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Abstract. We present an example of an exactly soluble bosonic coherent state path integral with non-

polynomial action. 

Exact evaluation of path integrals is a separate branch of path integral science. The list of 

exactly soluble Feynman’s path integrals in various coordinate spaces can be found in [1]. It 

was pointed out [2] that ‘most systems for which Schrodinger’s equation is exactly soluble¨ 

have been solved exactly by path integration’. 

In this letter we present an example of exact calculation of a coherent state path integral 

with non-polynomial action. This path integral is a partition function of a bosonic Hamiltonian 

originating from the problem of a single electron interacting with molecular phonons in a 

Holstein dimer. This problem contains the evaluation of the partition function over electron 

and phonon variables. The first step consists in the diagonalization of the initial Hamiltonian 

in electron subspace by means of the Fulton–Gouterman transformation [3,4]. This 

transformation of a Holstein dimer Hamiltonian with one electron leads to two pure bosonic 

problems. The corresponding path integral representation of partition function was 

investigated in [5]. The non-trivial part of the phonon problem is a path integral with 

nonpolynomial action: 

 Z± = Z Du¯ Du exp(S±) (1) 

with action 

  (2) 

where ω is a phonon frequency, t is an electron hopping integral, g is an electron– phonon 

coupling and the paths u,u¯ are subject to the periodic boundary conditions u(¯ 0) = u(β),u(¯ 

0) = u(β). These actions correspond to the following Hamiltonians: 



 

 . (3) 
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The term exp(−2uu)¯ in the action (2) corresponds to the operator cos  in (3) 

because we must represent the operator in normal form before replacing the creation and 

annihilation operators u+ and u by trajectories u¯ and u when we derive the action based upon 

a Hamiltonian. 

These Hamiltonians describe the symmetric and antisymmetric states of an electron in the 

dimer with respect to phonon permutation symmetry [5]. The path integrals Z± have nontrivial 

character even at the limit g = 0 due to the highly nonlinear term exp(−2uu)¯ . In the present 

work we calculate exactly the path integrals (1), (2) for g = 0 based on time-sliced 

approximation. 

We start with the following expansion of the action: 

Z+ = Z Du¯ Du exp uu + te  

 
Equation (4) can be obtained on the basis of the N time-sliced approximation (see [6]), namely 

  (5) 

Here the measure d . In equation (4) the nth power of the exponential sum is 

as follows: 

  (6) 

where 

 − −

 − ··· − 

The number of terms in expansion equation (5) with the same set {ni} of summands in index 

of summation, {n0,n1,...,nN−1} equals 

 · ! 

where P denotes the number of ni (ni 6= 0). In this expression the set {n0,n1,n2,...,nN−1} can be 

split into m subsets of equal ni with the number qj of coinciding elements in the jth subset. 

Toclarifythisstep, letusputfixedindices1 0 n3=2 8, N =4 123 intotheseriesofequation(6)and 

choose the single summand as (e−2u¯ u )3(e−2u¯ u )2(e−2u¯ u )3. The corresponding coefficient 
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 C is the product . It should be noted that the following summands have 

the same structure, (e−2u¯2u1)3(e−2u¯3u2)3(e−2u¯7u6)2 or (e−2u¯1u0)2(e−2u¯4u3)3(e−2u¯12u11)3. The 

summands with an identical structure give an equal contribution to Z(N) in equation (5). In the 

example cited above the number of the summands with an identical structure equals 
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. In the denominator of the latter equality the factorial 2! counts the 

number of the coinciding indices ni(= 3). 

Let us bear in mind that we calculate the path integral as a limit Z+ = limN→∞ Z(N). So, 

only the terms ∼O(1) are essential, whereas the terms ∼O(1/N) should be omitted. We must 

keep the factor [ . Really, the denominator of the multiplier  

(equation (5)) can be cancelled only in the case where every summand equals unity, ni = 1, in 

the index of summation of series equation (6). Only these terms should be kept in the series 

equation (6). As a result, in equation (5) each non-vanishing summand Z(
(
n
N

)
) is the product 

of the n multipliers of the type exp(−|um|2 + u¯m+1um(1 − βω/N) − 2u¯m+1um) = exp(−|um|2 + 

u¯m+1um(−1 − βω/N)) and N − n multipliers of the kind 

exp(−|um|2 + u¯m+1um(1 − βω/N)). 

In the corresponding Nth-multiple integral of equation (5) the non-vanishing terms contain 

the factor 

 . (7) 

Integrations in equation (5) with respect to lead to the following expressions: 

 . (8) 

In equation (8) the factor  appeares as a result of the limiting procedure. Under the 

same limit (N tends to infinity) the factor of equation (7) is equal to . 

Putting equation (8) into the total partition function, equation (5), with a passage to the 

limit N → ∞ in the whole expression one can get the final result 

. 

− 

For the partition function Z− the same sequence of calculations leads to 

. 

At last, the total partition function is expressed as follows: 

. 

So, we calculated the partition functions (1), (2) for the limiting case g = 0. Since the 

eigenvalues of the Hamiltonian, equation (3), for g = 0 are known, 
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the partiton function can be easily calculated without the explicit use of path integration. The 

cited integration is of interest due to the fact that it presents a rare example of exactly 

calculable path integral with nonlinear action. 
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