much difference whenj is increased from 3 to 5. We
reach a point of diminishing returns atj = 3, and the use of too many
past values of the gradient vector does not improve the convergence
further. In this section, all the simulation studies are the average of
100 independent trials as well.

IV. CONCLUSION

In this paper, new adaptive filtering algorithms for impulsive noise
environments are introduced. These algorithms are obtained as a
generalization of the NLMP algorithm by using FLOS. Under the
same assumptions of the LMS convergence, it is shown that the
new class of algorithms converge for small enough adaptation step
size. The computational complexity of the proposed algorithms is
in the same order with that of the NLMP algorithm. It is observed
that the new algorithms demonstrate superior performance compared
to the previous methods. Also, it is demonstrated that speedup in
convergence can be achieved by using a “momentum” version of the
update with tolerable increase in the memory requirements.
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A New Division Algorithm Based on
Lookahead of Partial-Remainder (LAPR) for
High-Speed/Low-Power Coding Applications

Hyung-Joon Kwon and Kwyro Lee

Abstract—A new polynomial division algorithm in finite field GF(2m)
based on the lookahead of partial-remainder (LAPR) is proposed. Since
our algorithm is based on partial division on group basis and looka-
head technique exploiting the linearity in finite field arithmetic, it is
possible to completely eliminate polynomial multiplications leading to
highly increased throughput per unit time. The inherent regularity and
feedforward nature of our algorithm make it possible to be fully pipelined.
When pipelined, its throughput is one quotient and one remainder per
clock cycle, regardless of the degree of dividend polynomial, which is
orders of magnitude faster than the conventional architecture using
linear feedback shift register. An area-efficient sequential architecture
based on LAPR is also presented. Although the throughput rate of
sequential architecture is lower than that of the pipelined one, it is still
higher than that of any division architecture ever reported. Those will
be shown to be efficient, regular, and easily expandable, and hence,
naturally suitable for very large scale integration implementation. In
systems requiring modest speed, the high-speed nature of our proposed
architecture can be traded for low-power consumption by reducing clock
rate. We verified the general validity of the division algorithm based on
LAPR by mathematical manipulation and simulation. The superiority
of our proposed architecture compared with other reported ones is
demonstrated with regard to its throughput, latency delays, and power.

Index Terms— Author, please supply index terms. E-mail
keywords@ieee.org for info.

I. INTRODUCTION

Division in the finite field GF (2m) is the most
important building block in coding systems such as BCH
(Bose–Chaudhuri–Hocquenghem) and RS (Reed–Solomon) codes for
applications to communications, optical disks, portable equipment,
and control and computer systems, since these coding systems are
based on long polynomial divisions. The conventional architecture
for division in finite fields uses linear feedback shift register
(LFSR), which consists ofk stage feedback shift register, where
k is the degree of the divisor polynomial. A diagram for such a
division architecture is shown in Fig. 1. The quantitiesm0, m1,
� � �, mk are the coefficients of the divisor polynomial. However,
as the high-speed requirement for real-time audio or video coding
capability and the low-power requirement for portable equipment
increase, this division architecture using LFSR has shown several
limitations as described below.

In some very high-speed applications, the presence of a global
feedback signal imposes severe constraints on the switching speed.
The fact that the input to allk stages is the feedback signal forces
all k stages to be synchronous, necessitating the use of a global
clock. The need to distribute the global clock and the feedback signal
to all stages of the architecture can seriously restrict the maximum
switching speed achievable in a practical implementation. To remedy
this, an alternative configuration was suggested by Tong [1], where
the feedback path is pipelined such that the feedback signal goes
through one delay unit before it is fed back to each shift register
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