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Abstract. The quantum polarization and phase properties of an electric dipole radiation are 

examined. It is shown that, unlike the classical picture, the quantum description of polarization 

needs nine independent Stokes operators, forming a representation of SU(3) sub-algebra in the 

Weyl–Heisenberg algebra of photons. A corresponding Cartan algebra determines the cosine and 

sine of the radiation phase operators. A new representation of dipole photons is proposed. The 

generatorsoftheCartanalgebraarediagonalinthisrepresentationsothatthecorrespondingnumber 

states describe the number of photons with given radiation phase. The eigenstates of the radiation 

phase are determined. They have a discrete spectrum and natural behaviour in the classical limit. 

The relation between the radiation phase, operational phases and the Pegg–Barnett approach is 

discussed. 

1. Introduction 

It is well known that quantum electrodynamics describes a pure multipole radiation generated 

by an atomic or molecular transition in terms of ‘spherical’ photons with given angular 

momentum and parity [1]. The angular momentum JE of a quantum mechanical system is 

usually specified by a representation of the SU(2). If the corresponding enveloping algebra 

contains a uniquely defined scalar (the Casimir operator), the polar decomposition of JEcan 

be obtained [2]. This polar decomposition determines a dual representation of SU(2) 

expressed in terms of so-called phase states [2], describing the quantum phase of the angular 

momentum. 

Although the angular momentum ME of a multipole radiation is well defined in terms of 

the spherical photons [1], the polar decomposition of ME is impossible. The reason is that 

ME is represented by generators of an SU(2) sub-algebra which has no isotype representation 

[3] in the Weyl–Heisenberg algebra of photon operators. This means that the Casimir operator 

cannot be uniquely determined in the whole Hilbert space HR of photon states. Hence, the 

quantum phase of the angular momentum of a multipole radiation cannot be determined by 

the method of [2] valid for the quantum mechanical systems. 

An approach focused on overcoming this difficulty has been proposed recently [4]. The 

main idea, which seems to be a very natural one, is to consider the radiation of a given 

quantum source rather than a free electromagnetic field. Even in the classical picture, the 

multipole radiation can be determined completely only if the source functions, describing a 

localized source at the origin, are known (e.g., see [5]). Within the quantum picture, we can 

take into consideration the ‘source dependence’ of radiation in the following way. Since the 

total angular momentum JE + ME is conserved in the process of generation, we can first 

construct the polar decomposition of JE in the (2j + 1)-dimensional atomic Hilbert space HA, 

following the method by Vourdas [2]. Then, for the ‘phase-dependent’ dual representation of 

theatomicSU(2)algebra, wehavetodeterminetheradiationcounterpart, whichconsistsofthe 
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operators complementary to the atomic operators with respect to the integrals of motion [4,6]. 

In particular, the cosine and sine of the so-called radiation phase have been determined in 

this way for the electric dipole radiation by a two-level atom [4, 6]. The radiation phase is, by 

construction, the quantum phase of angular momentum of radiation. 



 

Many attempts have been made to define the quantum phase of light via the angular 

momentum (e.g., see [7]). The new element of our approach [4] is that we determine the 

quantum phase of radiation via the quantum phase of angular momentum of its source. We 

also note that one of the most popular and important methods in the field of quantum phase, 

proposed by Pegg and Barnett [8] (for a recent review, see [9]), is based on a contraction of 

the infinite-dimensional Hilbert space of photon states HR. Within this method, the quantum 

phase variable is determined first in an s-dimensional (s is a finite integer) sub-space of HR, 

and the formal limit s → ∞ is taken only after the averages have been calculated. In contrast, 

we consider an extended 
space of states 

HA ⊗ HR in which the quantum phase of radiation is 

determined by mapping of corresponding operators from HA into HR, using the conservation 

law. By definition, the radiation phase is expressed in terms of what can be generated by a 

given quantum source. In some sense, our approach is complementary to that proposed by 

Mandel et al [10], in which the quantum phase is determined in terms of what can be 

measured. 

