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Plane-Wave Dynamics of Optical Parametric
Oscillation with Simultaneous
Sum-Frequency Generation
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Abstract—This paper presents a theoretical analysis of sum- achieved with either birefringent phase matching (BPM) or
frequency generating optical parametric oscillators where a single quasi-phase matching (QPM). We have identified a number
nonlinear crystal is used for both parametric generation and of common nonlinear crystals and wavelengths where two

sum-frequency generation. In these devices, the parametric and d-ord i imult | h
sum-frequency generation processes are both phase matched forS€C0NA-0Order nonlinéar processes are simuitaneously phase

the same direction of propagation inside the crystal. Different po- mMatched with BPM. QPM techniques using periodically poled
larization geometries for which this simultaneous phase-matching materials provide even larger numbers of possibilities and
condition can potentially be satisfied are identified and catego- much more design flexibility.

rized, for both birefringent and quasi-phase-matching methods. The first demonstration of simultaneous phase matching
Plane-wave coupled-mode equations are presented for each of

these categories. Solutions of these coupled mode equations an(.‘i)]c two _differe_nt second-order interactions was reported in
calculation of the single-pass saturated signal gain are outlined. ammonium dihydrogen phosphate [11]. Shortly afterwards,
Intracavity signal photon flux density calculations based on these three second-order interactions were reported to be simul-

solutions lead to stable steady-state upconversion, multistability, taneously phase matched in lithium niobate [12]. Recently,
and chaos.dTht_a dependence of the photon anvers'on efficiencyinere has been an increasing number of frequency conversion
t tigated. . .
on various design parame er.s are investigate . . experiments that report the use of the simultaneous phase-
. 'ndb¢|>_< Tefms_—fhaosv nonlinear _flrlequency CO“Vef_S'Of(‘jx optical matching technique. Single-crystal upconversion OPQ’s that
istability, optical parametric oscillators, parametric devices, emplov simultaneous BPM of fre n doubling 19 r SFG
asi-phase matching, sum-frequency generation. ploy . quency dou o ].0.
quasi-p g, su quency 9 ! [10], in KTiOPO; (KTP), and periodically poled lithium
niobate (PPLN) OPQO’s with simultaneous higher order QPM
|. INTRODUCTION of frequency doubling [13]-[15] or SFG [15], [16] have been

PTICAL parametric oscillators (OPO's) are widely usedeported. A cascaded OPO, where the signal of a primary OPO
for tunable wavelength conversion of lasers to previousfts as the pump for a secondary OPO, has been demonstrated
unavailable wavelength ranges [1]-[3]. By itself, an opd PPLN with first-order QPM for both OPO processes [17].
can only provide downconversion to longer wavelength§imultaneous SFG of the pump and the idler iy-8aB, O,
Upconversion to shorter wavelengths is achieved with the U&BO) crystal optical parametric amplifier (OPA) has been
of a second nonlinear element for frequency doubling [4] @chieved with BPM [18]. Third-harmonic generation in PPLN
sum-frequency generation (SFG) [5]. This second nonline¥th simultaneous first-order QPM of the frequency doubling
crystal is usually internal to the OPO cavity to take advantagéd SFG processes has also been demonstrated [19].
of the high intracavity field intensities. The plane-wave theory In simultaneously phase-matched frequency conversion de-
of these two-crystal intracavity upconversion OPO’s have be¥i§€s, the interacting beams are governed by new sets of
studied extensively [6]—[8]. coupled-mode equations [20]. The steady-state plane-wave
Single-crystalupconversion OPO's, where frequency dou@nalysis of various single-crystal frequency doubling OPO’s
bling [9] or SFG [10] takes place within the OPO crystafor self-doubling OPQO'’s) have yielded promising results in
itself, have recently been demonstrated, providing new afRims of conversion efficiency [20]. In this paper, we present
highly efficient schemes for the frequency upconversion &f Plane-wave analysis of simultaneous parametric oscillation
lasers. These devices are based on the premise that opfiéil SFG, where the resonant OPO signal field is summed with
parametric amplification and SFG or frequency doubling cdhe pump field. We first identify and classify all polarization
be simultaneously phase matched inside the same nonlingg@@metries for which simultaneous phase matching may be
crystal. This simultaneous phase matching condition may Behieved and present the associated sets of coupled-mode
equations for each geometry. We proceed with a discussion
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Il. SECOND-ORDER NONLINEAR INTERACTIONS where the coupling constant is defined as
The phase-matched second-order nonlinear interaction be- 2 [orwaw
. . .= 1Wa W3 (11)
tween three collinear monochromatic plane waves tia = e\ 54/ ———.
C- € ninoNnsg

E..(z,t) = Re[Ep, exp(j(wmt — kmz))] m=1,2,3 (1) For convenience, we further assume that the pump and signal
) ] ) ] field amplitudes at the crystal entrance are both positive. The
with complex field amplitudesk,, are described by the go|ytions of (8)~(10) are then given in terms of Jacobi elliptic

coupled-mode equations [21] functions as [8], [21]
dil =—j C‘:;‘dceEgEg ) a1(z) =/ Cren(Z, | myg) 12)
: 1 a3(z) = /Codn(Z, | mo) (13)
dE2 . ’.CUQdeE E* 3
e e 2 3) as(2) = v/Crsn(Za | ma) (14)
ddEg — w3d, ELEs (4) where
¥4 nac
Cy = ai(2) + aj(z) = a3(0) (15)

where d, is the effective nonlinear coefficient,,, are the o 2,y 2 9
refractive indices, and the frequencies are relatedspy= Cz = a3(2) + a3(2) = 02(0) + a5(0) (16)

w1 + wo. The initial conditions at the input facet of theare the Man]ey_Rowe [22] conserved quantities,
nonlinear crystal determine whether the interaction results in

second-harmonic, sum-frequency, or parametric generation. My = @ (17)
A pump field atvs and a signal field at, at the input result C2

in an OPA, where the signal is amplified and, in the process, Zo = K(ma) — ria\/Ca 2 (18)

an idler field atw; is generated [21]. The parametric gain

experienced by the signal field saturates with increasing sig P

intensity. A singly resonant OPO is formed by placing the OPA T . _

inside an optical cavity that is resonant at the signal frequency. K(m) = /0 (1= msin” )1/ df (19)

The signal field builds up from noise if the unsaturated gain he definiti f th iod of bi ellitic f
is higher than all cavity losses combined. In the steady sta't%z,t Se[zgllnltlon of the quarter period of Jacobi elliptic func-

the intracavity signal intensity assumes such a value that i SFG | f inout ab q hiah
saturated gain compensates for the cavity losses exactly. Th , & lower frequency inpu 4 and a higher

idler leaves the cavity through a dichroic beamsplitter that quency "?pUt aw; result in a sum-frequency field a = '
highly transmitting at the idler frequency. w4 + ws. As in the OPA case, the lack of a sum-frequency field

