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Abstract. Basis functions that are used to model surface electric current densities in 

the electric field integral equations of computational electromagnetics are analyzed with 
respect to how well they model the charge distribution, in addition to the current. This 
analysis is carried out with the help of the topological properties of open and closed surfaces 
meshed into networks of triangles and quadrangles. The need for current basis functions 
to properly model the charge distribution is demonstrated by several examples. In some of 
these examples, the basis functions seem to be perfectly legitimate when only the current 
distribution is considered, but they fail to deliver a correct solution of the electromagnetic 
problem, since they are not capable of properly modeling the charge distribution on some 
surfaces. Although the idea of proper modeling of the charge distribution by the current 
basis functions is easy to accept and can even be claimed well known, the contrary uses 
encountered in the literature have been the motivation behind the investigation reported in 
this paper. 

1. Introduction 

Integral equation solution techniques, such as the 
method of moments (MOM) [Harrington, 1982; Mill- 
er et al., 1992], the fast multipole method (FMM) 
[Rokhlin, 1990; Coifman et al., 1993; Lu and Chew, 
1993; Giirel and Aksun, 1996], and the recursive T- 
matrix algorithms (RTMAs) [Chew et al., 1992; 
Giirel and Chew, 1993], express the unknown func- 
tion using a set of known expansion functions or basis 
functions (BFs). Specifics of the problem and the so- 
lution technique may force or allow the BFs to be of 
very different forms. 
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1. BFs may be vector or scalar functions, depend- 
ing on the function they are modeling. 

2. BFs may be entire-domain or subdomain func- 
tions, depending on their domain of definition [Kol- 
und:•ija and Popovif, 1993]. 

3. B Fs may be curved or planar functions, de- 
pending on the surface on which they are defined 
[ Wandzura, 1992; Valle et al., 1994; Song and Chew, 
1995; Peterson and Abetegg, 1995]. 

4. BFs may be nodal, edge, or face functions, de- 
pending on which one they are associated with. 

5. BFs may have linear, bilinear, quadratic, or 
higher-order variations [ Wandzura, 1992; Abetegg et 
al., 1996; Graglia et al., 1997]. 

In addition to the BFs, another set of functions, 
called weighting functions or testing functions (TFs), 
are also employed in the solution of the integral equa- 
tions. The choice of BFs and TFs has been inves- 

tigated from many different points of view and re- 
ported by many researchers. Aksun and Mittra [1993] 
set forth conditions regarding the choice of BFs and 
TFs by considering the convergence of the integrals 
encountered in the spatial-domain and spectral-do- 
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main formulations. Sarkar [1985] and Sarkar et al. 
[1985] discussed some of the mathematical restric- 
tions on the choice of BFs by considering linear op- 
erators in general. 

The merits of choosing the BFs identical to the 
TFs to obtain a Galerkin formulation and choosing 
the BFs as the complex conjugate of the TFs have 
also been discussed by many researchers [Sarkar, 
1989; Richmond, 1991]. Among other consequences, 
the Galerkin formulation transforms the electric field 

integral equations (EFIEs) into symmetric systems of 
equations, which is an important consideration for 
the choice of the solution algorithm. Specific choices 
of BFs to create sparse systems of equations have also 
been proposed [Canning, 1993; Kim et al., 1996]. 
Andersson [1993] designed special BFs that include 
the singular behavior of the current to be modeled. 

Furthermore, it is well known that for source-free 
and sink-free problems, the BFs should be chosen to 
make the integral of the charge distribution (total 
net charge) vanish. Continuity of the BFs in the 
direction of current flow must be assured to avoid 

any artificial and undesired charge accumulation. 
All of the above are legitimate and important con- 

siderations in the choice of BFs. In addition to these, 
we will advocate one more constraint in this paper: 
The BFs chosen to model the electric current in the 

solution of an EFIE should also support a consistent 
and valid charge approximation. That is, the current 
BFs are responsible not only for the approximation of 
the current distribution, but also for the charge dis- 
tribution. This is because the charge distribution is 
inherently and implicitly approximated by the diver- 
gences of the current B Fs. This point will be further 
explained in section 2, and several examples of BFs 
satisfying and violating this constraint will be ana- 
lyzed in section 4. In section 3, some relevant topo- 
logical properties of surfaces will be summarized. We 
will need this information in order to relate the num- 

bers of degrees of freedom (DOFs) supplied by the 
current approximation and required by the charge 
approximation. 

