INT. J. COMPUTER INTEGRATED MANUFACTURING, 1999, VOL. 12, NO. 2, 129 -140

An exact tool allocation approach for CNC

machines

M. SELIM AKTURK

Abstract. An exact approach is developed to determine the
optimum machining conditions and tool allocation decisions
simultaneouslyto minimize the total production coston a CNC
turning machine. There are multiple machining operations
and we consider a set of alternative cutting tool types for each
operation. The existing tool management approaches at the
system level fail to relate the tooling issues to the machining
conditions, and ignore the tool availability and tool wear
restrictions. Consequently, we not only improve the overall
solution by exploiting the interactions between these two
decision making problems, but also prevent any unfeasibility
that might occur for the tool allocation problem due to tool
contention among the operations for a limited number of tool
types by considering the machining operation, tool availability
and tool life limitations. The computational results indicated
that the average computation time to find an optimum
solution was 1.11s, whereas the maximum time was 11.45s,
for a set of randomly generated problems.

1. Introduction

There is an increasing requirement for manufactur-
ing industries to achieve effective, diverse, small lot
production, so as to meet diversified user needs.
Numerical control (NC) is a form of programmable
automation, which is designed to accommodate varia-
tions in product configurations. Its principal applica-
tions are in low and medium volume situations,
primarily in a batch production mode. The results of
a US Census Bureau survey of nearly 10000 manufac-
turing firms in 1990 offered insight into use of 17
manufacturin g technologies, such as CAD/ CAE, robots.
NC machine tools, with 41.5% of the respondents
indicating its use, was the most widely used manufactur-
ing technology. Machinery production statistics re-
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leased by the Japanese Ministry of International Trade
and Industry showed that the number of NC machine
tools produced in Japan was equal to 61 695 in 1990,
which made more than 75% of total machine tool
production shares (Asai and Takashima 1994). Further-
more, one of the major components of a flexible
manufacturing system (FMS) is computer numerical
control (CNC) machine tools. A FMS is usually defined
as a group of CNC machine tools interconnected by a
material handling system and controlled by a computer
system.

In view of the high investment and operating costs
of CNC machines and hence of FMSs, attention
should be paid to their effective utilization. Gray et
al. (1993) and Veeramani et al. (1992) give extensive
surveys on the tool management issues of automated
manufacturing systems, and emphasize that the lack of
tooling considerations has resulted in the poor
performance of these systems. Kouvelis (1991) identi-
fied cutting tool utilization as an important parameter
for the overall system performance. In this study, the
cost of tooling has been reported to be 25-30% of the
fixed and variable costs of production. Gray et al
(1993) also present an integrated conceptual frame-
work for resource planning to examine how tool
management issues can be classified into tool-level,
machinedevel, and system-evel concerns. Tool man-
agement decisions arise in production planning and
scheduling, and involve machine grouping, part type
selection and loading, and tool allocation at the system
level. The key tool management issues at the single
machine level are loading and placing a set of tools in
the machine’s magazine, determining the part input
sequence to meet certain magazine constraints and
establishing tool replacement strategies. Tool manage-
ment issues at the tool level include tool selection
activities, such as the number and type of cutting tools,
and tool cutting speeds and feed rates for each
manufacturing operation.
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For solving the tool allocation problem at the
system level, most of the published studies use 0-1
binary variables, i.e. a particular tool j is assigned to
operation i, to represent tool requirements. Stecke
(1983) formulates the FMS loading problem as a
nonlinear mixed-integer programming (MIP) problem
and solves it through linearization techniques. Sarin
and Chen (1987) give an integer programming (IP)
formulation under the assumption that the total
machining costs depend upon the tool-machine
combination. Ram et al (1990) develop a new
formulation for the same problem using discrete
generalized networks to propose an efficient algorithm
for solving the resulting mathematical model. Both the
machining costs and tool lives are considered as fixed
system parameters regardless of the machining condi-
tions. Leung et al (1993) propose a linear integer
model to solve part assignment and tool allocation
simultaneously to minimize the sum of machine
process, in-process tool use and material handling
costs. Maheshwari and Khator (1995) extend the IP
loading model of Leung et al to evaluate several
operational control strategies by utilizing a simulation
model. All of these studies assume constant processing
times and tool lives as a priori information by ignoring
their interaction with the machining conditions selec-
tion and the tool availability restrictions. Therefore,
they cannot consider the actual tool wear and the
corresponding tool life limitations, hence the resulting
tool replacement needs and their impact on the total
cost. Furthermore, depending on the batch size, the
number of tools required to produce a certain operation
might be greater than one. Finally, most of the studies
determine the tool requirements for each operation
independently, and fail to consider the contention
among the operations for a limited number of tools. The
operational characteristics of the system components,
such as machining conditions, tool availability and tool
life, should be taken into account for the reliable
modelling of CNCs, or the absence of such crucial issues
could lead to unfeasible or inferior results.

At the machine level, most of the studies emphasize
the minimization of tool switches due to a change in a
part mix (Tang and Denardo 1988, Kouvelis 1991,
Crama et al 1994). Unfortunately, these studies also
assume constant processing times and tool lives, even
though the tool wear, consequently the tool replace-
ment frequency, is directly related with the machining
conditions selection. Further, in the multiple operation
case, non-machining time components, such as the tool
replacements, can have a significant impact on the total
cost of production because of the relatively short tool
lives of many turning tools as stated by Gray et al
(1993). In the same study, they reported that tools are

changed ten times more often due to tool wear than to
part mix.

The machining conditions optimization for a single
operation is a well known problem, where the decision
variables are the cutting speed and feed rate. Several
models and solution methodologies have been devel-
oped in the literature (Gopalakrishnan and Al-Khayyal
1991, Tan and Creese 1995). However, these models
only consider the contribution of machining time and
tooling cost to the total cost of operation, and they
usually ignore the contribution of non-machining time
components to the operating cost, which could be very
significant for the multiple operation case. Further-
more, the existing studies exclude the tooling issues
such as the tool availability and the tool life capacity
limitations. As a result, their results can lead to
infeasibility due to tool contention among the opera-
tions for a limited number of tool types.