In an OPA, the lack of an idler field at the input of the crysta"i1t the |r}put ?li(_)v;’ds us t?, W(;'te thg coupled-mode equations in
results in field solutions whose intensities are independenttgfmS ot real field amplitudes using

the relative phases of the pump and the signal; the generated Ey = \/2hwy/nyceqay (20)
idler adjusts its phase to compensate for the phase fluctuations B _ \/Wa' 21)
in the input pump and signal beams. Utilizing this property, ° 5/ 750"

it is possible to convert the three coupled-mode equations for E¢ = —j\/2hws /neceoas. (22)

the complex field amplitudes to three real equations [20]. Itf

S . . .
also convenient to define normalized field amplitudgssuch n this case, the coupled-mode equations become

thata?2, represents the photon flux densities at each frequency day e 23)
wm- In doing this, we choose the phasesHyf, such that the dz bets
required phase relation for the OPA is satisfied, and we define das = o aca (24)
the real and normalized amplitudeg, through dx bEGEA
dCLG _ 25
El = —j\/ 2hw1/nlc€0a1 (5) dz = FpQals ( )
By = \/2hws [naceoas (6) with the coupling constant
Eg = v/ 271(4)3/713660@3. (7) -
Ky = de i—h Wawsws . (26)
The coupled-mode equations for the normalized field ampli- ceo | nansng
tudes can then be written in the form The solutions for the SFG process depend on which of the
day two input fields has greater photon flux density at the crystal
de 0302 (8) entrance. Ifa2(0) > a2(0), the solutions become [8]
d
daj = Kqa3ay 9) as(z) = VCudn(Z, | my) (27)
daz (10) as(z) = \/Csen(Zy, | my) (28)
dz | emee ag(z) = V/Cssn(Zp | mp) (29)
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TABLE | Se, - I S i —
PHASE-MATCHING GEOMETRIES FOR THESF-OPO 1 . 1
OPO 1 S
—C> —
OPO SFG i ) i
Type ws 2w +wy wy+ws = w
3 1 2 2 3 6 rp q @ Ip < @ rp s @
BT o Mg g s
I faf+s  frsof — % — — 3
111 f—=s+f s+f—f , }
mp @ pp & P ®
A L I P
Case OPO SFG Rotation Class —
sf sf sf
1 I I pump _
s @ s ® s o
2 11 1 pump C SFG -5
101 p p ' P
3 mr1 both B — - — —
sf sf sf
4 I II both B
Fig. 1. Polarization diagrams for all possible SF-OPO geometries. The fast
5 II I both B axis is horizontal and the slow axis is vertical. Polarizations for the pump
6 T I . (p), signal (s), idler (i), polarization rotated signal (rs), polarization rotated
pump pump (rp), and sum-frequency (sf) fields are shown. Polarization rotation is
7 I TII none A indicated with an arc where required. Each combination of phase-matching
types for the OPO and SFG processes is labeled with a circled number.
8 1I 111 nonge A
9 HI  HrL  signal D input field for the SFG process, is called the “signal” and is
labeled as being abt,. However, our formulation and results
where are equally valid if the field at»; is resonated and used as
) ) ) an SFG input.
Cs = ai(z) + ag(z) = a;(0) (30)  For BPM in materials exhibiting normal dispersion, the
Cs = a2(2) + a3(») = a2(0) (31) highest frequency fields of both interactionss (and wg =
. w2 + w3) have to be polarized along the fast axis of the crystal.
are the Manley-Rowe conserved quantities and In a type-l OPO, both the signal and the idler are polarized
Z, = ry/Caz (32) along the slow axis, whereas in a type-Il (Illl) OPO, the signal
C- is along the slow (fast) axis and the idler is along the fast
(o]

=G (33) (slow) axis. Type-I SFG has both input fields along the slow
axis, whereas type-Il (Ill) SFG has the lower frequency input
The solutions for the case wheig(0) > a3(0) are ob- along the fast (slow) axis and the higher frequency input along
tained by interchanging the field subscripts 4 and 5 and tti®e slow (fast) axis.
Manley—Rowe subscripts 1 and 2. There are nine possible cases corresponding to different
combinations of birefringent phase-matching types for the
Ill. SUM-FREQUENCY GENERATING OPO (SF-OPO) OPO and SFG, as shown in Table | and Fig. 1. In cases 7
The single-crystal sum-frequency generating OPO (Sﬂ[‘d 8, the pump and the signal fields are polarized along the
OPO) is based on the premise that optical paramet§@Me axes inboththe OPO and SFG processes. As a result, the
generation and SFG can both be phase matched for fA Processes become coupled through the signal and pump
same direction of propagation inside the nonlinear cryst&i€!ds. The set of coupled-mode equations that describe this

This simultaneous phase-matching condition may be achievagraction are

with either BPM or QPM. Furthermore, a number of different day
- i : : = Ko0302 (34)
polarization geometries are possible, depending on the types dz
of OPO and SFG phase matching. Some of these geometries day B (35)
require a polarization rotation for the signal or the pump fields. dz  et3t T Fedoas
L . dag = —KaO1G2 — Kpaga2 (36)
A. Birefringent Phase Matching (BPM) dz “
Table | and Fig. 1 together summarize all polarization 0;@6 = Kpas2as. (37)
4

geometries that can potentially be phase matched with BPM
for a single-crystal SF-OPO. We follow the convention that thé/e arrive at these equations by combining the OPO equations
fields are labeled according4a < wy < w3 [24]. The field at [(8)—(10)] with the SFG equations [(23)—(25)]. The sigrnal

w3 is the OPO pump. The assignment of the “signal” label {@ump a3) and the lower frequency SFG input; (higher

w1 Orwo is somewhat arbitrary. In this paper, the resonant fieflequency SFG inputi;) are the same field mode; the rate
in the OPO cavity, which also constitutes the lower frequen®f change of the signal mode is the sum of the rates of change
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of the OPO signal and the lower frequency SFG input fieldeat may assume a range of values depending on these param-

separately. Similarly, the rate of change of the pump modeeaters. Here, the relative magnitudes of the frequencies and

the sum of the rates of change of the OPO pump and the higleé&ective nonlinear coefficients are of particular importance.

frequency SFG input fields. The same result can be obtainédthe OPO and SFG processes are of the same phase-

by considering the total nonlinear polarization fiels and matching type, the effective nonlinear coefficients differ only

P; at w, and w3, respectively, and rederiving the coupleddue to dispersion [24]. However, for different phase-matching

mode equations. We designate this SF-OPO as class A, udiyues, the effective nonlinear coefficients may be dramatically

a classification similar to self-doubling OPQ’s [20]. different from each other, since they have different functional
In cases 3-5, the pump and signal fields are both orthaigpendences on the elements of the second-order nonlinear

onally polarized between the OPO and SFG processes. Taesor.

same crystal can be used for both processes at the same

time through extracavity polarization rotation of the pump. Quasi-Phase Matching (QPM)

and intracavity polarization rotation of the signal. However, OPM offers the potential to phase match a wide range

the two processes are not coupled in the crystal as they are

. : : . wavelengths for an nd-order nonlinear interaction
in class-A interactions, and the coupled-mode equations that avelengths for any second-order nonlinear interaction by

govern this SF-OPO are simply (8)—(10) and (23)—(25) mploying periodic domain reversals in ferroelectric crystals.
designate this SF-OPO as class B ' ese domain reversals lead to a periodic modulation of the

ﬁffective nonlinear coefficient, and a particular spatial har-

beltcvng\e;i’ ébac?(;r%tgigmr]gggg;z pAOIaglzaer?zgtritgr?%g?;:n)(onic of the modulation compensates for the phase mismatch
P AP B]_ In single-process frequency conversion applications, the

of the pump at the cavity input is required for SFG to tak . S : .
. ) " |Gst-order spatial harmonic is usually chosen, as this provides
place. The signal field is common to both processes a

couples them to each other. The set of coupled-mode equatig1ne largest effective nonlinear coefficient. It is also customary

; : S“have all fields to be polarized in the same direction to
that describes all three cases is : .
take advantage of a large diagonal element of the nonlinear

day susceptibility tensor. However, it is possible to use QPM with
dy | af302 (38) orthogonally polarized fields as well. There are eight potential
das phase-matching types for QPM, as opposed to the three in
dy  ad301 T Fdeds (39) BPM, since the highest frequency field of the interaction no
dag longer has to be polarized along the fast axis of the crystal.
dz etz (40) In terms of simultaneous phase matching of SFG in an
das i OPO, the eight QPM types lead to 64 different combinations.
de ez (41) We found that each of these combinations can be identified
dag ) 42 with one of the four classes introduced above, depending on
dz s (42) whether the coupling between the two processes in the crystal

is through the signal (class C), the pump (class D), both (class
We designate this SF-OPO process as class C. Iﬁ‘g orungeither (Icgllass (B) ) pump ( ) (