2. Modeling the Electric Current and 
Charge Distributions Together 

Solution of the EFIEs of the computational elec- 
tromagnetics requires the expansion of the unknown 
current distribution J (r) in terms of the chosen basis 
functions. Using vector B Fs bn (r), this expansion is 
given by 

N 

J (r) - • bn (r)an (1) 
n--1 

using N DOFs, where an is a complex coefficient 
associated with the BF bn(r). 

If scalar basis functions are employed, each vector 
component of J(r) can independently be expanded 
as 

• b(nl) (r) 0 0 J(r) - 0 0 ß 

n=l 0 0 b(n3) (r) 
b(n2) (r) a(n 2) 

a? ) 
N 

-- Z •n(r) ß an (2) 

using 3N DOFs. Whether (1) or (2) is used for the 
modeling of the electric current distribution J (r), the 
electric charge density p(r) is also being implicitly 
approximated by a collection of "charge BFs" with- 
out any need for an explicit implementation in the 
solution technique. Owing to the continuity equation 
(in the frequency domain with an assumed e -i•t time 
dependence) 

•7. J(r) = leap(r) (3) 

governing the relation between J(r) and p(r), the 
charge distribution is implicitly modeled by the di- 
vergence of the B Fs used to model the current dis- 
tribution. Thus this implicit modeling of p(r) corre- 
sponding to (1) and (2) is given by 

N 

p(r) -- 1__ • K7. bn(r)an (4) 
n=l 

I N 
p(r) -- i-• • •7. •n(r) ß an, 

n=l 

respectively, where 

V. •n (r) -- [ øqb(n•)(r) 0b(n2) (r) 0r• 0r• 0b(n3) (r)](6) Or3 

and rx, r2, and r3 are the three components of r. 
Since the charge distribution is expanded using the 

divergence of the current BFs and exactly the same 
coefficients are used in this expansion, we note the 
following: 

1. The number of the DOFs used in the expansion 
of p(r) in (5) and (6) is equal to the number of the 
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DOFs supplied by the expansion of J(r) in (1) and 
(2). Note that this supplied number of DOFs may or 
may not be sufficient for a proper approximation of 
the charge distribution, and this is exactly what we 
will investigate in the remainder of this paper. 

2. The nature of the expansion of p(r) is deter- 
mined by the kind of expansion chosen for J(r). For 
instance, if the current is approximated by entire- 
domain BFs, then the charge is also approximated by 
entire-domain BFs. If the current is approximated 
by piecewise (PW) constant subdomain BFs, then 
the charge is approximated by singular functions de- 
fined on the subdomain boundaries ("blades") that 
coincide with the discontinuities of the normal com- 

ponent of the current. If the current is approximated 
by subdomain BFs that are PW linear and continu- 
ous along the direction of the current flow and P W 
constant in transverse directions, then the charge is 
approximated by a PW constant distribution. If a 
surface current is approximated by PW bilinear sub- 
domain BFs that are continuous at least in the direc- 

tion of the current flow, then the charge distribution 
is approximated by a PW linear distribution. 

In this paper, we will focus on the use of the sub- 
domain BFs for the approximation of the surface 
electric current densities. The use of the subdomain 

BFs for the current results in the PW approximation 
of both the current and the charge on these subdo- 
mains. Note that, in general, the number of subdo- 
mains is not equal to the number of the BFs or the 
DOFs. Thus it is not certain that the DOFs used in 

the current expansion will be sufficient for the DOFs 
required by the charge distribution on all of the sub- 
domains for the kind of approximation imposed by 
the choice of the current expansion. 

In section 4, a class of B Fs will be analyzed from 
this point of view. Before that, we will briefly study 
the topology of open and closed surfaces and their 
meshings into triangular and quadrangular networks, 
in section 3. We will need this information to com- 

pare the number of current BFs, which are related 
to the number of edges or nodes of a network, with 
the number of the required DOFs for the charge ap- 
proximation, which is related to the number of faces 
of the same network. 

For the purposes of this paper, statement of the re- 
suits should be sufficient; derivations are not given. 