Inrecentpublications[11]wehaveshownthattheradiationphaseasdefinedin[4]hasclose 

connectionwiththegeneralizedStokesoperatorsintroducedin[12]todescribethepolarization 

propertiesoftheelectricdipoleradiationinthequantumdomain. Thisisnotsurprising,because the 

radiation phase describes the quantum phase of angular momentum which, generally 

speaking, consists of the spin and ‘orbital’ contributions, while the polarization is defined to 

be a given spin state of photons (e.g., see [13]). We note that some attempts to determine the 

quantum phase (or phase difference) in terms of polarization are known [14]. The polarization 

has been described in [14] by conventional Stokes operators of a monochromatic plane wave 

(free electromagnetic field) and the quantum phase variable has been defined in the spirit of 

the Pegg–Barnettapproach[8,9]. Thispictureofpolarizationdealswiththetransversalanisotropy 

oftheelectricfield. Inthecaseofmultipoleradiation, inadditiontothetransversalcomponents 

thepolarizationalwayshastheradialcomponent, atleastinthenearandintermediatezones[5], and 

the spatial anisotropy should be considered rather than the transversal one. In spite of the 

factthattheradialcomponentusuallyhaslowintensityatfardistances,itmaystronglyinfluence the 

quantum fluctuations of the polarization of the two other components [12]. Therefore it cannot 

be neglected, even in the vacuum state. 

In the present paper we continue the discussion of the radiation phase [4]. We complete 

the quantum description of the polarization of electric dipole radiation. We examine the 

spectrum of the cosine and sine of radiation phase operators and show that the eigenstates of 

these operators are certain new Fock number states, forming a dual representation with respect 

to the conventional number states of dipole photons. In section 2, based on our previous 

results [4,6,11,12], we briefly discuss the ‘transmission’ of quantum phase information from 

the atomic angular momentum to photons. In section 3 we consider the quantum polarization 

properties of the electric dipole radiation in the quantum domain. It is shown that the total set 

of Stokes operators is determined in this case by the nine generators of the SU(3) subalgebra 

in the Weyl–Heisenberg algebra of dipole photons. The Cartan algebra of this SU(3) 

determines the cosine and sine of the radiation phase operators. In section 4 we introduce the 

dual representation of the dipole photons via some canonical transformation and then define 

the radiation phase states as the number states of dual photons. In section 5 we discuss the 

cosine and sine of the radiation phase operators. We conclude in section 6 with a discussion 

of our results. 
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2. Transmission of quantum phase information between atom and photons 

Following [6], consider a two-level atom with the electric dipole transition between the levels 

with angular momenta j = 1 and j0 = 0, situated at the centre of an ideal spherical cavity. The 

excited atomic state |j = 1;m = 0,±1i is triple degenerated in this case. In the process of 

radiation, a photon takes away the angular momentum j = 1 and projection m = 0,±1 of the 

corresponding sub-level of the excited atomic state. If we introduce the atomic operators Rmm0 

= ||mihm0||, where 

  (1) 

the angular momentum J of the excited state can be represented by the following generators 

of the SU(2) algebra [6]: 

  (2) 

so that [J+,J−] = 2Jz, [Jz,J±] = ±J±, and 

1 

 JE2 = j(j + 1) X Rmm = 2 × 1A (3) 

m=−1 

where 1A is the unit operator in the three-dimensional space of states (1). Then, by performing 

ananalysissimilartothatproposedbyVourdas[2], onecanintroducethefollowingexponential of 

the quantum phase operator: 

EA = R+0 + R0− + R−+ 

the eigenstates of which 

EAEA
+ = 1A EA3 = EA (4) 

EA||φmi = eiφm ||φmi  m = 0,±1  

(5) 

determine the basis in HA dual to (1). States (5) are usually called the phase states [2]. The 

phase variable determined via the exponential of the phase operator (4) describes the azimuth 

(longitude) of the angular momentum of the excited atomic state. 