In case 9, the signal is orthogonally polarized between t The QPM order of the two processes may or may not
OPO and SFG processes, and an intracavity polarization 'R gifferent from each other. Since the effective nonlinear

tion of the signal is necessary. The OPO and SFG processes y&kicient for a process depends on the QPM order as well
coupled to each other through the pump,

L which is common_ég the other parameters mentioned above, choosing different
both proce;ses |n§|de the.crystal. The coupled-mode equatla’ﬁvl orders for the two processes provides a mechanism for
that describe the interaction are adjusting the value off. The results of Section V show that

daq having some control on the value gfcan be very useful in
dr  [redsdz (43)  maximizing the conversion efficiency of some SF-OPO's.
dag Note that QPM can easily be used to phase match two
dz  a¥301 (44) interactions in a single crystal by employing two consecutive
das sections with different poling periods. Such a double-grating
dz _ af102 ~ Fbl604 (45)  pPLN was recently used for intracavity SFG of an OPO [26].
day However, the dynamics of these double-grating devices are
dr . 0eds (46) identical to those with two different crystals [7], [8].
dag = K304, 47
dz IV. SINGLE-PASS SOLUTIONS

We designate this SF-OPO process as class D. In order to analyze the performance of SF-OPQ’s, it is first

For each combination of phase-matching types for the ORf@cessary to calculate the single-pass saturated parametric gain
and SFG processes, the respective coupling constgnémd experienced by the signal field by solving the coupled-mode
r, depend on the phase-matched frequencies, the refractgiations for each class. A simple transformation maps the
indices, and the effective nonlinear coefficients. The ratio ofass-A equations to regular OPA equations, leading to analyt-
the two coupling constant$ = «;/«, is an important quantity ical solutions in terms of Jacobi elliptic functions. In class-B
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SF-OPOQO'’s, the OPA and SFG processes are not coupled, #melinput photon flux densities. Therefore, it is impossible for
analytical solutions are readily available. For class-C and clasise SF-OPO to get above threshold.

D SF-OPOQ’s, however, we resorted to numerical techniques

to solve the coupled-mode equations. These solutions w&eClass-B Solutions

computed using the Runge—Kutta—Fehlberg method [27]. In class-B SF-OPO's, the OPO signal (pump) and the

. SFG lower (higher) frequency input fields have orthogonal
A. Class-A Solutions polarizations. Therefore, the OPA and SFG processes are
An important simplification in the coupled-mode equationsompletely independent of each other in a single pass through
for class-A SF-OPO’s is achieved by recognizing that thtee crystal. However, an intracavity polarization rotation of
right-hand sides of (34) and (37) are proportional to each othére signal field and an extracavity polarization rotation of the
Since both the idler field;, and the sum-frequency fields pump field with the use of half-wave retarders can couple the
have zero amplitude at the crystal input, we haye= Ba; two processes and allow SFG to take place. The single-pass
for all values ofz. The coupled-mode equations then beconsolutions are given in (12)—(14) and (27)—(29).

dal

7, = Halsa (48) c. Class-C Solutions

das Since analytical solutions of class-C coupled-mode equa-
=(1—/%ka 49) ) .

dz (1= F)raasan (49) tions [(38)—(42)] are not available, we resorted to numerical

daz techniques to compute the evolution of the field amplitudes
= —(1+ B)rqaraz. 50 . . .

dz (14 F7)raaraz (50) and the net signal gain. In these calculations, we used the

The evolution of the field amplitudes as they propagafdUnge—Kutta—Fehlberg method, which is an adaptive step-
down the crystal depends on the value afIf 3 is equal size method commonly used for solving ordinary differential
to unity, the right-hand side of (49) becomes equal to zef§luations [27].
for all values of z. In this case, the parametric gain pro- In our calculations, we found that the field amplitudes
vided by the pump is exactly balanced by the nonlinear |ogscillate either periodically or aperiodically as a function of
due to SFG, and the signal field amplitude stays constantdepending on the initial values artl This behavior can
throughout the length of the crystal. #f is less than unity, Pest be analyzed by transforming the coupled-mode equations
the parametric gain overcomes the nonlinear SFG loss, df3B)—(42)] to a single differential equation [20]. In doing this,
the signal field is amplified. Under this condition, the sub¥e use the class-C Manley—Rowe conserved quantities
stitutionsa; = ul/ (1 — /32)(1 + /32), as = U,Q/\/ 1+ /32, C) = CL%(Z) + CL%(Z) _ CL%(O) (57)
and az = uz/\/1— 3?2 transform (48)—(50) to the coupled- 5 5 2« 9 5
mode equations for a regular OPA [(8)—(10)] in terms of the Ca = a3(2) + az(2) + ag(2) = a3(0) +a3(0)  (58)
variablesuy, u2, andus. After transforming the OPA solutions C3 = a3(2) + a§(z) = a3(0) (59)
[(A12)—-(14)] in terms ofu;, uo, and ug back to the original
class-A variables:;, a», and a3, the evolution of the field
amplitudes can be expressed as

and define new variableg(z) and ~(z) through a; =
VCisinf, as = /Cicosb, a3 = /Cacosy, and ag =
v/C3sin~y. Since no idler or sum-frequency is present at the
c, crystal input,¢(0) and~(0) are equal to an integral multiple of
ai(z) = mcn(% | ma) (51)  2y; for convenience, we choo$€0) = ~v(0) = 0. Substituting
into (38) and (42), we obtain

Co
QQ(Z) = dn(Za | ma) (52) — iﬁ
1+ /32 az(z) v (60)
G and v(z) = f6(z). These equations, along with the Man-
2) = Zo | M 53 ) :
as(%) 1 —/PSH( [ma) (3) ley—Rowe relation forCs,, allow us to reduce the set of
ag(z) = Bay () (54) coupled-mode equations to a single differential equation
2
where iQ <?) 4 Crcos? 0+ Cysin(B6) = Cy  (61)
Ko \ dz
Oy =(1- AL+l (z) + (1 - pHad(z)  (55)
Cy = (14 A2)a2(2) + (1 — 2)ad(2) (56) in the variablef(z). The solution of this equation either

oscillates periodically around zero or increases monotonically,

are the class-A Manley—Rowe conserved quantities [(15) addpending on the values of the Manley—Rowe quantities and
(16)] expressed in terms of the field amplitudgs a,, andas. 3. If C; cos® § 4+ Cs sin’(36) is larger tharC, for any value of
Here,m, and Z, are as defined in (17) and (18), respectively, the field amplitudes oscillate periodically. This condition is

If 3 is larger than unity, the parametric gain provided byoughly equivalent ta3(0) < a%(0) (depending on whethet
the pump cannot compensate for the nonlinear SFG loss.idrrational or not). In this case, the signal field is fully depleted
this case, the net gain experienced by the signal field is alwagside the crystal, with the depletion locations coinciding with
less than or equal to unity, regardless of the values,cind the maxima and minima of(z). In the other case where
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6(z) increases monotonically, the field amplitudes are periodic V. SF-OPO ¥NAMICS

functions ofz only if 3 has a rational value; otherwise, the singly resonant SF-OPO is constructed by placing the
field amplitudes vary aperiodically [20]. o OPA crystal inside a cavity that is resonant at the signal
) Although (61_) gives more |ns_|ght Into fche qual|tat|v_e behav_f'requency. The pump field enters the cavity through a dichroic
lor of the solutions, in calculatmg the smgle_—pass signal gagi o that is highly transmissive at that wavelength. The
we prefer to solve (38)-(42) directly. The first term of (61 avity typically has some residual linear logs) at the signal

prlngsh abput an amblgwty in the sign dﬂ/dz’. and. every wavelength due to less than unity reflectivities of the cavity
?:]m;et/ de7 SA?S;' ggl(:;Eeie?gf;egcT:ua?rreSpondlng sign Chaqgl‘?rrors and imperfect antireflection coatings on the nonlinear
“ ' crystal and other transmissive optics. This linear loss can also
be represented by a lumped cavity reflectaite= 1 — L.
D. Class-D Solutions Ordinarily, no output coupling through a partially reflecting
Calculation of the class-D field amplitudes and signal gamirror is necessary for the signal field; the conversion to
necessitates the use of numerical techniques as well. the sum-frequency field provides a nonlinear output coupling
observed that the field amplitudes oscillate periodically,in mechanism.
regardless of the values of the Manley—Rowe quantities andThe parametric gain of the OPA is related to a number of
B3. This behavior is easier to analyze if the coupled-moderameters, some of which can conveniently be lumped into
equations are reduced to a single differential equation simikarsingle dimensionless quantity, called the nonlinear drive,
to (61). Furthermore, this differential equation can be usethich is a measure of the strength of the parametric interaction
to obtain conditions that maximize conversion efficiency, d6], [8], [20]. The nonlinear drive is defined d3 = (k,a,)?,

outlined in Section V. whereaf, is the total pump photon flux density at the crystal
The Manley—Rowe conserved quantities for class-D SEntrance and is the crystal length. In classes A and D, where
OPO’s are there is no pump polarization rotation, we haa/f;a: a3(0),
whereas in classes B andd = a3(0) + a3(0) is equal to the