The remainder of this paper is organized as follows.
In the next section, we define the scope of the study
with the underlying assumptions and state a mathema-
tical formulation of the problem. In section 3, we
present the proposed solution procedure, which is
applied in an example problem in section 4. The
computational results are discussed in section 5. Finally,
some concluding remarks are provided in the last
section.

The notation used throughout the paper is as
follows:

speed, feed, depth of cut exponents for
tool j

B . Dbatch size

G : Taylor’s tool life constant for tool j
Cu, b, c,e: specific coefficient and exponents of the

machine power constraint

C, : operating cost of the CNC machine ($/

min)

o, B, v -

G, g,h,1: specific coefficient and exponents of the
surface roughness constraint
Gy . cost of the tool j ($/ per tool)
D; . diameter of the generated surface for the
operation i (in)
d; . depth of cut for operation i (in)
fij + feed rate for operation i using tool j (ipr)
H : maximum available machine power for all
operations (hp)
I : set of all operations
J . set of the available tools
J 1 set of the candidate tools that can be used

for the operation i

L; : length of the generated surface for the
operation i (in)

M : a very large positive number
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n; : number of tool type j required for
completion of operation i

N; : number of available tools on hand for tool
type j

pij : number of times that an operation i can be
performed by a tool type j

S; : maximum allowable surface roughness for
the operation i (pin)

tmy; : machining time of operation i using tool j

(min)

tool magazine loading time for a single tool

J (min)

tool replacing time for tool j (min)

T : tool life of tool j in operation i (min)

U; : usage rate of tool j in operation i

vij . cutting speed for operation i using tool j
(fpm)

x; : 0-1 binary decision variable which is equal
to 1 if tool j is assigned to operation i.

2. Problem definition

We develop a new mathematical model and propose
an efficient solution procedure to determine concur-
rently the optimal machining conditions of cutting
speed and feed rate, the optimal operation-tool
assignment, and the optimal allocation of tools, for
single -pass operations of a batch of parts processed on a
single CNC turning machine. In a previous study by
Avci and Akturk (1996), we address the tooling issues
related to tool sharing and loading of duplicate tools at
a single CNC machine level. A new algorithm is
proposed to solve the tool magazine arrangement and
operations sequencing problems subject to tool alloca-
tion, precedence and tool magazine capacity restric-
tions for the given machining conditions for each
manufacturing operation. In this study, we emphasize
the tool management issues at the tool level such as the
optimum machining conditions and tool selection—
allocation decisions in connection with the tool life,
machining operations and tool availability constraints
to minimize the total production cost.

The following assumptions are made to define the
scope of this study. Each machining operation has a set
of alternative tool types. For each type of cutting tool
there is only a limited number of tools available . For the
machining operations, the cutting speed and the feed
rate will be taken as the decision variables, and the
depth of cut is assumed to be given as an input. Initial
tool loading and subsequent tool replacements are only
allowed while the machine is off-line and only a single
tool can be changed at a time. This implies that tool
changing times are additive. Since the tool changing

events during an operation might adversely affect the
surface finish requirements, each machining operation
is assumed to be completed by a single tool type, even
though alternative tools are considered for each
operation. The batch size of each part is known,
although there might be a significant interaction
between the lot sizing and tool allocation decisions as
discussed in Akturk and Onen (1997). In the existing
decision-making hierarchy, we determine the optimum
machining conditions and the corresponding tool
allocations. Once calculated, processing and set-up
time data are passed up to the system planning level,
in which decisions such as batch sizes and schedules are
determined from the timing data along with system
level objective functions.

Advances in cutting tool materials and designs will
increase the cutting speeds at which machining is
carried out, consequently reduce the machining time,
but the initial tooling cost might be higher. Therefore
we consider a set of alternative cutting tool types for
each machining operation, such as HSS, carbides,
coated tools, since no one cutting tool type is best for
all purposes. Furthermore, the total production cost
should be expressed in terms of both machining time
and non-machining time components, and the tooling
cost. Machining time, #»,, is the time required to
complete a turning operation. Tool life is generally
defined as the machining time in minutes taken to
produce a given wear land for a set of machining
conditions. The relationship between the tool life, 7;;,
and machining time can be expressed as a function of
the machining conditions by using an extended form
of the Taylor’s tool life equation. For the turning
operation, a new expression is defined for the
machining time to tool life ratio, which is called the
usage rate of tool j in operation i, and denoted by Uj;.
A similar expression can be defined for other
machining operations.

Lty (DL [(12vif) nD L d’

Ty gloylaly  12gal T P

Consequently, p; =11/U;] and ny; =[B/p;]. For
practical purposes, p; must be found in order to
instruct either the CNC program or the operator to
change tools after a predetermined number of pieces
have been machined.

All time consuming events except the actual cutting
operation are called the non-machining time compo-
nents. Even though there might be many distinct non-
machining time components such as tool tuning,
workpiece loading/ unloading, etc., we only consider
the ones that can be expressed as a function of both the
machining conditions and alternative operation—tool
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pairs, such as tool replacing times, f,;, and loading
times, ¢;;.

A general mathematical formulation of the problem
is stated below, where the total cost of manufacturing
for a particular batch is expressed as the sum of
operating cost due to machining time and non-
machining time components, the tooling cost, and tool
waste cost, respectively. Depending on the batch size
and machining conditions, the number of tools
required to produce a certain operation might be
greater than one, i.e. BU; > 1. If the last copy of tool
type j is not fully utilized for machining operation i
then it can be used for machining other parts, although
the remaining tool life of the previous copies may not
be enough to produce a single operation due to tool life
constraint. Therefore, the cost of unused remaining
tool life prior to the tool replacement due to tool wear
is denoted as tool waste cost. There are four sets of
decision variables. The first set of decision variables, x;;,
represents the tool allocation decisions. The second set
of decision variables, n;;, depicts the number of tools of
a given type allocated to an operation. The third and
fourth sets, v; and fj;, respectively, represent the
machining conditions selection decisions.