Any photon generated by the electric dipole transition under consideration has given 

angular momentum j = 1, projection m and parity P = −1. It is described by the annihilation 

and creation operators am and am
+ [1] determined in the Hilbert space 

1 
(m) 

 HR =HR . (6) 
m=−1 

Here the infinite-dimensional sub-space HR
(m) is spanned by the countable set of Fock vectors 

O 
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|nmi, nm = 0,1,2,..., which obey the orthogonality condition  and the 

completeness condition [1] 

  (7) 

where 1 is the unit operator in (6). The photon operators form in (6) a representation of the 

Weyl–Heisenberg algebra with the commutation relation 

 [am,am+ 0 ] = 1δmm0 . (8) 

The angular momentum ME of the electric dipole radiation is represented by the operators 

(see [1]) 

  (9) 

forming a representation of the SU(2) sub-algebra in the Weyl–Heisenberg algebra (8). Due 

to the conservation of angular momentum in the process of radiation, the operators Jp + Mp (p 

= z,±) are the integrals of motion with respect to the modified Jaynes–Cummings Hamiltonian 

[6] 

 ] (10) 

which describes the system under consideration. Here ω is the frequency of the cavity photons, 

ω0 is the atomic transition frequency, g is the coupling constant, and RGm ≡ |j0 = 0;m0 = 0ihm||. 

It is clear that ME 2 determined by (9) is not a C-number in (6) (it is not proportional to the 

unit operator (7)). Hence, the polar decomposition of (9) cannot be determined in the way 

proposed in [2] for the quantum mechanical systems. 

At the same time, one can define the operator [4,6,11] 

  (11) 

which complements the atomic exponential of the quantum phase operator (5) with respect to 

the integral of motion with the Hamiltonian (10) [(EA + E),H] = 0. 

Unlike (5), it is not unitary, but it is normal: 

 [E,E+] = 0. (12) 

The physical meaning of operator (11) is discussed in the next sections. 

3. Polarization 

Before we begin to discuss the dual representation of the photon operators, consider the 

quantum polarization properties of the electric dipole radiation, both classical and quantum. 

In the case of a classical monochromatic electric dipole radiation, only the induction BE is 
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always orthogonal to the direction of propagation (the radial direction of outgoing spherical 

waves), while the electric field 

  (13) 

has both radial and transversal components [5]. Here the coefficients bm are determined by the 

source, f(kr) is a certain combination of the Hankel functions describing the radial 

dependence, and YE is the vector spherical harmonics describing the angular dependence of 

radiation. The component EE0 of field (13) describes a linearly polarized radial (longitudinal) 

field, while  describe the circularly polarized components with positive and negative 

helicities. 

Following the standard method [15], one can define the 3 × 3 Hermitian matrix of 

polarization whose elements are [12] 

 . (14) 

Clearly, this is a generalization of the conventional polarization matrix determined in the 

circular polarization basis [15], which can be obtained from (14) at E0 = 0. It is a 

straightforward matter to arrive at the conclusion that the nine elements of the polarization 

matrix (14) can be completely determined by only five real parameters: precisely, by the three 

intensities Im = Pmm and any two of the five classical phase differences 

1mm0 ≡ argEm − argEm0 

such that 

1+0 + 10− + 1−+ = 0. 

Then, the generalized Stokes parameters of the electric dipole radiation can be chosen as 

follows [12]: 

  (15) 

They have very simple physical meaning. The parameter s0 measures the total intensity, s1 and 

s2 give the phase information, s3 gives the preponderance of the positive helicity over the 

negative one, and the parameter s4 gives the preponderance of the linear (radial) polarization 

over the two circular (transversal) ones. 

Using the canonical quantization of the multipole field [1], we can obtain from (15) the 

following generalized Stokes operators [12]: 

S0 = Xam+ am 

m 

S1 = (E + E+) 
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 S2 = −i(E − E+
) 

(16) 

 + + 

 S3 = a++a+ − a+−a− + 

S4 = a+a+ + a−a− − 2a0 a0. 

Here the operator E is determined by equation (11) and in view of (12) we get 

[S1,S2] = [S1,S0] = [S2,S0] = 0 (17) i.e., that corresponding physical quantities 

can be measured simultaneously. At the same time [S1,2,S3,4] 6= 0, which implies 

corresponding uncertainty relations. 