N

C1 = al(z) — al(z) = a3(0) (62) total pump photon flux density before polarization rotation.
Cy = al(2) + a2(2) + a2(2) = d2(0) + a2(0)  (63) TZ()& nonlinear driveDy, forhwhich th(le small—signalljll}gunsa)tu—
_ 2 2 2 rated) gairgy compensates the cavity losses exa =1

Cs = ailz) + ag(z) = a(0). (64) defines the threshold point. For a particular n%pnlinear drive
above threshold, there is sufficient gain to overcome the cavity
losses, and the intracavity signal field begins to build up from
noise (parametric fluorescence). The time evolution of the
intracavity signal field depends on the value of the nonlinear

convenience. When these transformations are substituted iﬂ%’ e and how the parametric gain saturates with increasing

the coupled-mode equations (43) and (47), the pump ﬁeﬂgnal flux density. To investigate the dynamics of SF-OPQO’s,
amplitude is obtained in terms @) or () r;\s an iterative method that simulates the intracavity build-up of

the signal photon flux can be used [8]. Since the OPA gain is
1 de 1 dry a nonlinear mapping of the signal flux density from the input
— = (65) to the output with the cavity providing a feedback path with
some loss, the SF-OPO can be viewed as a discrete dynamical
It is then possible to integrate this equation and get a fourdkistem [28], [29].
conserved quantity’y = 6(z)/k, — v(2)/ks = 0. Using this In this section, we investigate the dynamics of SF-OPO’s us-
relation and the Manley—Rowe relation f6,, we obtain a ing a numerical iterative approach. The behavior of a particular
single differential equation SF-OPO depends on a number of physical parameters, all of
which can be characterized by the nonlinear dii¥gthe ratio
of the two coupling constangs, the residual cavity loss, and
the polarization rotation angle (where applicable). We have
restricted our analysis to a range of parameter values that are
in the variabled(z). As 6(z) starts from zero at the crystallikely to be encountered in practical experiments. However,
entrance and increases, the second term in (66) increa@esaim here is not to model an experiment accurately, but
monotonically untildd/d~ becomes zero. It is seen from (65f0 bring out the fundamental properties of SF-OPO's using
that this point corresponds to complete pump depletion. Singesimple plane-wave approach. Our analysis does not take
the first term of (66) cannot be negativ;) has to decrease into account many experimental realities such as the Gaussian
from this point on. Hence, the solution of (66) oscillateseam nature of the fields, the temporal profile of the pulses,
periodically around zero, and the field amplitudes also evolggoup velocity mismatch between field components, group
periodically with the period being identified by completevelocity dispersion, or beam walk-off.
pump depletion. As in class-C single-pass solutions, we preferThe nonlinear driveD = (r,a,l)* can take on a wide
to solve the original coupled-mode equations [(43)—(47)] irange of values depending on various physical parameters. The
computing the single-pass signal gain. operation wavelengths together with the linear and nonlinear

N
N

We define new variable®(z) and v(z) through a; =
VCisinh8, ay = +/Cicoshf, ay = +/Cscosvy, and
ag = /Cssinvy. Sincea;(0) = ag(0) = 0, #(0) = 0 and
~(0) is an integral multiple of2r; we choosey(0) = 0 for

as(%) = ko dz Ry dz’

1 /do\? ) .
— | 4+ Cicosh™ 8 + Cysin“(56) = Cs (66)

2
K2\ dz
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optical properties of the crystal determimg according to then iterate this through the system several times, in effect
(11). The crystal (or the interaction) lengtimay be limited by multiplying the input flux density with the saturated signal
growth constraints or pulse propagation characteristics suchgasn ¢ and cavity reflectanc& at each iteration. The turn-on
group velocity mismatch and/or dispersion [10]. The availabteansient is usually contained in the first 500 t¢* lf@rations.
power (average for CW, peak for pulsed) from the pump lasAfter this transient, the SF-OPO may converge to a stable
and beam focusing constraints determine the pump intensitystgady-state value, oscillate between two or more constant
the crystal. Considering a range of values that these physigalues, or exhibit chaotic behavior.

parameters may take in currently feasible experiments, weWhen the iterations converge to a stable steady-state intra-
have decided to consider a range of 0.1 to 100 for the nonlineavity signal flux density, this steady-state valwg0) is a
drive. The lower bound for the nonlinear drive is mostlgolution of

dictated by the OPO threshold and the upper bound by the )

available effective nonlinear coefficient, crystal length, and 9 [%(0)] =1/R (68)
pump laser power.

In principle, since this is the signal flux density for which the linear cavity

losses are exactly compensated by the OPA gain. However,
8= Ky _ dey \/@ [T1na2ns 67) (68) may have more than one solution, in which case we use

Ko  deq V| w1V nunzng graphical analysis [29] to determine which one of the solutions
the iterations will converge to. Under certain circumstances,

may assume any nonnegative value. Box’ 1, the SF-OPO the steady-state solution becomes sensitive to the initial value,
becomes an ordinary OPO. Whegn~ 1, the strength of the leading to a multistable behavior

two interact?qns are compa}raple to eaph oth'er. Sincg the lasf, o, analysis of SF-OPQO's, we consider the function
factor containing the refractive indices in (67) is approximately
equal to unity, the value of is determined by the ratio of the f(z) = zRg(x) (69)
two effective nonlinear coefficients and the ratio of the idler
and sum-frequency wavelengths. As pointed out in Sectisrhere z = a3(0). The solutions of (68) correspond to the
11, the two nonlinear coefficients differ only due to dispersiofixed points of (69) which are the roots ¢fz) — . A fixed
if the OPO and the SFG processes are of the same phagsant x,, is determined to be stable if the derivative ffx)
matching type. This situation leadsdg, /d.. = 1 in the cases at + = z,, is less than unity, and unstable otherwise [29].
of BPM and QPM with both processes having the same QPIMg. 2 shows plots off(x) that typify various situations that
order. If the phase-matching types and/or the QPM orders amay be encountered. Thg = 0 point is always an unstable
different, d.,/d., may have any value. However, it is notfixed point if the SF-OPO is above threshold. For the SF-
likely for d.;/d.. to be much greater than unity in any caseéQPO of Fig. 2(a), the first nonzero fixed point is stable,
since this would imply a smaller nonlinear drive for the OP@here are no other fixed points, and the iterations converge to
process, making it difficult to get above threshold. On the;. Increasing the nonlinear drive for the same SF-OPO in
other hand, the /ws /w; term has to be greater tha/B (since Fig. 2(b), we get two additional fixed points, the larger of the
we = 2wz + w1 > 3wy), and less than 3, being limited by thetwo new pointyz3) being stable. (Note that there has to be at
transparency range of the nonlinear crystal. Taking all thekast one unstable fixed point in between any two stable fixed
factors into account, we conclude thatvould be in the 0.3—-3 points.) However, it is impossible for the iterations to converge
range in most practical situations. to x5, since the peak value between the poirgandz; is less