Minimize C,, = BGC, E E Xij bz
il jel

+G, ZZXU((”U —1)s, +t1,)

iel jel

+Z Z e

il jel
+ZZ Gl B/psl(1 —piUy) .
iel jeJ

Subject to:
(Tool Assignment Constraints)

ZXU =1foreveryi €l
J€H

ny < Mx; foreveryi €1,j €4

xj > Uy foreveryi €1,j €J

(Tool Availability Constraint)
ini nij < Nj, for everyj €J

iel

(Tool Life Constraint)
xj Uj py <1, foreveryi€l,jeJ

(Machine Power Constraint)
xij(/’,nv,jb,ﬁ;df < H, foreveryi€l,j e
(Surface Roughness Constraint)
Xiquv;gjﬁ;id! < S, foreveryi €l,j e
(Non-negativity and Integrality Constraints)
v fi >0, = {0.1}
and nj, p; positive integers for everyi €1,j € J.

In this nonlinear MIP formulation, there exist three
types of constraints, namely, operational, tool related
and machining operation constraints. The first three
sets of constraints represent the operational constraints
which ensure that each operation is assigned to a single
tool type from its candidate tools set. The tool
availability and tool life constraints are the tool related
constraints which guarantee that the solution will not
exceed the available quantity on hand and the available
tool life capacity for any tool type. The last two sets of
constraints are the machining operation constraints.
The machining resistance is in general given by the
power function of cutting speed and feed rate, and it
must not exceed the motor power of the machine tool
employed. The surface roughness represents the quality
requirement for the operation and should be less than
a certain amount to ensure good product accuracy.

The proposed formulation can be very helpful in
defining the influence of the machining conditions on
the total production cost. If we increase either v;; or fy;,
or both, then we can reduce the machining time but
this will increase the machine horsepower and the
number of tool requirements, and equivalently non-
machining and tooling costs. On the other hand, a
heavy feed rate is conducive to the formation of a built-
up edge and a rough surface finish, whereas high
cutting speed improves the surface finish since it
decreases the built-up edge formation on the face of a
cutting tool. Therefore, a new approach is proposed to
determine concurrently the optimal machining condi-
tions, the optimal operation—tool assignments and the
optimal allocation of tools that minimize the total
production cost of a batch of parts processed on a CNC
machine.

3. Solution procedure

The constraints and the decision variables for
machining conditions and tool allocation interact with
each other. In order to solve these two interrelated
problems simultaneously, we propose a new solution
procedure by relaxing the set of tool availability
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constraints, which can be called coupling constraints. In
this resource directed decomposition procedure, we
first find the optimum machining conditions for all
possible operation—tool pairs and select the tool that
gives the minimum cost measure by using the single
machining operation problem (SMOP). This will
provide a lower bound for the tool allocation and
machining conditions optimization problem. If the
required number of tools for any tool type exceeds the
number of tools available on hand then we generate
different tool requirement levels for every operation—
tool pair. Consequently, the nonlinear MIP formulation
with several sets of constraints given in the previous
section is polynomially transformed to a much simpler
IP formulation as outlined below.

3.1.  Single machining operation problem

In SMOP, the objective function includes the
tooling cost and operating cost due to the machining
time, and it is possible to impose the machining
operation constraints on that problem together with a
tool life constraint. In the tool life constraint, p;; is a
positive integer corresponding to a desired level of tool
requirement, n;;. The followin g mathematical formula-
tion of geometric programming (GP) can be written for
the SMOP for every possible operation and tool pair:

(1) (1)

. . . _ _1 _1
Minimize M;; = Clv,-j f,.j +C2v,.j ﬁj

Subject to:
(Tool Life Constraint)
q!vzjaj_l)ﬁ;ﬁj_l) S 1

(Machine Power Constraint)
Cuvily <1
(Surface Roughness Constraint)

vaﬁﬁ;’ <1

vij.fii > 0
where
o _EDLG i Lid] G,
1=, 92T 12G
, mDLd]p; ., Cud! , _Gd!
t = > m = and CS =
12G H S

The associated GP-Dual problem for the above
formulation is given below. The objective function for
the dual problem is still a nonlinear one, but the
constraints of the dual formulation are well-defined
linear equations.

Maximize Q* = (%)YI(%)YZ(Q')Y}(C;)”(Q)&

Subject to:
h+n=1

N+l -4y —1) ¥ +bY: +g¥5 =0
4B 1B+ -1 +c¥s +h¥s =0

1., Y3, 14, Y52 0

The dual problem is solved by using the complementary
slackness conditions in conjunction with the primal and
dual constraints. Each of the constraints of the primal
problem can be either loose or tight at optimality and
the corresponding solution should be feasible in both
the dual and primal problems. Since we have three
constraints in the primal problem, there are eight
different cases for the dual, but only six of them are
feasible as implied by Theorem 1. Thus, the machining
conditions should always be set to a point on the
boundary of the feasible region as shown in figure 1.

Theorem 1: In the constrained SMOP, at least one of the
surface roughness or machine power constraints must be tight
at the optimal solution.