WenownotethatthetotalsetofindependentHermitianbilinearformsunderconsideration is 

represented by the following generators of the SU(3) sub-algebra in the Weyl–Heisenberg 

algebra (8): 

  (18) 

One can easily see that the five operators (16) can be expressed in terms of linear combinations 

of different generators (18). Moreover, the operators S1 and S2 form the Cartan algebra in the 

SU(3) algebra (18). But generators (18) contain much more information than (16). At the 

same time, it is clear that (18) looks like a representation of the polarization matrix (14) in the 

quantum domain. Unlike the classical case, the elements of the quantum polarization matrix 

are specified by nine independent operators. Therefore, the number of independent Stokes 

operators also should be equal to nine. This means that, in addition to operators (16), which 

represent the quantum counterpart of the Stokes parameters (15), we have to introduce four 

more Stokes operators. For example, the ‘additional’ Stokes operators can be chosen as 

S5 = (a+
+a− + a−

+ a++) 

+ 

 S6 = −i(a+a− − a−a+) (19) 

 + + 
S7 = (a0 a+ + a+a0) 

S8 = −i(a0+a+ + a++a0). 

The operators S3 in (16) and S5,S6 in (19) are seen to form a representation of the SU(2) sub-

algebra, apart from an inessential factor. They formally coincide with the conventional Stokes 

operators [14] determined for a monochromatic plane wave in the circular polarization basis. 

Let us stress the formal character of this coincidence. The operators  in (16) and (19) 

describe the spherical photons with given angular momentum j = 1 and projection m, while 

the photon operators in [14] are determined for the states with given linear momentum. 

We now note that, in the important case of the vacuum radial field, the Stokes operators 

S1 and S2 from (16) and S5 and S6 from (19) describe the same values of the Stokes parameters. 

Nevertheless, the operators S1,2 and S5,6 describe absolutely different physical quantities. To 
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illustrate this fact, consider the state |α+;0;α−i of the radiation field, so that the two circularly 

polarized components are in coherent states each, while the radial component is in the vacuum 

Assume for simplicity that . state. 

Then 

(20) 

 | − 

where 1+− ≡ argα+ − argα−. Hence, the mean values of the physical quantities given by S1 and 

S2 (respectively, S5 and S6) coincide. At the same time, the variances of the corresponding 

physical quantities are 

 (21) Hence, in spite of the equalities (20), the 

quantum fluctuations (21) of the physical quantities described by S1,2 in (16) are much stronger 

than those described by S5,6 in (19). Moreover, they are qualitatively different because of the 

phase-difference dependence of the first two variances in (21). As a matter of fact, the 

operators S5,6, as well as S7,8 in (19), give some extra phase information in addition to that 

described by the operators S1,2 in (16). The evident advantage of the operators S1,2 is that they 

can be measured simultaneously. 

4. Dual representation of photon operators 

Turning back to the definition of the exponential of the quantum phase of the atomic angular 

momentum operator (3), we note that the dual representation in terms of the phase states (4) 

leads to the diagonal form of EA 

. 

The operator E determined by (11) as the quantum counterpart of EA is not diagonal in the 

representationofsphericalphotons. However,itcanbediagonalizedbythefollowingcanonical 

transformation: 

  (22) 

where 

[Aµ,A+µ0 ] = 1δµµ0 . 

φm = (2mπ)/√3 is the same ‘phase angle’ as in (5), and 1 is determined by (7). Then, instead 

of (11) we get 

1 
 (φ)iφµ + X 
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 E =e AµAµ. (23) 

µ=−1 

Certainly,  determine a new representation of the dipole photons. In view of the 

analogy with the atomic operators, provided by the integrals of motion 

 [(EA + E),H] = 0 [(EA
(φ) + E(φ)),H] = 0 

one can choose to interpret Aµ and A+
µ as the annihilation and creation operators of the dipole 

photons with given radiation phase. This radiation phase is the radiation counterpart of the 

quantum phase of the atomic angular momentum. It is clear that the operators S0,1,2 are also 

diagonal in the representation (22): 

  (24) 

while all the other operators in (16) and (19) are not. 