The Euler's relation for open or closed, flat or 
curved surfaces containing V vertices, E edges, and 
F faces states that 

v - + F = x, (7) 

where X: is called the Euler characteristic of the sur- 
face [Mortenson, 1985; Wandzura, 1992]. Here X: = 0 
for a torus, X = 1 for all simply connected open sur- 
faces, and X = 2 for all simple polyhedra that can 
be continuously deformed into a sphere. For exam- 
ple, a simple cube has eight vertices (V - 8), twelve 
edges (E = 12), and six faces (F = 6). Therefore 
the Euler characteristic of the surface of the cube is 

X: = 8 - 12 + 6 = 2. Let ¬xt, Eext, ISnt, and Eint de- 
note the numbers of vertices and edges that are and 
are not on the exterior boundary of a surface. Then, 
we have the trivial equalities 

V •. 

E = 

and the obvious equality 

+ (8) 

Eint + Eext (9) 

Eext = ¬xt, (10) 

where both are equal to zero for a closed surface. If 
the surface is meshed into a network of triangles or 
quadrangles, more relations can be found to relate 
V, E, and F. 

3.1. Quadrangular Networks 

Since each quadrangle has four edges and each in- 
ternal edge is shared by two quadrangles, whereas 
each external edge belongs to only one quadrangle, 
we have 

4F = 2Ei•t + Eext. (11) 

Here 2E/V is defined as the average number of edges 
that meet at a vertex of a large quadrangular network 
since each edge terminates in two vertices. Combin- 
ing (11) with (7)-(10), we can express this quantity 
as 

2E 4V,•t + 3¬xt - 4X 
V = V ' (12) 

3. Topological Properties of Surfaces 
This section is intentionally kept as short as possi- 

ble since this topic is extensively studied elsewhere. 

3.2. Triangular Networks 

Since each triangle has three edges and each in- 
ternal edge is shared by two triangles, whereas each 
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external edge belongs to only one triangle, we have 

3F = 2E•.t + Eext. (13) 

The above can be combined with (7)-(10) to derive 
the average number of edges that meet at a vertex of 
a large triangular network as 

2E _ 6•nt + 4Vext - 6X (14) -- . 

v v 

4. Analysis of a Class of Basis 
Functions 

In this section we will consider several well-known 

subdomain B Fs and their straightforward extensions 
to model the surface electric current densities. These 

(b) (c) 

(d) 

(f) (g) 

Figure 1. Basis functions (BFs) to be analyzed 
in this paper: (a) Rooftop (RT) BFs, (b) higher- 
order RT BFs, (c) transversely continuous higher- 
order RT BFs, (d) pyramidal BFs with rectangu- 
lar bases, (e) pyramidal BFs with triangular bases, 
(f) Rao-Wilton-Glisson (RWG) BFs, and (g) Jacobus 
and Landstorfer's magnetic BFs. 

// 
//// 

(a) 

(c) (d) 

Figure 2. Examples of closed and open surfaces: 
(a) Rectangular prism meshed with quadrangles, 
(b) rectangular prism meshed with triangles, (c) fiat 
patch meshed with quadrangles, and (d) fiat patch 
meshed with triangles. 

BFs are illustrated in Figure 1. We will investigate 
these BFs with the emphasis being on how well the 
charge distribution is modeled. 

Using the topological properties summarized in 
the previous section, we will try to keep our re- 
suits as general as possible for open and closed sur- 
faces. When appropriate, rectangular prisms as in 
Figures 2a and 2b and flat patches as in Figures 2c 
and 2d will be used as examples of closed and open 
surfaces, respectively. 

4.1. Rooftop Basis Functions 

Rooftop (RT) BFs [Glisson and Wilton, 1980; Ru- 
bin and Daijavad, 1990] are defined on the internal 
edges of a quadrangular mesh. The total number 
of the DOFs is equal to Ei,t. Since the current ap- 
proximation is P W linear and continuous along the 
direction of the current flow and PW constant in 

the transverse direction as shown in Figure la, the 
charge is approximated by a PW constant distribu- 
tion. That is, with the choice of RT BFs for the cur- 
rent, the charge is allowed to take a constant value on 
each quadrangular subdomain. Therefore the num- 
ber of DOFs required for the charge distribution is 
equal to F. 
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Figure 3. Normalized induced current and charge distributions on the A x A patch obtained 
using the RT BFs: (a) Magnitude of copolar current (J•), (b) magnitude of cross-polar 
current (Jy), (c) real part of the charge, and (d) imaginary part of the charge. 