Proof: There are only two possibilities where both
constraints can be loose at optimality. (1) Only the tool
life constraint is tight. Then the dual variables Y3 and
Y5, which correspond to the machine power and
surface roughness constraints, respectively, are both
equal to zero due to the complementary slackness
conditions. Therefore, they can be eliminated from the
set of linear equations in the dual problem. We also
know that the inequality of, o; > B, ; > 1, always holds
for the extended Taylor’s tool life expression, T,
as shown by Gorczyca (1987). Since o; # 3, the
solution for this case is Y1 =0,Y>=1and Y3 = —1.
Therefore, this case is unfeasible since Y3 < (. As a

feed rate

Surface
roughness

Machine power

© /¢ /FEASIBLE/
/' / REGION;/

cutting speed

Figure 1. Feasible region.
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result, the tool life constraint cannot be tight just itself.
(2) All the constraints are loose, i.e. Y3 =Y, = Y5 =0.
This system is unfeasible since o; and f3; cannot be
equal to each other, which makes the system of
equalities inconsistent. Therefore, the occurrence of
such a case in constrained SMOP is also impossible. The
remaining cases include one of the mentioned con-
straints.

The exact solution for the extended version of
SMOP can be found by solving each of the aforemen-
tioned six cases for the worst case. Lets look at one of
the remaining six cases to show how we derived closed
form expressions for primal and dual variables. If both
the tool life and surface roughness constraints are tight
then Y3 and Y5 should be non-negative because of the
dual feasibility constraints. Furthermore the machine
power constraint is loose, so the corresponding dual
variable Y4 is equal to zero due to the complementary
slackness conditions. Therefore, the following system
can be written by using the complementary slackness
conditions:

' (aj_l) (ﬁ/'_l) _
Ctvij fij =1

g oh _

C;,v,-j i} =1
By taking the logarithmic transform, the above system
turns to a system of linear equations with two equations

and two unknowns, which is solved for v;; and fi;, as
follows:

_ (h In(1/C) —(f —1) 1n<1/c:)>
UEEP by = —g (B — 1)

p ((a; 1) In(1/C) —g 1n<1/C;)>
ij — €X
TP h(ay —1) —g(B —1)

where h(oy —1) —g(fi —1) #0,since g <0, ay, § > 1
and h > 0. After finding v;, f; and corresponding Mj,
dual variables ¥; and Y> can be calculated as they give
the weight of each term in the primal objective
function:

CIV,TIf,?'_l
Yi=—""— and ¥=1-1

M.

If the solution is dual feasible in terms of Y} and Y, i.e.
0 < 1, » < 1, then the followin g system is solved for 13
and Ys:

(Otj—l)Yz +g¥s =1 —(ocj—l)Yz

B-Drn+rv=v—-(p-1n

The overall solution for this case is dual feasible if
Y;,Ys > 0. Therefore, we can find the exact solution
very quickly since the explicit analytic expressions of the

solution in each case are derived due to the proposed
decomposition procedure. As a result, the proposed
approach finds the optimum machining conditions
after solving J problems for each operation i €1 and
has a polynomial time complexity of O(L).

3.2.  Algorithm

The following algorithm is proposed to reduce the
initial candidate tool set to a single tool for every
operation, by considering the tool availability con-
straints, and to determine the optimum tool allocation
and machining conditions for every operation. The
steps of the proposed algorithm can be summarized as
follows. In step 1, we solve SMOP for all possible
operation—tool pairs. In step 2, we propose a new cost
measure to extend the results of SMOP to handle the
multiple operations and find the global minimum of the
proposed cost measure for every possible operation—tool
pair. The best tool allocation is determined in step 3,
which also provides a lower bound for this problem. In
step 4, we check the tool availability constraint, if it is
violated for any tool type then the possible tool
requirement levels and their costs are calculated in step
5. An optimum solution is found in step 6. A numerical
example is given in the next section.

Step 1. For every possible operation (i,j), such that
j €Ji, solve SMOP using the procedure
defined above, and p;; values are initially
equal to [ B/N;] to ensure the feasibility in
terms of the tool availability constraint. Then,
update p;; according to the optimum v, fi;
and Uy, and calculate the corresponding n;.

Step 2. In the multiple operation case, a lower cost
measure can be obtained while increasing the
cost of SMOP, M;;, due to a possible decrease
in tool waste and tool replacement costs.
Therefore, for every operation (i,j), the
minimum cost measure must be searched
among the possible p; and n;; pairs. The
followin g cost measure is proposed to rank a
set of alternative tools for a particular opera-
tion in terms of their desirability for this
operation.

Cj = BM; + G, [(”ii —Du, +4,

+Cy| B/pisl (1 —piUy)

where the first term projects the cost of SMOP
over the batch, while the second and third
terms account for operating costs due to the
non-machining time components and the tool
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waste cost, respectively. Therefore the initial
n;; value is decreased to the next alternative nj;
setting, which corresponds to a different p';
and U} pair, and the cost measure is evaluated
for the new parameters. The proposed cost
measure is a convex function of the integer n;;
values, provided that p;U; < p;U; for
nj; < n;. The convexity of the proposed cost
measure is proven in theorem 2 given in the
Appendix. This theorem implies that if an
increase in the cost measure is found then we
stop and the previous solution corresponds to
the global minimum.

Step 3. Create a primal tools set, J,, such that
Jp = {/| argmin;ey, C;j for every i EI}. For
every j €Jp, define the corresponding set
of operation assignments, [;, such that
L={ilj €

and argmin C;j for everyj €J, }
ic

Lower bound is equal to:

LB=Y_ > Cy.

el i€l

Step 4. For every j €J,, calculate the total tool
requirement, R; = 2., nij. If R; < N; for
everyj € J, then solution is optimum, STOP.
Since the tool availability constraint is violated,
a reduction in their tool requirements is
needed, and in this case, the alternative tools
should also be considered because a possible
increase in the cost of SMOP due to a
reduction of tool usage might justify the use
of them. Therefore, solve SMOP for the
requirement level, k € {1, 2.0 }, of every
operation (i,j) to find pf-‘j, U,-’;, and the
corresponding M,’j Evaluate the following
cost measure for every operation-tool pair
(i,j) at the tool requirement level k.

Step 5.