As can be seen from (22), the operators Aµ obey the same stability condition as am 

 ∀µ,m am|vaci = Aµ|vaci = 0 . 

Hence, A+
µ can be used to generate the Fock number states 

 |νµi = (νµ!)−1/2(A+
µ)νµ |vaci (25) 

such that 

 A+
µAµ|νµi = νµ|νµi νµ = 0,1,2,... 

and 

 

with the same unit operator as in (7). Hence, the states (25) form a basis in the Hilbert space 

(6), as well as the states |nmi. In analogy to the atomic phase states (4) and, in general, with 

the quantum phase states introduced in [2], we call (25) the radiation phase states. It follows 

from (23) and (24) that the radiation phase states (25) are the eigenstates of the operators E(φ), 

, and S1(φ),2 : 

 (φ) iφµ 

  |νµi = νµe |νµi 

S0(φ)|νµi = νµ|νµi = S0 

 (φ) (26) 

S1 |νµi = 2νµ cos(2µπ/3)|νµi 

E 
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(φ) 
S2 |νµi = 2νµ sin(2µπ/3)|νµi. 

The physical meaning of the radiation phase states can be illustrated with the aid of the 

Jaynes– Cummings model of section 2. If the two-level atom described by the Hamiltonian 

(10) is prepared in one of the atomic quantum phase states (4), it generates the dipole photon 

which can be observed in the state |1µi described by (25) at µ = m. Then, the Stokes operators 

in (26), apart from a factor of two, give the cosine and sine of the quantum phase of the 

angular momentum. 

The above results lead to the conclusion that the radiation phase states (25) are dual 

with respect to conventional number states |nmi, like the atomic quantum phase states ||φmi 

(4) and conventional atomic states ||mi (1). In turn, the operators  in (22) form the 

representation of the Weyl–Heisenberg algebra of the dipole photons dual to the operators 

am and . 

Although the canonical transformation (22) has the very simple form of the finite Fourier 

transformation, the connection between the conventional number states and the radiation 

phase states (25) is not simple: 

. (27) 

It is interesting that the ‘dual’ coherent states 

 |α(a)i = YDm(a)(α(a))|vaci Dm(a)(α(a)) ≡ exp(αmam+ − H.c.) 

m 

|αm(A)i = Dµ(A)(α(A))|vaci

 µ 

are equivalent to within the following renormalization of the parameters: 

(A) 

(28) 

Ifweconsiderasanexamplethesamestate|α+;0;α−iofthedipoleradiationasattheendofthe previous 

section, we will see that it is represented by the dual coherent state with 

 

in which all the three ‘phase’ components of the dipole radiation are in the coherent states. 
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5. Phase states and radiation phase 

Taking into account the above results and especially relations (24) and (26), one can choose 

to interpret the Stokes parameters corresponding to the operators S1,2 in (16) or  in (24) as 

the non-normalized cosine and sine of the radiation phase. It should be stressed that this 

interpretation follows the standard ideology of the classical definition of the cosine and sine 

of the phase difference between two circularly polarized components [5,15] and the 

operational definition of the cosine and sine operators of the quantum phase [10]. Consider 

the state 

  (29) 

where |νµi are the radiation phase states (25). It is clear that (29) is the eigenstate of the 

operators (23) and (24). Since the operators , and  commute with the total 

number of photons (see (23) and (24)), the eigenstates and eigenvalues of these operators 

can be specified by the index n 
= 

Pµ νµ, describing the total number of photons in a given state 

(29), and by an additional index l, describing a given distribution of n photons over three 

independent ‘phase’ components of the dipole radiation labelled by index µ. The total number 

of possible different l, corresponding to a given n, is clearly 

 

All one can expect is that the eigenvalues of the operators (23) and (24) are represented as 

  (30) 

where |φl
(n)i is the eigenstate (29) at given n and l. Note that this choice of the eigenvalues 