The residual cavity losses depend on the linear absorptitran . In Fig. 2(c), where the nonlinear drive is increased
coefficient of the nonlinear crystal and the quality of théurther, however, the iterations may converge to eithgror
mirrors, antireflection coatings, and other intracavity opticgs, depending on the initial value. For convergencerio at
In most cases, it is desirable to keep this loss as small laast one of the iterates has to fall in the subset of points
possible. In practiceL is usually limited to a few percent atfor which f(x) > zs in the zg < 2 < z; interval. Going
most. In our calculations, we have chosen to thke 0.04 asa backward from this set to smaller values, we can determine
conservative value. Our results have shown that the qualitatiwbich points nearo will converge tozs. This analysis shows
behavior of a typical SF-OPO does not change very much withat, for points neatcy, a small perturbation in the initial
variations in L. value is enough to change the steady-state value, resulting

The performance of the SF-OPO is best characterized ioymultistable behavior.
the photon conversion efficiency. Since two pump photons areThe presence of multistability may affect the operation of a
needed to generate one sum-frequency photon, the convergitactical SF-OPO in a number of ways. Each time the pump
efficiency is the ratio of twice the output sum-frequency photdream to a multistable SF-OPO is turned on, the intracavity
flux density to the total input pump photon flux density= signal power and hence the conversion efficiency converge to
2a3(l)/a;. The conversion efficiency represents the overadldifferent value, since the initial intracavity signal photon flux
efficiency of the two-step process (from the pump to the signial slightly different. Furthermore, increasing and decreasing
and then to the sum-frequency) and is equal to unity for tilee pump intensity is expected to show a hysteresis behavior,
case of total conversion in the steady state. with sudden jumps in the conversion efficiency occurring at

In our calculations, we start out with an initial signal photouifferent pump power levels, depending on whether the pump
flux density to represent parametric fluorescence [30]. Vii®wer is being increased or decreased.




904 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 6, JUNE 1999

2.0 10
1.5
0.8 q
x10 =
- X g
05 1 :g 0.6 7
5
c
0.0t X, 2,4 |
0.0 0.5 1.0 1.5 2.0 g
[&]
(@) 02 .
0.8
X 0.0
0.6 : Nonlinear drive, D 1%
5$0.4 Fig. 3. Conversion efficiency as a function of the nonlinear drive for a
= %, class-C SF-OPO.A = 0.5, ap = 45°, and L = 0.04.)
0.2 X,
and f(z;) = x,; in other words;z,, andx; are fixed points of
0.01&"%, f2(z) = f(f(x)) but not of f(z). Typically, a stable fixed
0.0 0.2 0.4 0.6 0.8 point, sayz;, becomes unstable as the nonlinear drive is
X increased, and a periodic oscillation witly < z; < 3 is
(b) formed, resulting in period doubling, as shown in Fig. 2(d). In
04 general, periodic oscillations with any positive integer period
’ is possible. In synchronously pumped pulsed OPQ’s, a periodic
03 %3 oscillation exhibits itself as a periodic output pulse sequence
' where each pulse in the sequence has a different magnitude. In
<oz Cw OPQ'S, the cavity round-tri_p time and the bandwidth_of_
= parametric fluorescence determine the character of the periodic
o1 § f oscillgtions. o _ o
1 2 Period doubling is a common route to chaotic behavior in
0.0t &%, nonlinear systems [29]. SF-OPO’s sometimes show chaotic
00 01 02 03 04 oscillations, depending on the nonlinear drigeand polariza-
X tion rotation angle. To identify periodic or chaotic oscillations
© at a particular set of values, we discard the transient and

plot the next 64 consecutive iterates on a vertical line [8].
If the oscillation is periodic with periodn, the 64 iterates
06 accumulate atn points. If the oscillations are chaotic, the
iterates are distributed randomly. An example of such a plot
04 X3 " is shown in Fig. 3. As the nonlinear drive is increased above
=2 : threshold, the SF-OPO is at first stable and the conversion
efficiency increases monotonically. Period doubling occurs
around D = 16, with consecutive doublings leading to
chaotic oscillations. It is interesting to note that, when the SF-
OPO exhibits periodic or chaotic oscillations, the conversion
X efficiency may be greater than unity for some passes through
the crystal and less than unity for others. However, the average

(d) . _ ;
of the conversion efficiency over all passes cannot be higher
Fig. 2. Plots of f(x) versusxz with both axes normalized t(a‘f,. The than unity in any case.

stable (filled circles) and unstable (empty circles) fixed points are labeled. , . .
(a) Single stable fixed point;. (b) Two stable fixed points; andxs with In synchronously pumped pulsed OPO’s, a chaotic oscilla-

no multistability. (c) Two stable fixed points; andzs with multistability. (d) tion results in each output pulse having a different magnitude
Peri‘od‘ic oscillation with a period of two;. andx, are stable fixed points \yithin the bounds determined by the iterations. In CW OPO's,
of F(#(=))- the character of the chaotic oscillations are determined by

Periodic oscillations, where the iterations oscillate betwedine cavity round-trip time and the bandwidth of parametric
two or more constant values, is another feature that may theorescence. On the other hand, it is not very likely for CW
observed in SF-OPO’s. Fig. 2(d) shows an example of &PO’s to reach the high nonlinear drive levels where chaotic
oscillation with a period of two. In this situatioff{z,) = z;,  oscillations come up.

0.0 0.2 0.4 0.6
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A. Class-A Dynamics 1.0 : .

As pointed out in Section IV, class-A SF-OPO’s can get
above threshold only if5 is less than unity. Under this
condition, the small-signal gain is

go = cosh? /(1 — 32)D. (70)

The SF-OPO threshold is found by solviggRk = 1 for D.
The presence of thel — 3?) term indicates that the threshold
nonlinear drive is influenced by the presence of the SFG
process; this is in contrast with self-doubling OPO'’s [20].
The Manley—Rowe relation of (55) together with (54) shows
that the conversion efficiency is maximized when the pump
field is fully depleted at the end of the crystal. Taking the
ratio of the Manley—Rowe relations [(55) and (56)] evaluated , —=
atz =0 andz = [, we find thatm, = L. The pump field has oo " Nonineardrive,D 190
asun(Z | m) functional dependence which assumes its zeros

ltiol f th bi ikd Th f Fig. 4. Conversion efficiency as a function of the nonlinear drive for various
at even multiples of the Jacobi quarter perid Therefore, values of3 for a class-A SF-OPO. For each cage= 0.04. Multistability

o
3

4
1

0.4

Conversion efficiency,n

complete pump depletion at= [ requires that exists in all cases but is shown only f6r= 0.8 (thick line).
K-k, VCol=-2nK, n=0,1,2---. (72) o
This relation leads to a family of optimum nonlinear drive
values o8l L=0.01 004 0.10. 025 i
I .
Dopt = ——=[(2n + 1)K]? (72) -
1-p =
Q
that maximize the conversion efficiency for given values é osf 7
of 8 and L. Only the smallest optimum nonlinear drive E
(corresponding taw = 0) is of consequence, since far> 0 %047 |
the iterations cannot converge to the stable fixed point thatg ™
yields the maximum conversion efficiency by starting out from S8
an initial value near zero. The ratib,,; /D, depends only 0zl |
on L, similar to a regular OPO [6].
The nonlinear driveD, 3, and L uniquely determine the
conversion efficiency of the SF-OPO. The conversion effi- oo - : = i
ciency achieved at the optimum nonlinear drive Nonlinear drive, D
2/32 Fig. 5. Conversion efficiency as a function of the nonlinear drive for various
Thmax 5 (73) values of L for a class-A SF-OPO. For each cage= 0.8. Multistability
1+7 exists but is not shown.