Ch = BMj; + G, [(k — 1)1, +z,,}
+GyL B [pil (1 —py Uy)

Step 6. Solve the following IP to find the best
allocation for every operation that satisfies

the tool availability constraints:
nij
Minimize ZZZ (Tfjxf‘j
iel jeli k=1
Subject to:

njj

YD =1Vier

jek k=1

ZZ e < N Vjed
iel k=1

where xffj is a 0-1 binary decision variable
which is equal to 1 if the machining of volume
i is assigned to tool j at the tool requirement
level of k tools. In this formulation, the first
constraint ensures that a single allocation will
be selected for each operation. The second
constraint guarantees that total number of
tool allocations will not exceed the tool

availability constraints.

4. A numerical example

In this section, an example part is studied which has
twelve pre-specified machinable volumes as shown in
figure 2 with the geometrical data and the required
surface qualities given in table 1. Each machinable
volume, V;, can be machined by a set of candidate tools
denoted by an operation—tool pair (i,j). There are six
different cutting tool types available. Their technologi-
cal parameters and the other input data are presented
in tables 2 and 3, respectively.

The possible operation—tool assignments are given
by the following 0—1 matrix Y:

001 000710001 1]"
0010001000 1 1
SO R R T T S O A T S
110111011100
111111111100
0000001000 1 1

In the first two steps of the algorithm, the best
machining conditions for all possible operation-tool
pairs are determined for different n; values. In table 4,
this procedure is illustrated for the Volume-11 and
Tool-6 pair, i.e. operation (11, 6), as an example. At the
end of step 1, ni1,e was equal to 3. In the multiple
operation case, the optimal solution of the SMOP may

035 O=25in. =15

Figure 2. Machinable volume presentation.
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not correspond to the minimum of proposed cost
measure as illustrated in table 4 for the operation
(11,6). We found a better solution by decreasing the
number of tool requirements, which slightly increased
the cost of SMOP but decreased the overall cost
measure for the multiple operation case. Furthermore,
we can easily conjecture that the proposed cost
measure, a]’, is more effective than the SMOP
approaches, which do not consider the non-machining
time components and the tool waste cost.

In step 3, the following sets are formed by using the
best machining operation conditions for every possible
pair: I3 = ?, 2,4,5,6,8,9,10}, Is = {3} I ={7,11, 12}
and J, = {3, 5,6}. Therefore, a lower bound on the
minimum cost value is equal to 119.84. In step 4, we
check the tool availability constraint for everyj € J, as
follows:

R3 =n13 +no3 +na3+ns3+nes +ngs+nos+ni;
=34+6+6+2+4+24+34+2=28> N3 =20
Rs =n3s = 2< Ns5;=4

Re =n76 tniet+nns=1+2+1=4>Nsg=2

Since the tool availability constraints are violated for
tools 3 and 6, we calculate the tool requirement levels
and their cost values in step 5. The optimum tool
allocations with the corresponding machining condi-
tions found in step 6 are given in table 5, where the
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total production cost is equal to 122.06. The final tool
allocation 1is also represented by the following sets:
L ={2,3,46,79} Iy = {8}, Is = {1,510},
Is = 311, IZ}and J = {3,4,5,6 . When we analyse the
optimum solution for the allocation of Tool-6, this
solution suggests to use Tool-1 for the manufacturing of
Volume-7 instead of Tool-6, a reduction of a single
Tool-6 in the processing of the Volume-11, and it leaves
the SMOP solution for the Volume-12 without any
reduction in the usage of Tool-6. As a summary, the
initial solution of SMOP was inferior to the proposed
cost measure for the multiple operation case as
indicated in table 4, and it was also infeasible due to
tool availability constraint resulting from the tool
contention among the operations for a limited number
of tools.

5. Computational results

The SMOP algorithm presented earlier and the
matrix generator for the problem formulation were
coded in C language and compiled with the Gnu C
compiler. An optimal solution was found by using the
CPLEX MIP solver on a SPARC Station 10 under
SunOS 5.4. In this section, the efficiency of the
proposed exact approach for the tool allocation and
machining conditions optimization problem is tested in
terms of the computation time to find an optimal
solution.

Table 1. Machinable volume data.
|%:3 D; L; d; S; V# D L; d; S; Table 3. Tooling information.
141 4 3 0.2 300 ;2.6 2 0.05 50 T 7> T Ts Ts Ts
V5 4 9 0.2 400 i 2.6 3 025 400
Vs 3.6 3 005 75 Vo 2.6 4 0.25 300 by 0.75 0.75 0.75 0.75 1 0.75
Va 3.6 9 025 400 Vi 2.1 3025 300 1 1 1 1 1 1.5 0.75
Vs 3.1 2 025 300 W 2.1 4 0.05 40 N; 2 3 20 10 4 2
Vs 3.1 7 025 400 Vi, 1.6 3 005 30 Gy 0.50 0.70 0.70 0.70 0.75 0.75

Table 2. Technological exponents and coefficients of the available tools.

T# o I y G b c e Cn g h / G,
T, 4.0 1.40 1.16 40960000 091 0.78 0.75 2.394 1.52  1.004 0.25 204620000
T> 4.3 1.60 1.20 37015056 0.96 0.70 0.71 1.637 1.60 1.005 0.30 259500000
Ts 3.7 1.28 1.05 11001020 0.80 0.75 0.70 2.415 1.63 1.052 0.30 205740000
T4 4.1 1.26 1.05 48724925 0.80 0.77 0.69 2.545 1.69 1.005 0.40 204500000
Ts 3.7 1.30 1.05 13767340 0.83 0.75 0.73 2.321 1.015 0.30 203500000
Ts 4.2 1.65 1.20 56158018 0.90 0.78 0.65 1.706 1.104 0.32 211825000
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Table 4. Finding the minimum cost measure for operation (11,6).

njj Dy Vij fi I, Ty Uy M; Gy

3 12 659.02 0.01655 0.2015 2.5721 0.0784 0.1595 6.00

2 15 633.60 0.01567 0.2214 3.3217 0.0667 0.1607 557

1 30 535.20 0.01238 0.3318 9.9528 0.0333 0.1909 6.10

Table 5. Optimum tool allocation and machining conditions.