(30) corresponds to the above interpretation of the Stokes operators . In view of (24) and 

(26) the modulus of the eigenvalues (30) can be determined as 

 

In turn, for the ‘phase eigenvalues’ ϕ we get 

 . (32) 

We now note that the cosine and sine of the radiation phase operators were defined in [4,11] 

by the relations 

 CR = KS1 SR = KS2 

where the normalization coefficient K is determined from the condition 

(33) 
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hCR2 + SR2 i = 1 (34) 

where h...i is the averaging over an arbitrary state of the dipole radiation. One can see that 

condition (34) is similar to (31) in the case of averaging over the states . In this 

Table 1. List of eigenvalues of (31), (32) for n = 1–5. 

 

 

case . Hence, the phase states (29) are the eigenstates of the radiation 

cosine and sine operators (33). It is interesting that the eigenvalues of the phase variable ϕl
(n) 

determined by (32) belong to the interval (0,2π) and form a discrete set at any n and l = 

1,2,...,(n + 1)(n + 2)/2. The first few eigenvalues are shown in table 1 and figure 1. 

It is not difficult to see that the averaging of (33) with respect to the vacuum state gives 

hvac|CR|vaci = hvac|SR|vaci = 0 

while the variances are . Hence, as one can expect, the vacuum 

distribution of the radiation phase is uniform. A similar result can be also obtained in the case 

of a single-mode coherent state |αµi. 

Consider, again, the coherent state |α+;0;α−i at |α+| = |α−| ≡ |α|, which was discussed in 

sections 3 and 4. In this case, condition (34) gives 

K = [4|α|2(2 + |α|2)]−
1/2 

so that 
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where 1+− has the same meaning as above. One can see that at |α|2 → ∞ we get hCRi → cos1+− 

and hSRi → sin 1+−. In this limit, the variances 

 
tend to zero. Hence, the radiation phase (33) has the natural classical limit. 

 

Figure 1. The structure of eigenvalues (32). The bold lines correspond to the double-degenerated 

eigenvalues. 

Employing the formulae obtained at the end of section 4 then gives 

. 

Taking into account that Pµ |
α

µ
(A)|2 = 

2
|
α

|2, for the probability that the radiation field can be 

observed in an arbitrary phase state (25) we get 
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 (35) 

where2 n = Pµ νµ. One can see from (35) that this probability tends to zero when |α|2 → 0 or |α| 

→ ∞. This means that the eigenvalues of the radiation phase are distributed uniformly over 

the interval (0,2π) in the vacuum states as well as in the classical limit of high intensity |α|2. 

Between these two extrema, the probability (35) has a maximum which might be considerably 

high. It is interesting that the position of the maximum is completely determined by the mean 

number of photons |αmax|2 = n, while the magnitude depends also on the phase difference 1+− 

(see figure 2). 

We now note that the probability to have a given radiation phase in the coherent state 

under consideration is much higher. Consider, for example, the eigenvalue of the radiation 

phase ϕ = 2π/3. Employing equations (31) and (32) then gives the following properties of the 

states corresponding to this radiation phase: 

 (n) ν+ = n − 2ν− ν0 = ν−. 

 

Figure 2. Probability (35) versus 1+− at ν+ = ν0, ν− = 1. 

It is easy to see that the states obeying these conditions have the following structure: 

 |np − 2kp;kp;kpi (36) 

where p is an integer and for each np = 3p,3p − 1,3p − 2 the numbers kp take the values kp = 

0,1,...,p − 1. For example, at np = 10 we get p = 4 and np = 3p − 2, while the states (36) are 

 |10;0;0i |8;1;1i |6;2;2i |4;3;3i. 
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Consider first the states |np;0;0i in (36). Then, the probability (35) takes the value 

. 

It is clear that Pnp reaches its maximum at 1+− = 2π/3. Then the total probability of the states 

|np;0;0i is 

 

(see figure 3). It is clear that P gives the lower bound of the total probability to have the 

radiation phase ϕ = 2π/3 in the coherent state 

|α+;0;α−i. The contribution of the other states 

(36) can be calculated in the same way. 