For a proper PW constant modeling of the charge, 
we must have 

which can be converted to 

V•n t •/• (16) 

using (7)-(10) and to 

2-•int • -•ext (17) 

using (11). Both (16) and (17) can easily be satis- 
fied for open and closed surfaces. Thus the use of RT 
BFs to approximate the current distribution does not 
pose a problem for the PW constant modeling of the 
charge distribution. In order to demonstrate this, 

Figure 3 shows the magnitudes of the x and y com- 
ponents of the current distribution and the real and 
imaginary parts of the charge distribution induced 
on a A x A perfect electric conductor (PEC) patch 
on the x-y plane. (The results showing the real and 
imaginary parts of the charge distribution are scaled 
by a factor of ico. Therefore the real and imaginary 
parts may be interchanged, if desired.) The patch is 
illuminated by a normally incident plane wave, whose 
electric field is polarized in the x direction. Each side 
of the patch is divided into 10 subsections so that the 
total number of RT BFs is Eint = 180 and the charge 
distribution is approximated by F = 100 constant- 
charge plateaus. The results presented in Figure 3 
are as smooth as they can be with the given dis- 
cretization and with the PW linear and PW constant 

modeling of the current and the charge, respectively. 
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Figure 4. Normalized induced current and charge distributions on the A x A patch obtained 
using the higher-order RT BFs: (a) Magnitude of copolar current (Jx), (b) magnitude of 
cross-polar current (Jy), (c) real part of the charge, and (d) imaginary part of the charge. 

4.2. Higher-Order Rooftop Basis Functions 

These B Fs can be obtained from a straightforward 
extension of the regular RT B Fs. The higher-order 
RT BFs considered here are slightly different from 
the regular RT B Fs in such a way that although 
the current approximation is PW linear and contin- 
uous along the direction of the current flow as in 
regular RT BFs, it is PW linear and discontinuous 
in the transverse direction, as shown in Figure lb 
as opposed to the PW constant (and discontinuous) 
approximation of the regular RT BFs. Sercu et al. 
[1994] called these types of BFs "first-order" RT BFs 
and proposed to use them on planar structures. 

We used these BFs in the solution of the scattering 
problem outlined in the previous section. The cur- 
rent and charge distributions are shown in Figure 4 in 

the same format as in Figure 3. The copolar induced 
current in Figure 4a seems to have the correct distri- 
bution and the proper linear variation in the trans- 
verse direction as supported by these higher-order 
RT BFs. These BFs model both components of the 
current with a distribution of PW bilinear functions 

on rectangular subdomains. As long as the approxi- 
mated current is continuous along the direction of its 
flow, this type of PW bilinear modeling appears to be 
perfectly valid. However, the cross-polar component 
of the current and the charge distribution are unmis- 
takably incorrect, as seen in Figures 4b-4d. What 
can be the reason for the failure of these seemingly 
legitimate B Fs in the solution of this simple scatter- 
ing problem? 

The answer to the above question may be sought 
in the way these BFs model the charge distribution. 
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Since the current is approximated by the bilinear 
forms 

Jx(x,y) - Axxy + B•x + C•y + D• (18) 
Jy(x,y) - Ayxy + Byx + Cyy + Dy (19) 

on each rectangular patch, the charge is approxi- 
mated by 

p(x, y) - A•y + Ayx + (Bx + Cy) , (20) 

which is linear in both x and y. This approximation 
requires three DOFs per rectangle, which puts the 
total number of the DOFs required for the charge ap- 
proximation at 3F. On the other hand, the number 
of the supplied DOFs is 2Eint, since the higher-order 
RT B Fs are defined only on the internal edges and 
with two DOFs per edge. Then, for a proper PW 
linear (in both x and y) modeling of the charge, we 
must have 

2Eint _• 3F. (21) 

We caution the reader that the above will turn out 

to be a necessary but not sufficient condition at the 
end of this section. However, we will continue as in 
the previous section to reach that conclusion. Using 
(11), equation (21) can be expressed as 