V# T# Dij Vij Ji Im,; T Uy M; njj Gy
1 5 16 286.08 0.02548 0.4308 7.1731 0.0601 0.2604 2 9.09
2 3 5 256.73 0.03189 1.1506 5.9650 0.1929 0.7103 6 23.83
3 3 15 475.57 0.02507 0.2370 3.5554 0.0667 0.1652 2 5.83
4 3 6 236.50 0.02635 1.3604 8.1623 0.1667 0.7969 5 2591
5 5 30 270.56 0.02181 0.2749 8.2552 0.0333 0.1616 1 5.60
6 3 8 242.92 0.02747 0.8510 7.0095 0.1214 0.5105 4 17.00
7 3 30 498.20 0.01833 0.1490 44712 0.0333 0.0979 1 3.44
8 4 15 214.75 0.03025 0.3142 4.7125 0.0667 0.2038 2 6.99
9 3 15 259.98 0.02321 0.4509 6.7640 0.0667 0.2721 2 9.04

10 5 30 270.56 0.02181 0.2793 8.5375 0.0327 0.1642 1 5.69

11 6 30 535.20 0.01238 0.3318 9.9528 0.0333 0.1909 1 6.10

12 6 30 639.16 0.01222 0.1608 4.8244 0.0333 0.1054 1 3.54

Table 6. Experimental factors.

levels, respectively. As a result, the tool availability

constraint was always violated in step 4 so we had to

Factors Definition Low High solve the IP formulation given in step 6. Finally, the
A Number of operations 50 100 fifth factor gives the tooling cost variability. .Since therz
B Number of tool types 6 10 are five factors and two levels, our experiment is 2
C Assignment matrix Random  Clustered full-factorial design, which corresponds to 32 treat-
D Tool availability - 80% 60% ment combinations. The number of replications of
E Tooling cost variability UN UN

~I

1.2,1.6] ~[0.6,2.2]

each combination is taken as five, that gives 160
different randomly generated runs.

Other variables in the system were treated as fixed
parameters and generated as follows:

There are five experimental factors that can affect e System related parameters, B =30 parts,

the efficiency of the proposed algorithm, which are

listed in table 6. Both the number

the cutting tool types are most likely to affect the
computation times since they directly affect the total

C, = $0.5/ min, and H =5 hp.

of operations and e Operation related parameters, D; and L; were

selected randomly from the interval UN~[1.5, 3]
and UN~[4,8], respectively, where UN stands

number of possible operation—tool pairs. The third for the uniform distribution.
factor determines the assignment matrix, i.e. random e The values of S; and d; were related with the
or clustered. At the random level, each cutting tool assignment matrix. For random assignment

type can be assigned to a candidate tool set of each
operation with an equal probability. But in the
clustered case, 80% of the operations are taken to
be roughing operations whereas the remaining 20%

are taken to be finishing operations.

directly specifies the tightness of the tool availability

constraints. The number of available

number of tools for each tool type at low and high

matrix, S; = UN~[30,500]
[0.025,0.3]. In the clustered case, there were
two types of operations, namely roughing and
finishing. For roughing operations,

and d; = UN~

S =

The fourth factor UN~[300,500] and d; = UN~[0.2,0.3]. For

tools on hand for d; = UN~[0.025,0.075].
tool type j, Nj, is taken as 80% or 60% of the required e Tool related technological exponents were al-

finishing operations, S; = UN~[30,70] and

ready given in table 2. ¢,, and t; were selected
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randomly from the interval UN~[0.75,1.0] and
UN~J1.0,1.5], respectively.

Table 7 summarizes the CPU times (in seconds) to
find the optimum solution for each run, along with the
minimum, average and maximum CPU times (based on
five random replications) for each factor combination.
In this table, low and high levels for each factor are
represented by 0 and 1, respectively. For all 160
problems reported in this table, the maximum CPU
time was 11.45s, whereas the average time was 1.11s.
The maximum CPU time was found for the factor
combination of (1 0 11 0). In other words, the number
of operations and the restriction on the tool availability
constraints were at their high levels, and the initial
toolin g cost variability and the number of tool types were
at their low levels. On the other hand, the minimum
CPU time of 0.06s found for a clustered assignment

Table 7. Results of the computational experiments.

Factors CPU Times (seconds)
A B C D E Minimum Average Maximum
0 0 0 0 O 0.23 0.59 1.17
1 0 0 0 O 0.64 1.36 2.61
0 1 0 0 O 0.30 1.13 2.69
1 1 0 0 O 0.37 1.54 5.57
0 0 1 0 O 0.06 0.09 0.15
1 0 1 0 O 0.11 0.14 0.17
0 1 1 0 0 0.09 0.21 0.42
1 1 1 0 0 0.22 0.43 0.98
0 0 0 1 0 0.29 0.61 0.87
1 0o 0 1 0 0.91 1.53 2.24
0 1 0 1 0 0.42 1.47 3.72
1 1 0 1 0 0.36 1.20 3.44
0 0o 1 1 0 0.07 0.10 0.18
1 0o 1 1 0 0.15 2.48 11.45
0 1 1 1 0 0.10 0.36 0.92
1 1 1 1 0 0.25 0.95 3.16
0 0 0 0 1 0.12 0.73 2.20
1 0 0 0 1 0.70 1.55 3.67
0 1 0 0 1 0.13 2.49 3.78
1 1 0 0 1 0.51 2.68 10.38
0 0 1 0 1 0.06 0.08 0.09
1 0 1 0 1 0.12 0.16 0.23
0 I 1 0 1 0.08 0.38 1.01
1 I 1 0 1 0.16 0.24 0.33
0 0o 0 1 1 0.56 2.97 9.99
1 0o 0 1 1 0.36 1.59 2.81
0 1 0 1 1 0.33 3.25 5.42
1 1 0 1 1 0.78 3.04 10.90
0 0o 1 1 1 0.09 0.11 0.13
1 0o 1 1 1 0.18 0.47 0.94
0 1 1 1 1 0.36 1.02 2.99
1 1 1 1 1 0.30 0.45 0.75