is a function of 3 only. As § increases toward unity, the
maximum conversion efficiency approaches unity, while the In the design of a class-A SF-OPO, the most important
threshold and optimum nonlinear drive values increase withquarameter is3. For high conversion efficiency3 should be
bound. as high as possible without exceeding unity. However3 if
Fig. 4 shows the photon conversion efficiency as a functias very close to unity, then there is a risk that the SF-OPO
of the nonlinear drive for varioug values at a constantwill fall below threshold. In practice, & value in the range
L = 0.04. The peak of each curve is &, with a value of 0.6-0.98 should be sought to achieye> 0.5. Oncej
of nmax. Multistability is observed at large nonlinear drivess known, the target conversion efficiency is determined from
in all cases, but shown for th8 = 0.8 case only. The (73), and the optimum cavity losé,; that maximizes the
minimum nonlinear drive value for which multistability isconversion efficiency is calculated using (72).1f; is less
observed increases monotonically with bgttand L. than the residual losses, the target conversion efficiency cannot
The cavity lossL at the signal frequency results in the losbe reached. However, in most casks,, is likely to be greater
of signal photons from the cavity. One would expect that thtkan the residual lossds., and the SF-OPO can be optimized
useless loss should be minimized for maximum conversiondb the operating nonlinear drive with the use of an output
the sum-frequency. However, as illustrated in Fig. 5, the cavitpupler(L,.) for the signal field. (For example, in Fig. 5, at a
losses can be adjusted to maximize the conversion efficienoypdest nonlinear drive value of unity, a relatively large cavity
much like in a regular OPO. At a constaitvalue of 0.8, the loss of L., = 0.14 is needed for maximum conversion.)
conversion efficiency curve shifts to the right with increasing The presence of an output coupler for the signal field results
cavity loss, whereas the peak conversion efficiency does mota usable signal output from the SF-OPO. The conversion
change, in agreement with the analytical result given in (73gfficiency to the signal wavelength at the optimum value of
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cavity loss is 10 10
B=07 pd B=09
Locag(l) LOC 1- [32 (74) o8 o8 rpd
Ns = = 06 06
T a2(0) Lopt 1+ 32 pd pd
where (1 — Loy:) = (1 — L)(1 — Loc). 02 02
n il
; 0'Oo 10 20 30 40 50 0'oo 10 20 30 40 50
B. Class-B Dynamics Rotation angle, o, (degrees) Rotation angle, o, (degrees)

Class-B SF-OPQ'’s require an intracavity polarization ro- @) ®)
tation for the signal and an extracavity polarization rotation
for the pump fields. Two different modes of operation are 10 1.0
possible depending on the intracavity polarization rotationes| -
scheme employed for the signal field. In the first case, the,,
signal is rotated by an arbitrary amouift < «, < 90°, so
that a fraction ofsin® v, of the OPO signal flux is coupled
to the lower frequency SFG field mode,(0), while still 02
maintaining a fraction oéos? o, as the input signat,(0). At O w0 50 %% e s a5 o
each pass through the crystal, the OPO signa¢xperiences Rotation angle, o, (degrees) Rotation angle, o (degrees)
parametric gain, whereas the rotated signals depleted due © d
to SFG. Here, we assume that the residual rotated signal at the

output of the crystak({) is either coupled out of the cavity F9- 8. Conversion efficiencyy), pump depletion (pd), and rotated pump
. . . . .. depletion (rpd) as functions of the pump polarization rotation angle for a
with the use of a polarizing beamsplitter or is negligible dugass-B SF-OPO. The nonlinear drive is unity and: 0.04 in all cases =

to strong conversion. If, instead, both the signal and rotatéd 0.7, (b) 0.9, (c) 1.1, and (d) 1.3.
signal fields are fed back to the input by the OPO cavity, the ]
polarization mixing due to the intracavity retarder will resulk€Pt constant at unity and. = 0.04. At «, = 0°, the
in the interference of the two fields in an uncontrolled fashio®F-OPO is above threshold but there is no SFG.dAsis
In this configuration, the OPO signal field mode experienc&creased, the conversion efficiency increases and reaches its
a linear loss ofsin’ o, in addition to other residual cavity Maximum value. In Fig. 6(a) and (b), the decrease after the
losses. The total cavity reflectance for the OPO signal becont@k is gradual, and the SF-OPO falls below threshold at
Rcos? ;. There is no nonlinear output coupling mechanisomec,, value. However, in Fig. 6(c) and (d), the SF-OPO
in this situation, and the presence of the SFG process hasfaits below threshold abruptly when,, increases above its
effect on the intracavity signal flux densii§. Even though the optimum value as a consequence of the threshgldoeing
SFG process is internal to the OPO cavity, the lower frequengpaller than the optimunay,. This behavior is related to
SFG input at the signal wavelength is not resonant in tiee unusual saturation characteristics of the parametric gain;
cavity. In effect, this configuration is equivalent to splitting thetarting fromg, at a3(0) = 0, g[a3(0)] first increases with
pump into two beams, downconverting one beam to the sigria¢reasingz3(0) and then decreases to cross the loss 1ing
wavelength with a regular OPO of output coupler reflectivitat the intracavity signal flux density3(0) = z;. When o,
sin? «v,, and then summing the other beam with the output ¢ increasedg, decreases and becomes less thg®, and
this OPO. Since the SFG process does not benefit from @ 0) = zo = 0 becomes a stable fixed point. If the SF-OPO
high intracavity signal flux density, this configuration is nois turned on at this point, oscillations cannot build up in the
expected to be particularly efficient or useful. cavity. However, if one increases, while the SF-OPO is
On the other hand, a different mode of operation is achievedcillating ata3(0) = z;, the oscillations continue past the
if the residual rotated signal is not coupled out of the cavithresholdw, value, as shown in Fig. 6(c) and (d).
and o, is set to 90. In this scheme, the retarder switches Both the thresholdy, and threshold nonlinear drive can
around the polarizations of the output OPO sigagll) and be found by solvingyoR = 1. Since the OPO and the SFG
the residual rotated signak(!) with no polarization mixing. processes are independent in a single pass through the crystal
As in the previous scheme, the polarization of the pump fielthd the retarder switches around the polarizations,oénd
is rotated before entering the cavity to provide the highey, in each round trip, the signal field has to be followed for
frequency SFG input field; (0). two cavity round trips to find the threshold condition. The
For a given extracavity pump polarization rotation anglgmall-signal gain over two round trips can be expressed as

of a,, maximum conversion to the sum-frequency requires _ 2 9 .
complete depletion of the rotated pump field. From an ex- 9o = fcosh (\/BCOS%) o8 (ﬁ\/ﬁsnmp)' (75)

perimental point of view, however, it is more meaningfuvhere thecosh®(v/D cos oy,) factor represents the gain of the
to try to maximize the conversion efficiency at a constaf2PO signal in the first pass through the crystal, whereas the
nonlinear drive by adjusting,,. As an example, Fig. 6 showscos?(3v/Dsin ) factor represents the loss due to SFG in the
the conversion efficiency and the depletion of the pump asecond pass. The oscillatory nature of the?(3v/D sin Q)

the rotated pump flux densities as functionscgf for four factor in (75) results in a number of distinct nonlinear drive
different values ofs. In all cases, the nonlinear drive isranges for which the SF-OPO is below threshold.

B=1.3
0.8

0.6
0.4}

0.2
. rpd
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Fig. 7. Conversion efficiency as a function of the nonlinear drive and the pump polarization rotation angle for class-B SF-OB&s).@)(b) 3 = 1.0.
(c) p = 1.5. (d) 8 = 3.0. For each casel. = 0.04. All contours are in 0.1 steps.