2Eiat > 3•ext, (22) 

which is always satisfied on closed surfaces, since 
Eext = 0. However, the situation is more interest- 
ing for open surfaces, since whether (22) is satisfied 
or not depends on the type of the mesh used on the 
surface. As an example, consider the patch problem 
again. If the patch is meshed into 2 x N (where N is 
any positive integer), 3 x 3, or 3 x 4 rectangles, then 
(22) is not satisfied, but 3 x 5, 4 x 4, or denser meshes 
satisfy (22). It is even more interesting to note that 
the results presented in Figure 4 are obtained with a 
l0 x 10 mesh, which should satisfy (22). Therefore 
we conclude that merely counting the DOFs required 
by the charge approximation may not be sufficient; 
the types of the DOFs supplied by the current ap- 
proximation and required by the charge approxima- 
tion should also match. We will explain this con- 
straint with the help of Figure 5, where a 4 x M 
(3// >_ 4) meshing of a patch is depicted. In Fig- 
ure 5a, the BFs are indicated on the edges and the 
charge subdomains are numbered using parentheses. 

(5) -•" (6) -•" (7) -•" (8) 8 9 10 

41 51 61 71 _ 

(1) -'•'" (2) •' (3) •' (4) 1 2 3 

(a) 
i i 

i i 

i I 

i i 

i i 
! , 

Ay4•+Cy4 Ay5•+Cy5 Ay6•+Cy 6 Ay•+Cy 7 

_/ /' / .,. 
Ax• Y+Bx• Ax2 Y+Bx2 Ax3 Y+Bx3 

(b) 

Figure 5. (a) Arrows denote the current BFs de- 
fined on the edges. Numbers in parentheses denote 

the subdomains on which piecewise (PW) linear ap- 
proximation of the charge is obtained. (b) Required 
charge degrees of freedom (DOFs) are shown in the 
subdomains. Charge DO Fs supplied by the current 
B Fs are shown on the edges. 

Let us focus on the first four subdomains that are 

surrounded by the first seven BFs. As depicted in 
Figure 5b, proper approximation of the charge on 
these four subdomains requires 12 DOFs: four lin- 
ear variations in x, four linear variations in !/, and 
four constant plateaus. The surrounding seven BFs 
supply 14 DOFs for the current approximation: four 
linear variations in x, three linear variations in 1/, and 
seven constant values. Therefore, although the total 
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Figure 6. Normalized induced current and charge distributions on the ,X x ,X patch obtained 
using the transversely continuous higher-order RT BFs: (a) Magnitude of copolaf current 
(J•), (b) magnitude of cross-polar current (J•), (c) real part of the charge, and (d) imaginary 
part of the charge. 

number of the DOFs supplied by the current BFs 
seems to be sufficient (14 > 12), when these DOFs 
are broken down to specific types, not all of the neces- 
sary DOFs for a proper approximation of the charge 
are available. In this example, the charge needs four 
linear DOFs in y, whereas the current BFs can sup- 
ply only three. This conclusion can be extended to 
other cases of open-surface meshings, too. We do not 
envision such a problem for closed surfaces. 

The reason why the cross-polar component of the 
current shown in Figure 4b is grossly incorrect while 
the copolaf current in Figure 4a is slightly in error is 
not well understood. However, we confirmed by fur- 
ther numerical experiments that increasing the mesh 

density and hence the number of BFs did not reduce 
the error in the cross-polar current. 

In summary, the higher-order RT BFs considered 
in this subsection turned out to be genuinely inter- 
esting since they appeared to be perfectly legitimate 
candidates for current modeling, but then we showed 
that the condition (22) is not satisfied for all open 
surfaces, and finally we showed that even compli- 
ance with (22) is not sufficient for most open sur- 
faces (exceptions are possible). Therefore this type 
of BF should be employed with great care. It should 
be noted that although Sercu et al. [1994] suggested 
the use of these BFs, they did not present any results 
obtained with them. 



G•TREL ET AL.' CHOICE OF BASIS FUNCTIONS 1381 

4.3. Transversely Continuous Higher-Order 
Rooftop Basis Functions 

These basis functions can be obtained from the 

higher-order RT B Fs of the previous section by con- 
straining the current to be continuous in the trans- 
verse direction in addition to the direction of flow, 
as shown in Figure lc. These constraints are imple- 
mented on the internal nodes of a surface for both 

components of the current. Thus the total number 
of DOFs supplied by these current BFs drops from 
2Eiat to 2Ei,t-2V,•t. Both the current and the charge 
are still modeled by PW bilinear and PW linear (in 
x and y), respectively, approximations on rectangu- 
lar subdomains as given by (19) and (20). Thus the 
charge approximation requires 3F DOFs. Then, for 
a correct modeling of the charge, the condition 

2E•ot- 2V, ot _> 3F (23) 

must be satisfied. Using (7)-(10), equation (23) can 
be expressed as 

-2X _> F (24) 

which is a contradiction for both open and closed 
surfaces. Therefore, although the current-modeling 
capabilities of these BFs seem to be flawless, we can 
expect their inability to properly model the charge 
distribution to contaminate the solution. 