overall 0.06 1.11 11.45

matrix with a high initial tooling cost variability and
other factors were at their low levels, i.e. (0010 1). As
mentioned above, the levels of the fourth factor were
selected in a way that the tool availability constraint was
always binding for at least one of the tool types.
Therefore, we had to solve an IP formulation in each
run. In order to give an idea about the size of the IP
formulation, the range of the number of 0-1 variables
were between 1000 and 5000 for all runs.

Finally, a two-way analysis of variance (ANOVA) test
was applied on two performance measures of the
optimum value of the total production cost and the
computation time to test the equality of observed
responses from the different treatments of the chosen
factors. As expected, factors A, B, C and D were found
to be significant at the 0.5% significance level, whereas
factor E is only significant at the 25% level, on the total
production cost. For a combination of factors, the
interactions AB and AC, which directly affect the
number of possible operation-tool pairs and the
assignment matrix, were found to be significant at the
0.5% significance level. For the computation time
criterion, factor C was the only significant one at the
0.5% significance level. When factor C was at the high
level, i.e. clustered case, the overall problem was
decomposed into two separate problems for roughing
and finishin g operations, which reduced the number of
possibilities. For the remaining factors, factor D was
significant at the 10% significance level and the others
were not statistically significant on the computation
time to find the optimum solution, which also indicated
the robustness of the proposed algorithm to changing
conditions of the experimental factors.

Another important question is the sensitivity of
machining conditions and tool allocation-selection
decisions with respect to the technological coefficients
of the usual machining operation constraints. In the
literature, the manufacturing optimization problems
are solved for a given set of fixed technological
coefficients as indicated earlier in an example problem
in table 2. However, these coefficients are different for
each change in work material, tool material, tool form
and shape, size and shape of cut, machine tools used,
and cutting fluid. Their values have been determined
empirically for many specific conditions and are given
in reference books and handbooks. Therefore, we
performed another 2° full-factorial design for the factor
combination of (1 1 1 0 0) giving 2560 different
randomly generated runs for the representative ranges
of 9 technological coefficients as summarized in table 8.
ANOVA tests were applied on three performance
measures of lower bound, optimum value and compu-
tation time. Our results indicated that all of the factors
were significant on all three measures as shown in table
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Table 8. Evaluation of technological coefficients.

Constraints Factors Low High

a UN~ [2.8, 3.0] UN~ [3.2, 3.4]
Tool life I3 UN~[1.25, 1.30] UN~ [1.35, 1.40]

G UN~ [10000000, 20000000] UN~ [30000000, 40000000]

b UN~[0.81, 0.87] UN~ [0.91, 0.97]
Horsepower ¢ UN~[0.70, 0.73] UN~ [0.77, 0.80]

Cn UN~ 1.5, 1.8] UN~ [2.3, 2.6]

Surface finish

Q o

UN~[1.50, 1.55]
UN~[1.00, 1.02]

UN~ [200000000, 210000000]

UN~ [1.65, 1.70]
UN~ [1.08, 1.10]
UN~ [220000000, 230000000]

Aree—  ——

Table 9. Fvalues and significance levels (p) for ANOVA
results.

Lower bound Optimum Comp. time

Factors F P F P F P
a 86.3 0.000 89.6  0.000 94.7 0.013
i} 4.5 0.034 4.7 0.030 53 0.022
G 21.4 0.000 23.6  0.000 65.6 0.000
b 68092.0 0.000 69585.6 0.000 35.5 0.000
¢ 17521.1 0.000 17957.2 0.000 20.5 0.000
Cn 37218.2 0.000 37933.6 0.000 37.1 0.000
g 690.5 0.000 715.6  0.000 41.1 0.000
h 98.6  0.000 101.1  0.000 8.1 0.004
Cs 8.9 0.003 9.4 0.002 3.0 0.086

9. Consequently, the optimum solution and the
corresponding computation time are dependent on
the operational and tooling parameters.

6. Conclusions

In this paper, an exact approach is presented for
solving the tool allocation and machining conditions
selection problems simultane ously to find the minimum
production cost, where alternative tools can be used for
each operation. For this purpose, the classical SMOP
formulation is extended by adding a new tool life
constraint, which enabled us to include tooling issues
like tool wear and tool availability. Furthermore, a new
cost measure is proposed to exploit the interaction
between the number of tools required with the
machining, tool replacing and loading times, and tool
waste cost in conjunction with the optimum machining
conditions for alternative operation—tool pairs. Conse-
quently, the proposed algorithm can prevent any
unfeasibility that may occur for the tool allocation
problem at the system level due to tool contention and
tool life restrictions through a feedback mechanism. As

indicated in the example problem, a decision made at a
higherdevel without considering its impact on the lower-
levels can lead to unfeasible or inferior results when we
consider both constraints and parameters of the lower-
level problems. As a final point, an effective tool
management is a major requirement for the implemen-
tation of an FMS, hence the CNC machine tools as stated
by several authors. In the automated environments,
sophisticated computerized decision making tools are
needed for effective operation and control of the
system. In this respect, this study can be considered as
a part of the fully automated process planning system.

Appendix

Theorem 2: The following cost measure is a convex
function of the integer n;; values:

ij :BM,'/‘ +C, [(I’l,‘j —1)1,-]» +l‘]j]

+Cyl B [pii) (1 —pi Uyj)

provided that pi; Uy < p; U for nj; < ni;.