6. Conclusion 

Let us briefly discuss our results. We have 

studied the angular momentum and 

polarization of the electric dipole radiation by 

an atom or molecule. We have shown that the 

quantum description of the polarization differs 

essentially from the classical picture. 

Although the latter is based on the five 

generalized Stokes parameters (15), the 

former needs the nine Stokes operators (16) and (19) which are represented by linear 

combinations of the generators (18) of the SU(3) sub-algebra in the Weyl–Heisenberg algebra 

(8) of the dipole photons and by the total number of photons. These nine Stokes operators 

describe the physical quantities with 

Figure 3. Lower boundary of probability to have the radiation phase ϕ = 2π/3 as a function of |α|2 at 1+− = 2π/3. 

essentially different quantum fluctuations. Two of the Stokes operators describing the phase 

information in (16) and (19), precisely S1 and S2, form the representation of the Cartan algebra 

in SU(3) (18). Hence, the corresponding physical quantities can be measured at once. From 

the physical point of view these two operators, apart from a normalization factor, give the 

cosine and sine of the radiation phase (35). 

The polar decomposition of the SU(2) algebra proposed by Vourdas [2] for a quantum 

mechanical system is not possible in the case of the angular momentum ME (9) of the dipole 

radiation. To determine the quantum phase states we have suggested a different approach, 

based on the canonical transformation (22) of the photon operators and further definition of 

the radiation phase states (25) as the number states of the dual photons. We have shown that 

the radiation phase states (25) are the eigenstates of the cosine and sine of the radiation phase 

operators. The discrete eigenvalues of the phase variable, determined by (31)–(34), lie in the 

interval (0,2π) and cover it uniformly in the classical limit provided by the coherent state of 

the radiation field of high intensity. In the quantum domain of low intensities the probability 
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to observe a given eigenvalue of the radiation phase is calculated. Let us stress that, unlike the 

Pegg–Barnet phase (or phase difference), the radiation phase is determined here by operators 

(35) in the whole Hilbert space directly. The measurement of the Stokes operators S1,S2 or the 

radiation phase through the use of an eight-port homodyne detector has been briefly discussed 

in [11]. Detailed investigation of the detection of spherical photons as well as the use of 

another scheme (e.g., a six-port homodyne detector [17]) needs further discussion. 

The most important result in the field of quantum phase was obtained by Mandel et al 

[10]. According to their analysis, there is no unique quantum phase variable, describing 

universally themeasuredphasepropertiesoflight. 

Thisverystrongstatementobtainedatotallyconvincing confirmation in a number of recent 

experiments [10, 16]. In general, the quantum phase variables can be divided into two classes. 

First of all, we have the pure operational phases which are completely determined by the 

scheme of measurement. In addition, there might be some inherent quantum phases related to 

the quantum properties of photons and obtained in the process of generation. Since a photon 

can be specified by itsenergy, angular momentum and/or linear momentum, the inherent phase 

should be determined by either the angular momentum or linear momentum as the energy is 

a scalar. The former is connected with the spin state and hence, with the polarization. This 

inherent quantum phase is just the radiation phase (35). The latter can lead to some 

geometrical phase, which, for example, can be measured as the phase difference between two 

plane waves generated by one source in opposite directions. 

We also note that both the operational phases and the radiation phase are determined in 

terms of bilinear Hermitian forms in the photon operators. At first sight, such a definition runs 

counter to the original idea by Dirac to determine the Hermitian quantum phase via linear 

forms in the photon operators [18] (for a recent review see [9, 19]). Leaving aside Dirac’s 

problem of existence of a Hermitian quantum phase variable of a harmonic oscillator, we 

should emphasize that the use of bilinear forms seems to be quite reasonable from the physical 

point of view. It can be argued in the following way. First, the vacuum field has no phase at 

all. This is the same as saying that the vacuum state of photons is degenerated with respect to 

the phase or that the phase is distributed uniformly over the vacuum. Thus, the inherent 

quantum phase of a photon is generated by a source. This is not an unusual assumption. 