Figure 6 shows the current and charge distribu- 
tions obtained on a ,k x ,k patch for the same scatter- 
ing problem as before. Although the copolar current 
in Figure 6a seems to have a fairly correct distri- 
bution, the same cannot be said for the cross-polar 
component of the current and the charge distribu- 
tion, shown in Figures 6b-6d. 

4.4. Pyramidal Basis Functions with 
Rectangular Bases 

These BFs can be classified as "nodal" BFs since 

the heights of the pyramids are associated with the 
values of the unknown function at every node of the 
surface, as shown in Figure l d. The use of these 
BFs results in PW bilinear approximation of the cur- 
rent on rectangular subdomains. Note that this is 
the same type of approximation obtained with the 
higher-order RT BFs. Indeed, the pyramidal BFs 
with rectangular bases are completely equivalent to 
transversely continuous higher-order RT BFs. Be- 

cause of this equivalence, we should obtain the same 
current and charge results as in the previous section. 

Consider a closed surface, such as the rectangular 
prism shown in Figure 2. The total number of sup- 
plied DOFs is 2V since two pyramids are defined per 
node for the two components of the surface current. 
A correct PW linear (in two variables) modeling of 
the charge requires 

2V _> 3F. (25) 

Using X - 2, Eext - 0, and E - 2F, we arrive at 

V _< 6, (26) 

which cannot be satisfied by any meaningful geom- 
etry. Thus these B Fs are not capable of modeling 
the charge properly. The same conclusion holds for 
open surfaces, too. Considering the patch geometry 
of Figure 2c, it is noted that although the required 
number of DOFs for the charge distribution is still 
3F, the number of available DOFs drops from 2V to 
2V, nt q- Vext -4 since no pyramidal BFs are defined 
at the edges of the patch for the current component 
normal to that edge. 

4.5. Pyramidal Basis Functions with 
Triangular Bases 

These nodal BFs are defined on a collection of tri- 

angular subdomains with a common vertex, as shown 
in Figure le. The current approximation is linear in 
x, linear in y, or linear in both x and y on each sub- 
domain. Therefore the charge is approximated by a 
PW constant distribution. 

Let us first consider a closed surface, such as the 
rectangular prism shown in Figure 2b. Because two 
of these pyramidal BFs are used at each node to 
model the two components of the surface current 
and because one constant-height plateau per subdo- 
main is required for the P W constant modeling of 
the charge, we must have 

2V _> F. (27) 

Using X = 2, Eext = 0, and 2E = 3F, we find 
that (27) is always satisfied and that this type of 
pyramidal current BFs can flawlessly model both the 
current and the charge on closed surfaces. 

On the other hand, the situation for open surfaces 
is a little different since no BFs are defined at the 
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(a) (b) 

(c) 

Figure 7. Expected PW linear modeling of one com- 
ponent of the current when the pyramidal BFs are 

used. (a) Triangular meshing of a patch. (b) sam- 
pling the current distribution at the nodes. and 

(c) approximation of the current with a PW linear 
distribution. 

boundaries of an open surface for the current compo- 
nent normal to that boundary. Then, the total num- 
ber of DOFs supplied by the current approximation 
is less than 2V and it is not certain any more that 
the required number of DOFs for a proper charge ap- 
proximation is available. For instance, let us consider 
the rectangular patch in Figure 2b. The number of 
available DOFs drops from 2V to 2V, nt + Vext-4, and 
therefore, for a proper P W constant charge approxi- 
mation, we must have 

+ 4 _> F. (28) 

Using (7) and (14) together with X - 1 for this sur- 
face, we can show that (28) is a contradiction, which 
means that these BFs cannot simultaneously model 
both the current and the charge distributions on an 
open surface such as a rectangular patch. We con- 
firmed this conclusion with numerical experiments, 
too. 