Fig. 7 shows contour maps of the conversion efficiency asto 10
a function of the nonlinear drive and, for four different ;4 ™ p=05 08 p=10
values ofg. The contours indicate curves of equal conversion06 -
efficiency. The white area extending from the lower right = ' pd
corner of each plot is the region for which the SF-OPO %4/ 4 R
is below threshold. The contour that borders this area is-2 02
a plot of thegoR = 1 curve, representing the threshold ;,t1 002

. . . . . . . 0 20 40 60 0 20 40 60

condition. Regions of periodic and chaotic oscillations are Rotation angle, o (degrees) Rotation angle, o, (degrees)

identified with grey and black areas, respectively. In the case
of a multistable steady-state solution, the figure shows the @ ()
conversion efficiency value that is reached by continuouslyi.o 10

changing each parameteD(or «,) from a single-valued R=15 08 v p:=30
steady-state solution.
All plots in Fig. 7 show “lobes” of regions where the 8] rpa oe
SF-OPO is above threshold. The number of lobes in the’*|, 04 o
D = 1-100 range increases with increasify The lowest oz 02
lobe does not exhibit any periodic or chaotic oscillations up to, ;= P 0.0
approximatelyD = 8, regardless of the value gf. The peak ORotatioi?angle,‘toa (degsr%es) ORotatiozr?angle,“()x (de;:)ees)
conversion efficiency in this stable lobe is highest for 1. : P
The decline in maximum conversion efficiency is more rapid © (@

toward? > 1 compared tg? < 1. A lower value of3 requires Fig-l8- C?n\(/grsior} eﬁicienCY']{),hpump depleltion (pd), and rotated Ipu][np

: : : : . depletion (rpd) as functions of the pump polarization rotation angle for a
a higher V"?"“e of no_nlmear drive for optlmum Conyersmrg‘lass-c SF-OPO. The nonlinear drive is unity dnek 0.04 in all cases =
Therefore, in the design of a class-B SF-OROis again an (a) 0.5, (b) 1.0, (c) 1.5, and (d) 3.0.
important parameter. For high conversion efficiengghould
be approximately in the 0.3-1.2 range. To avoid periodic

r . i .
chaotic oscillations, the nonlinear drive should be less than?égquency SFG input fields. A half-wave retarder provides

adjustable rotation of the pump polarization before the pump
beam enters the cavity. For a polarization rotation angle of
C. Class-C Dynamics ap, asin® ay, fraction of the total input pump flux densit?
The phase-matching geometry of class-C SF-OPO'’s leddsused as the higher frequency SFG inp#0), whereas the
to orthogonal polarizations for the OPO pump and the higheemaining pump photon flux densit (0) provides parametric
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Fig. 9. Conversion efficiency as a function of the nonlinear drive and the pump polarization rotation angle for class-C SF3CGP@)0.5, (b) 1.0,
(c) 1.5, and (d) 3.0. For each cask, = 0.04.

gain for the signal field. With this configuration, the distributo 1/R. Note that (76) is valid only if3 tan «v, < 1, otherwise
tion of the pump photon flux between the two processes cahn < 1.
be adjusted to maximize the conversion efficiency. Fig. 9 shows contour maps of the conversion efficiency as a
As an example, Fig. 8 shows the conversion efficiendunction of the nonlinear drive angl, for four different values
and the depletion of the pump and the rotated pump (highafr 3. In Fig. 9(a) and (c), periodic and chaotic oscillations
frequency SFG input) fields as functions of the polarizatiomccur approximately foPD > 10. However, if3 has an integer
rotation angleq,, for four different values of3, where the value as in Fig. 9(b) and (d), there are no periodic or chaotic
nonlinear drive is kept constant at unity afd= 0.04. oscillations. As/3 approaches an integer value, the onset of
For 3 = 0.5 in Fig. 8(a), maximum conversion efficiencyperiodic and chaotic oscillations move out to higher values on
and full pump depletion occur at different values @f. the nonlinear drive, reaching infinite nonlinear drive at integer
The depletion of the rotated pump decreases monotonicatiwalues. Multistability is encountered at high nonlinear drive
until the SF-OPO gets below threshold. F6r = 1 in values regardless of the value /@fNote that, for3 > 1, there
Fig. 8(b), complete pump depletion coincides with maximurare “valleys” of very low conversion efficiency, some even
conversion. For this particular value ¢f the depletion of at high nonlinear drive values. In the design of class-C SF-
the pump and the rotated pump fields are equal for all valu@$QO'’s,/3 is again an important parameter. For high conversion
of o, and D, sincev(z) = 6(z) for 8 = 1. Simultaneous efficiency, should be approximately in the 0.3—-1.2 range.
depletion of both pump components is possible only wHen
or 1/73 is an odd integer, sinces(/36) andcos # can become
equal to zero at the samg value only then. For3 larger D. Class-D Dynamics

than unity, the conversion efficiency achieves its maximum |, cjass-D SF-OPO's, the polarizations of the OPO signal
right before the thresholdy,, similar to cIass-B_ SF-OPO's. ;. and the lower frequency SFG input are orthogonal. An
Fig. 8(c) and (d) show examples of this behavior fo= 1.5 inyracavity half-wave retarder provides the SFG inpyf0)

and 3, respectively. Note that a stable nonzero fixed point gfy rotating the signal polarization. There are two modes of
(69) may exist beyond the threshalg, even though iterations operation, as in class-B SF-OPO's, depending on the signal
starting out from near zero cannot reach this fixed point. polarization rotation anglev,.

Both the threshold nonlinear drive and the threshejccan If «, is set to 90, the retarder switches around the po-
be found by equating the small-signal gain larizations of the OPO signal, (/) and the lower frequency
SFG fielday(l) after each pass through the crystal. Fig. 10
shows the conversion efficiency as a function of the nonlinear
drive for four different values of3. For 3 = 0.5, the SF-

go = cosh?(cos ap\/(l — B%tan? o)D) (76)



DIKMELIK et al. PLANE-WAVE DYNAMICS OF OPTICAL PARAMETRIC OSCILLATION 909

=20 s_j2.0
Iy B=05 by
15 G15
2 °
D40 @ 1.0
= g
2 i 9
® ! 2
05 ©05
> >
f . f=
g /\ l R _ g
© 0% 1 1 10 © 0'% 1
’ Nonlinear drive. D ) 10 20 30 40 50 10 20 30 40 50
’ Rotation angle, o, (degrees) Rotation angle, o (degrees)
(@) (b) (@ (b)

52'0 §2.0 1.0 1.0
) g B=1.5 =30
o015 o15 0.8 08
Lo ©
[T [T 0.6 0.6
5 5
@ 3 0.4 : 04|79
©05 505 pd
g g 0.2 02fPd
Q ? o] g - “irsd ;
Q09 H Qo9 m n

0.1 1 10 100 0.1 1 10 100 0.0 0.0

Nonlinear drive, D Nonlinear drive, D 0 10 20 30 40 50 [o} 10 20 30 40 50
Rotation angle, o (degrees) Rotation angie, o (degrees)
(© (d) :

Fig. 10. Conversion efficiency as a function of the nonlinear drive for © @

various values of? for a class-D SF-OPO with a signal polarization rotatiorFig. 11. Conversion efficiencgn), pump depletion (pd), and rotated signal

angle of 90. 8 = (a) 0.5, (b) 1.0, (c) 1.5, and (d) 3.0. For each casajepletion (rsd) as functions of the signal polarization rotation angle for a

L = 0.04. class-D SF-OPOg = (a) 0.5, (b) 1.0, (c) 1.5, and (d) 3.0. The nonlinear
drive is unity andL = 0.04 in all cases.