Proof: To prove this theorem, the following proper-
ties of the convex functions will be devised: (i) a
linear function is convex and (ii) the sum of convex
functions is also convex. The proposed cost measure
has three components, namely, SMOP, operating cost
due to non-machining events, and tool waste cost.
The SMOP component is a convex function since its
Hessian matrix is positive definite over the possible
values of v;; and fi;, hence the integer n; values
(Bazaraa et al 1993). The non-machining time
component is a linear function of the integer nj
values, so it is a convex function due to the first
property. The third component of the measure is the
tool waste cost. Let’s consider two consecutive integer
tool requirements such that n}, <n; and n; —n}> 1.

/j =
We can write the following statement in general:
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nij if B [pij ezt

LB [pii) = nj —1 otherwise

Now, consider the worst case for these two consecu-
tive tool requirements, such that [B/p,fjj =nj; and
I_B/pjjJ =n; —1. That is, ny —I’l;j >1 :>|_B/pjjJ
> [B/p,fjj. Therefore the tool waste cost component is
a non-decreasing function, i.e. a convex function, if the

following condition is satisfied pijUijSp;jUi’j for

ni; <nj. Consequently, the proposed cost measure is
also a convex function over the integer values of n;; due
to the second property.

References

Akturg, M. S.; and ONeN, S., 1997, Integrated lot sizing and
tool management in automated manufacturing systems. 6zh
Industrial Engineering Research Conference Proceedings, pp. 340—
345.

Avcr, S., and AkTURk, M. S., 1996, Tool magazine arrangement
and operations sequencing on CNC machines. Computers
and Operations Research, 23, 1069—1081.

Asai, K., and TakasHivMA S., 1994, Manufacturing, Automation
Systems and CIM Factories (London: Chapman & Hall).

Bazaraa, M. S., SHeraLl, H. D., and SHETTY, C. M., 1993,
Nonlinear Programming Theory and Algorithms, 2nd edn
(Wiley).

CraMA, Y, KoLen, A. W. J., OerLEMANS, A. G., and SpiEksmA, F. C.
R., 1994, Minimizing the number of tool switches on a
flexible machine. International Journal of Flexible Manu factur-
ing Systems, 6, 33-54.

GOPALAKRISHNAN, B., and AixkHayvaL, F., 1991, Machine para-
meter selection for turning with constraints: an analytical
approach based on geometric programming. International
Journal of Production Research, 29, 1897-1908.

Gorczyea, F. E., 1987, Application of Metal Cutting Theory
(Industrial Press).

Gray, A. E., SEipmMANN, A, and Stecke K. E., 1993, A synthesis of
decision models for tool management in automated
manufacturing. Management Science, 39, 549-567.

KouveLs, P., 1991, An optimal tool selection procedure for the
initial design phase of a flexible manufacturing system.
European Journal of Operational Research, 55, 201-210.

Leung, L. C., MaHesHwArl, S. K., and MiLLer, W. A., 1993,
Concurrent part assignment and tool allocation in FMS with
material handling considerations. International Journal of
Production Research, 31, 117-138.

ManesawArl, S. K., and Kuaror, S. K., 1995, Simultaneous
evaluation and selection of strategies for loading and
controlling machines and material handling system in
FMS. International Journal of Computer Integrated Manufactur-
ing, 8, 340-356.

Ram, B., SariN, S., and CHEN, C. S., 1990, A model and a
solution approach for the machine loading and tool
allocation problem in a flexible manufacturing system.
International Journal of Production Research, 28, 637-645.

SariN, S. C., and CHeNn, C. S., 1987, The machine loading and
tool allocation problem in a flexible manufacturing system.
International Journal of Production Research, 25, 1081-1094.

Stecke, K. E., 1983, Formulation and solution of nonlinear
integer production planning problems for flexible manu-
facturing systems. Management Science, 29, 273-288.

TaN, F. P., and Creesg, R. C., 1995, A generalized multipass
machining model for machining parameter selection in
turning. International Journal of Production Research, 33, 1467—
1487.

Tang, C. S., and Denarpo, E. V., 1988, Models arising from a
flexible manufacturing machine, Part I: Minimization of the
number of tool switches. Operations Research, 36, 767-777.

VEeraMANI, D., UptoN, D. M., and Barasu, M. M., 1992, Cutting-
tool management in computer integrated manufacturing.
International Jbournal of Flexible Manufacturing Systems, 4, 237—
265.


http://alidoro.catchword.com/nw=1/rpsv/0305-0548^28^2923L.1069
http://alidoro.catchword.com/nw=1/rpsv/0920-6299^28^296L.33[mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2929L.1897[csa=0020-7543^26vol=29^26iss=9^26firstpage=1897,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0025-1909^28^2939L.549[csa=0025-1909^26vol=39^26iss=5^26firstpage=549,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0377-2217^28^2955L.201[mcbca=0,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2931L.117[csa=0020-7543^26vol=31^26iss=1^26firstpage=117,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0951-192X^28^298L.340
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2928L.637[csa=0020-7543^26vol=28^26iss=4^26firstpage=637,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2925L.1081[csa=0020-7543^26vol=25^26iss=7^26firstpage=1081,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0025-1909^28^2929L.273[mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2933L.1467[mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0030-364X^28^2936L.767
http://alidoro.catchword.com/nw=1/rpsv/0920-6299^28^294L.237[mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0305-0548^28^2923L.1069
http://alidoro.catchword.com/nw=1/rpsv/0920-6299^28^296L.33[mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2929L.1897[csa=0020-7543^26vol=29^26iss=9^26firstpage=1897,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0020-7543^28^2931L.117[csa=0020-7543^26vol=31^26iss=1^26firstpage=117,mcbami=0]
http://alidoro.catchword.com/nw=1/rpsv/0951-192X^28^298L.340