This is another interesting result since one would 
expect to be able to have a correct PW linear approx- 

imation of each component of the surface current on 
the patch, as depicted in Figure 7. These types of 
pyramidal BFs are very well known. Houshmand et 
al. [1991] presented their Fourier transforms in order 
to extend their use to spectral-domain formulations. 
However, considering the current alone is not sum- 
cient, one should also pay attention to how the charge 
is modeled by the divergence of the current BFs. Fur- 
thermore, whether one type of BFs is "good" or not 
also depends on the specific surface and meshing. 

4.6. Rao-Wilton-Glisson Basis Functions 

These famous "vector" B Fs, which we will refer 
to as RWG BFs, are first introduced by Rao et al. 
[1982]. RWG BFs are defined on the interior edges 
of a surface, and they approximate the current with 
a PW linear distribution as shown in Figure If. Con- 
sequently, the charge is approximated by a PW con- 
stant distribution. RWG B Fs are often called "RT 

B Fs on triangular subdomains" due to their resem- 
blance to the RT B Fs. In agreement with this obser- 
vation, the condition for the RWG B Fs to properly 
model the charge distribution is 

Ei.t > F, (29) 

which is the same as (15) for the RT BFs. 
(7)-(10), this condition can be converted to 

Using 

(30) 

and using (13), it can be converted to 

Eint _> Eext, (31) 

both of which can easily be satisfied by open (X = 1) 
and closed (Eext = 0) surfaces. 

Thus we conclude that RWG B Fs can be safely 
used on arbitrary triangulations of both open and 
closed surfaces. Figure 8 shows the current and 
charge distributions on the/k x/k patch obtained by 
employing the RWG B Fs in the solution of the scat- 
tering problem outlined earlier. The results are as 
good as they can be with this discretization. Note 
that there is a remarkable difference between the 

magnitudes of the copolar and cross-polar currents, 
i.e., Jx is significantly dominant compared to Jy. 
Since RWG BFs are vector BFs, the same set of RWG 
BFs are employed to model both Jx and Jy. This 
explains the nonsmooth behavior of the cross-polar 
current shown in Figure 8b. This behavior does not 
contaminate the charge distribution as seen in Fig- 
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Figure 8. Normalized induced current and charge distributions on the • x • patch obtained 
using the RWG BFs: (a) Magnitude of copolar current (J•.), (b) magnitude of cross-polar 
current (Jy), (c) real part of the charge, and (d) imaginary part of the charge. 

ures 8c and 8d, and thus this is the correct solution 
that can be obtained with the use of the RWG BFs on 

this discretization. If the polarization of the incident 
electric field is modified to be in the • + !• direction, 
then the magnitudes of Jx and Jy are in the same 
order and we obtain similar smooth distributions for 
both of them. 

4.7. RWG Basis Functions Augmented With 
Magnetic Basis Functions 

In the solution of electromagnetic problems involv- 
ing magnetic current distributions, BFs that are dif- 
ferent from the electric current BFs are usually em- 
ployed. Several such "magnetic" BFs with triangular 
subdomains are developed and available in the liter- 

ature. In addkion to using these magnetic BFs to 
model the magnetic current, Wandzura [1992] pro- 
posed augmenting the RWG BFs with magnetic BFs 
to model the electric current distribution. He sug- 
gested this combination in order to obtain an electric 
current distribution with a higher level of continuity, 
and thus better modeling. The level of continuity 
and thus the quality of the approximation can be 
further improved by adding higher-order electric and 
magnetic BFs. 

$arkar et al. [1990] proposed using 

bMAG (r) = h x bRWG (r) (32) 

as a magnetic BF, where bRwa(r) is the RWG BF 
and h is the unit vector normal to the surface con- 
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raining both of the RWG B Fs. These B Fs cause 
magnetic line charge accumulation along the edges 
of the triangular subdomains since they render the 
normal component of the current discontinuous at 
these edges. Therefore these BFs will not be consid- 
ered here. 

Two other magnetic BFs, one proposed by Jacobus 
and Landstorfer [1993] and the other proposed by 
Wandzura [1992], do not have the above problem. 
These two magnetic BFs are very similar in many re- 
spects, especially in the way they model the current, 
but are not exactly the same. Perhaps their most 
significant difference is in the way they model the 
charge distribution. The divergence of Wandzura's 
magnetic BF is identically equal to zero, which means 
that it does not attempt to model the charge at all. 
Surprisingly, this will turn out to be a desired feature 
that will be discussed at the end of this section. 