Actually, the classical amplitudes of a multipole field are completely determined by the source 

functions [5]. Hence, the multipole photon operators, which are obtained by the quantization 

of the classical amplitudes [1], are also specified by the source (e.g., see [20] and the 

discussion in [21]). This means that the properties of a photon depend on the quantum 

properties of the source. The 

‘information’aboutthesourceistransmittedtothephotonviatheconservationlaws(ofenergy, 

linear momentum and angular momentum) which are always expressed in terms of bilinear 

Hermitian forms in the photon operators. The ‘phase information’ should be transmitted in 

the same way. This statement can be illustrated using the Jaynes–Cummings model of section 

2. Using the phase states (4) one can introduce the dual atomic operators 

  RµG(φ) ≡ ||φµihG||. 

Then, the simultaneous use of the dual representation of the atomic operators and the 

canonical transformation (22) leads to the following form of the Hamiltonian (10): 

 ] (37) 
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which has exactly the same operator structure as (10). Since the atomic operators R(φ) describe 

here the transitions between the atomic phase states, and the operators A,A+ determine the 

annihilation and creation of photons with given radiation phase, the interaction term in (37) 

describes the transmission of the quantum phase information from the atom to photons. 

Inturn, thedetectionprocessisalsobasedonthetransmissionofenergy, linearmomentum or 

angular momentum from the photons to a detecting device. That is why the operational 

phasesarealsodeterminedintermsofthebilinearHermitianformsinthephotonoperators[10]. By 

virtue of the above discussion, one can unify the operational idea [10] with that of our 

approach [4] to determine the phase in terms of what can be transmitted from a quantum 

mechanical system to photons and vice versa. 

Our consideration of radiation phase of the dipole radiation is based on the use of 

spherical photons determined as the quantum counterpart of rotational invariant solutions of 

the wave equation [1]. This means that the radiation is described in terms of photons with 

given energy and angular momentum. At the same time, in the usual formulation of quantum 

optics, the radiation field is considered in terms of states of photons with given energy and 

linear momentum, corresponding to the translational invariant solutions of the homogeneous 

wave equation (e.g., see [15, 21]). Since the components of the angular and linear momenta 

do not commute, the two representations of the quantum electromagnetic field are different in 

principle. In particular, this difference is manifested in the presence of a radial (longitudinal) 

component of the quantum multipole field, while the plane waves of photons are always 

transversal with respect to the direction of the linear momentum. The a priori neglect of the 

radial component leads to violation of symmetry, i.e. to a change of the representation. In turn, 

the consistent consideration of this component leads to a more general picture of polarization 

based on the SU(3) rather than SU(2) algebra of Stokes operators. It is due to the existence of 

the radial component that the phase-dependent Stokes operators S1 and S2 in (16), as well as 

the cosine and sine of the radiation phase operators (33), commute with each and hence can 

be measured at once. We showed in section 3 that the presence of the radial component even 

in the vacuum state contributes into the quantum fluctuations of Stokes parameters. Let us 

note that a similar contribution affects some other physical quantities as well. As a particular 

example, the intensity of radiation with given polarization at given point rE can be mentioned 

[22]. In fact, the electric field (13) can be also represented as follows [13]: 
 1 1 

 E(E r)E = X χEµ X Vµm(r)aE m 

 µ=−1 m=−1 

where  is the unit vector, corresponding to a spin state of photon. It is then clear that the 

local intensity 

 Iµ(r)E = hEµ
+(r)EEµ(r)E i 

contains the off-diagonal terms of the form  and conjugated terms. Hence, the 

variance of intensity should contain an additional contribution, coming from these off-

diagonal terms. 

Our considerations so far have been applied to the electric dipole radiation. As a final 

remark, we note that the canonical transformation (22) can be generalized to the case of 

arbitrary pure (j,m) multipole radiation as follows: 
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  . (38) 

Usingtransformation(38)onecandeterminetheradiationphasestatesofanarbitrarymultipole 

radiation in the same way as (25). 
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