OPO has a broad region of steady-state operation with a peak

conversion efficiency of 0.40 at a nonlinear drive of 0.41ys that depletes the rotated signal for given valuegiaind
Chaotic behavior is observed at larger values of the nonline@ris found to be

drive. For larger3 values, the regions of steady-state operation . 5
are narrower and the SF-OPO exhibits chaotic oscillations for as = tan \/R cosh™(w/203) — 1. (79)

most nonIir_lear drive valuv_es. Some_of the chaotic regions begirbomplete depletion of the pump takes place when the first
abruptly without any period doubling, and at relatively IOV‘ferm in (66) representing the pump photon flux density is equal

values of the nonlinear drive when compared to other class&§Zero This condition allows us to obtain the ratiocf and
For the configuration wheré® < «, < 90°, we assume §2 as '
t

that the rotated signal field (lower frequency SFG inpu
at the output of the crystal is either coupled out of the m— C1 _ 1 ) (80)
cavity with a polarizing beamsplitter or strongly depleted, so C>  cosh? @ + tan? a, sin’(/36)

that interference due to polarization mixing at the half-wave, . . : . : L
P g : 'Fhls relation also determines the ratio of the intracavity signal

retarder is avoided. In this configuration, maximum conversumJ to the input pump flux through the Manley—Rowe relations

o the sum-frequency takes place when both the pumpTaﬁré ) and (63). In the case of simultaneous depletion of the

the rotated signal fields are fully depleted at the output. : ,
nonlinear driv?e andvy, can be aé/justzd to deplete th(—f)se wBHMP and the rotated signal fields at the crystal output, (80)
° can be expressed in terms gfand R as

fields completely and maximizsg.
The depletion of the rotated signal does not depend on the I 1

value of the nonlinear drive. To arrive at this conclusion, we °opt (R+1)cosh?(n/283) — 1

first note thatRa3(I) = a3(0) + a3(0), and obtain

(81)

We then integrate (66) and obtain the optimum nonlinear drive

2 1 P 2
a22(l) = cosh? 4(]) = 1t tan a, (77) oS
a3(0) R 7/28
2
where 6(z) is the solution to (66). This relation shows that Dopi = (1 = miopt) [/0 [1 = mept(cosh® ¢
6(1) depends only omv; and R. The rotated signal depletion )
at the output is ) 5 _1/2
2) + tan® «; sin“(8¢))] de (82)
1- “;*(0) =1 — cos?(6(D)) (78)
a3(0) where«; andmqp are given by (79) and (81), respectively.
and independent of the value of the nonlinear drive. The integral in (82) has an integrable singularity at its upper

For the rotated signal to be fully depleted, the produdimit and can be evaluated numerically after a change of
£36(1) should be equal to an odd multiple of/2. Since the variable¢ = 7/23 — p? eliminates the singularity [31].
B8(l) = = /2 case requires smaller values for the nonlinear The optimum nonlinear drivé,,,; decreases with increas-
drive anda,, we consider this case only. Using (77), the angliag values ofg. The maximum conversion efficiency achieved
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Fig. 12. Conversion efficiency as a function of the nonlinear drive and the pump polarization rotation angle for class-D SF30RPQa) 0.5, (b)
1.0, (c) 1.5, and (d) 3.0. For each cade, = 0.04.

at Dy IS wavelengths and brings adjustability to the relative strength of
9 the two processes.

Rcosh (7;/ 2p) — 1 . (83) In this paper, we investigated upconversion OPQO’s based
(R + 1)cosh™(n/2(3) — 2 on the simultaneous phase matching of parametric generation
For larger values of3, the maximum conversion efficiencyand SFG, where the resonant OPO signal is summed with
decreases rapidly with increasing cavity losses. a portion of the pump. We have identified four distinct

As an example, Fig. 11 shows and the depletion of the classes of SF-OPO’s depending on which field components
pump and the rotated signal flux densities as functions,of are common. These four classes are characterized by different
for four different values of3, whereD is kept constant at unity sets of coupled mode equations and, consequently, show
and L = 0.04. Note that, ag? gets larger, the peak conversiordifferent characteristics from each other. However, efficient
efficiency increases and shifts to smaller valuesagf The upconversion is possible in all four classes with careful design.
threshold«; is independent of3 since the net small-signal The most important design parameters are the nonlinear drive
gain go = cos? o, cosh? v/D, which includes the linear lossand 3. For a desired set of wavelengths, the nonlinear drive
due to polarization rotation, is not dependent/én depends on the effective nonlinear coefficient of the crystal

Fig. 12 shows contour maps of the conversion efficiengy,, the crystal lengtH, and the available pump photon flux
as a function of the nonlinear drive awrg, for four different densityaf,. Even though the pump flux density can be adjusted
values ofg3. Highly efficient conversion is possible regardlespy changing the beam size, experimental constraints such as
of the value of 3. As 2 get larger, the location of the keeping the confocal distance longer than the crystal length or
peak conversion efficiency shifts to smaller values of thgystal damage threshold may limit the maximum availafjle
nonlinear drive, together with the onset of periodic and chaotite yseful crystal length is also limited; physical limitations
oscillations. In the design of class-D SF-OPQ¥%should be arise from crystal growth constraints, or in pulsed systems,
chosen with the available nonlinear drive in mind. the pulse overlap length may be limited due to group velocity

mismatch between the field components. As a result, there
VI. CONCLUSION is usually an upper limit to the available nonlinear drive.

The simultaneous phase matching of two different seconfine parametefs is more difficult to tailor. Once the phase-
order nonlinear processes within the same crystal with onerdgatched wavelengths are known, BPM offers no method
more fields in common gives rise to a wide range of frequencipr adjusting 3. However, using QPM for either one or
conversion applications. Both birefringent and quasi-phadesth processes provides a mechanism for adjusfinghe
matching techniques can be used to phase match either progeskrization rotation required in classes B, C, and D provides
Quasi-phase matching offers added flexibility in the choice ah adjustable parameter, the polarization rotation angtbat

/’7111 ax =
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may be easily changed by rotating a half-wave retarder linear drive. In these situations, the instantaneous conversion
maximize the conversion efficiency. The cavity loséealso efficiency may be higher than unity.

influence the performance of SF-OPO'’s. In all classes exceptWe conclude that SF-OPQO'’s are promising devices for the

class A, it is best to minimize the cavity losses; in a typicadfficient upconversion of lasers. The development of accurate
experiment, one can usually kedp < 0.05. For class A, computational models that take the transverse and temporal
however, one of the cavity mirrors may have to be replacedriations of the beams into account would be very useful in

with an output coupler for the signal field in order to maximizéhe practical design and optimization of SF-OPO's.

the conversion efficiency.

In class-A SF-OPQ's, the maximum possible conversion ef-
ficiency is entirely determined hy. The conversion efficiency
Increases monotonically with increasing for values less 1] special issue, “Optical parametric oscillation and amplificatiah Opt.
than unity. However, the SF-OPO cannot get above threshold Soc. Amer. Bvol. 10, pp. 16592243, 1993.
for 3 > 1. Therefore, it is desirable to havé to be as [ fge‘;g' ggg?;zggé'ci'gggramet”c deviced,"Opt. Soc. Amer. Bvol.
high as possible without exceeding unity. Ongeis fixed, [3] C.L. Tang, W. R. Bosenberg, T. Ukachi, R. J. Lane, and L. K. Cheng,
the maximum possible conversion efficiency is known. The _ "Optical parametric oscillatorsProc. IEEE vol. 80, pp. 365-374, 1992.

l dri t which this effici b lized d ] R. J. Ellingson and C. L. Tang, “High-power, high-repetition-rate
nonlinear _rlvea whic ISe 'C!ency can _e realz_e _epe_n femtosecond pulses tunable in the visibl&pt. Lett, vol. 18, pp.
on the cavity losses. If the available nonlinear drive is high  438-440, 1993. '
enough, one can increase the cavity losses with an outpl E: C. Cheung, K. Koch, and G. T. Moore, "Frequency upconversion
- . . . . .. by phase-matched sum-frequency generation in an optical parametric
coupling mirror to ach|eve_ the maximum possible e_ff|C|ency, oscillator,” Opt. Lett, vol. 19, pp. 1967—1969, 1994. _ _
or otherwise keep the cavity losses as low as possible. [6] P. P.Bey and C. L. Tang, “Plane-wave theory of parametric oscillator
In class-B SF-OPO’s. the polarizations of the signal and and coupled oscillator-upconvertedEEE J. Quantum Electron.vol.

. . _ Y QE-8, pp. 361-369, 1972.
rotated signal fields are switched around at each pass, whitg G. T. Moore, K. Koch, and E. C. Cheung, “Optical parametric oscillation
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