////// 
////// 
////// 
////// 

///// ////// 
(a) (b) 

Figure 9. (a) Triangular subdomains for PW con- 
stant current modeling using the RWG BFs. (b) Six- 
times denser triangular meshing for the P W constant 
current obtained when the RWG BFs are augmented 
with the magnetic B Fs. 

• .. 

] 

y/wavelength 0 0 x/wavelength y/wavelength 0 0 x/wavelength 
(a) (b) 

ß 

y/wavelength 0 0 x/wavelength y/wavelength 0 0 x/wavelength 
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Figure 10. Normalized induced current and charge distributions on the ,k x ,k patch 
obtained using the RWG BFs augmented with the magnetic BFs: (a) Magnitude of copolar 
current (J•), (b) magnitude of cross-polar current (Jy), (c) real part of the charge, and 
(d) imaginary part of the charge. 
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The magnetic BF proposed by Jakobus and Land- 
storfer [1993] is actually a combination of two RWG 
BFs arranged to be approximately orthogonal to a 
regular RWG BF as shown in Figure lg. Therefore 
the divergence of this magnetic BF is a combination 
of four constant-charge plateaus on triangular subdo- 
mains that are half of regular triangular subdomains. 
This situation arises when only a single magnetic BF 
is considered. When all of the magnetic BFs associ- 
ated with all edges are considered, the charge needs 
to be approximated by six PW constant plateaus on 
each triangular subdomain, as shown in Figure 9. In 
contrast, the original RWG BFs require one constant 
charge plateau on each triangular subdomain. 

When the RWG B Fs are augmented with Jakobus 
and Landstorfer's [1993] magnetic BFs, the total 
number of the DOFs is equal to Eint q- E, since the 
RWG BFs are defined only on the internal edges, 
whereas the magnetic BFs can be used on all edges 
including the external edges. The number of the 
DOFs required for a proper PW constant charge ap- 
proximation is 6F. Then, we must have 

E•,t + E _> 6F, (33) 

which is impossible since Eint + E - 2Eint + Eext - 3F 
using (9) and (13). Therefore we conclude that these 
BFs cannot be used to augment RWG BFs. This 
conclusion is supported by the current and charge 
results shown in Figure 10. These results are ob- 
tained on the A x A patch using the combination of 
RWG and magnetic BFs for the scattering problem 
outlined earlier. 

A similar problem is not expected when 
Wandzura's [1992] magnetic BFs are used to aug- 
ment the RWG BFs. This is because the divergence 
of Wandzura's magnetic BF is identically equal to 
zero and thus does not increase the number of the 

DOFs required by the charge distribution. Then, 
the condition for a proper PW constant charge dis- 
tribution becomes 

E•,t + E _> F, (34) 

which is always satisfied for bot, h open and closed 
surfaces. 

5. Conclusions 

In this paper, we have clearly demonstrated the 
need to consider, in addition to other constraints 
documented in the literature, how well the charge 

distribution is satisfied when choosing a set of BFs 
to approximate the surface electric current. Some 
commonly used BFs, such as the RT and RWG BFs, 
satisfy this constraint unconditionally and therefore 
can be safely used to model both the current and 
the charge distributions. This point has been rig- 
orously proven by analyzing the topology of open 
and closed surfaces meshed into networks of trian- 

gles and quadrangles. On the other hand, surprising 
results emerged from the investigation of some other 
BFs. Among these are higher-order RT and pyra- 
midal BFs, which seem to be perfect candidates to 
support PW bilinear and PW linear approximations 
of the current distribution. However, we have rigor- 
ously proven and computationally demonstrated that 
these BFs do not always supply a sufficient number 
of DOFs for a consistent charge model. We have also 
proven and demonstrated that the use of some mag- 
netic and/or higher-order BFs to improve the quality 
of the electric current approximation may have dis- 
astrous results, whereas some others may serve the 
intended purpose. 

Granted, not every possible BF can be analyzed in 
a document of this size. It is not merely the results 
of a class of sample BFs presented in section 4 that 
we intend to pass on to the readers, but also the idea 
that the current BFs should be chosen with an eye 
on how well they model the charge distribution, in 
addition to the current distribution. 
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