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In this paper, we propose a new dispatching rule and a set of local search algorithms based on the

®ltered beam search, GRASP and simulated annealing methodologies to construct short-term

observation schedules of space mission projects, mainly for NASA's Hubble Space Telescope

(HST). The main features of generating short-term observations of HST are state dependent set up

times, user speci®ed deadlines, visibility windows of the targets and the priorities assigned to the

observations. The objective of HST scheduling is to maximize the scienti®c return. We have tested

the relative performances of the proposed algorithms including the nearest neighbor rule both in

objective function value and computational time aspects by utilizing a full-factorial experimental

design.
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1. Introduction

Space mission scheduling (SMS) has been an

important research area for several years. SMS has a

wide area of applications such as scheduling space

observatories, coordinating the activities aboard the

space station, space shuttle ground processing

systems, generating detailed commands for planetary

probes and scheduling satellite activities. Space

mission projects are costly to build and operate in

great demand by researchers in the international

astronomical community. It is essential that these

facilities be operated as ef®ciently as possible to

maximize their scienti®c return. Since the total

number of scienti®c requests far exceeds the

capabilities of these projects, the goal for the

scheduler is to minimize the number of tasks not

accomplished by the schedule. The problem we are

addressing here is that of constructing short-term

observation schedules for the NASA/ESA's Hubble

Space Telescope (HST). HST is a unique, $1.4-billion

international space observatory launched in April

1990. As a result of lack of interference by the Earth's

atmosphere, the resolution, sensitivity and ultraviolet

wavelength coverage of HST are considerably greater

than those obtainable with ground-based telescopes.

During its nominal lifetime of 15 years HST is

expected to signi®cantly increase our understanding

of a wide range of astronomical objects and

phenomena.

The overall objective of HST scheduling is to

ef®ciently allocate viewing time to competing

candidate observation requests in the presence of

complex operational constraints, i.e. to maximize the

scienti®c return. Since HST is in low earth orbit, with

an altitude of 500 km and an orbital period of 95

minute, most targets are periodically occulted by the

earth, and thus they are visible only for a portion of

each orbit. Over longer periods targets may be

similarly occulted by the moon and the sun. Thus,

execution possibilities are limited by target ``visibility

windows'', which are known with certainty over short

term horizons. Depending on the prior state of the

telescope, each of the remaining requirements

variably affects when the observation can be

executed. It takes time to repoint the telescope

toward a different target, an activity referred as

slewing. Similarly, it takes time to recon®gure
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viewing instruments. There are six viewing instru-

ments onboard, and each is capable of being used in a

variety of different con®gurations. Finally, Space

Telescope Science Institute (STScI) assigns different

priorities to the observation requests with respect to

their relative importances.

There are two different approaches to the SMS

problem in the literature. The ®rst one makes a

``single/parallel machine scheduling'' approximation

of the problem and uses the traditional operations

research tools in the solution methodology, whereas

the second approach considers the overall domain and

formulates the problem as a constraint satisfaction

problem. Fisher and Jaikumar (1978) provide an

algorithm for the scheduling of the NASA space

shuttle program to determine mission launch times

that minimize the number of late missions, where each

mission has an earliest and latest start times. A single

machine approximation is provided for the problem

and the proposed algorithm is inspired by Moore's

(Moore, 1968) algorithm for minimizing the number

of tardy jobs on a single machine. Hall and Magazine

(1994) develop a dynamic programming algorithm for

the single machine scheduling problem where each

activity has a weight and a single time window, i.e. a

speci®c time interval that the execution of the activity

is allowed. However these formulations do not

consider the sequence and state-dependent setup

times required for the execution of each activity.

Furthermore, there is usually a single time window for

each activity, which may not be a realistic assumption

for the SMS problem in many cases.

It is possible to visualize HST scheduling problem

as 1kPwjUj problem with state-dependent setup

times. 1kPwjUj problem is NP-hard in the ordinary

sense, and Lawler and Moore (1969) present a

pseudopolynomial dynamic programing algorithm to

solve it. Potts and Wassenhove (1988) propose a

branch-and-bound algorithm that reduces the size of

the search tree with dominance reductions. Hochbaum

and Landy (1994) show that the weighted number of

tardy jobs with batch setup problem is NP-complete

and propose a pseudopolynomial algorithm.

Furthermore, the visibility windows can be viewed

as due-windows of the jobs. Lann and Mosheiov

(1996) study due-windows with the objective of

minimizing the number of early and tardy jobs.

Vehicle routing scheduling and planning with time

windows (VRSPTW) problems share many common

features with the SMS problems. A typical vehicle

routing planning (VRP) problem is to ®nd the

minimum costing routes for a ¯eet of vehicles that

serves to a set of customers with ®xed demand.

Desrochers et al. (1990) provide a comprehensive

classi®cation scheme for vehicle routing planning and

scheduling problems. Laporte (1992) represents an

overview of the main exact and approximate

algorithms to VRP, and Desrosiers et al. (1994)

provide an extensive overview on time constrained

routing and scheduling. In the VRSPTW problem

there is an additional time constraint associated with

each customer such that each customer has a time

window which starts with an allowable earliest start

time and ends with an allowable latest start time. For

one vehicle and multiple time windows associated

with the customers, the problem turns out to be a good

approximation of the HST domain. One vehicle

represents the HST, each customer of the vehicle

can be viewed as an observation request and multiple

time windows associated with the customer can be

viewed as the visibility windows of the observations.

Furthermore, the time required between two custo-

mers is sequence dependent. However the VRSPTW

literature considers a single time window and mostly

tries to ®nd the minimum costing route for a set of

customers with equal priorities, whereas our objective

is to minimize the number of unvisited customers

within a time horizon.

The second approach to the SMS is to construct

software architectures, which use constraint-directed

search scheduling methodology. A Fortran-based

software, science operations ground system (SOGS),

is developed by TRW in order to support the

astronomers when planning and scheduling HST.

Science planning and scheduling system (SPSS) is

the major tool of SOGS, which is designed to produce

executable and detailed schedules from the approved

viewing proposals. SOGS has had several problems

due in part to the complexity of the scheduling problem

and the constraints that must be taken into account, and

in part to the programming methods and computational

infeasibility that emerges from the non-hierarchical

nature of the solution approach as discussed by

Waldrop (1989). These important shortcomings of

SOGS lead STScI to ®nd out new solution procedures

to the planning and scheduling problem of HST.

An arti®cial neural network, called SPIKE, is

developed by Johnston and Adorf (1992) to overcome

these shortcomings and augmented to the system. The

major contribution of the SPIKE was partitioning the
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problem into two parts; long-term schedule and short-

term schedule. This is a quite logical approach for the

domains that are complex and have highly interactive

nature such as HST scheduling. Moreover, orbital

constraints loose certainty on longer horizons. SPIKE

is currently used as a long-term scheduling tool that

partitions the approved observations into weekly or

smaller buckets which in turn becomes the input to

SPSS for generating a detailed short-term schedule.

Minton et al. (1992) propose a heuristic repair-based

min-con¯ict algorithm that can be used with the

SPIKE system to minimize the search effort, and show

that it is very easy to implement and at least an order

of magnitude faster than the guarded discrete

stochastic network of Johnston and Adorf.

The second major research direction is the

heuristics scheduling testbed system (HSTS) dis-

cussed in Muscettola et al. (1992). HSTS is a

software architecture indicating how to model the

structure and dynamics of a system, and how to

represent schedules at two levels of abstraction,

namely abstract and detailed levels, in the temporal

data base. The abstract level is responsible for the

generation of initial observation sequences by taking

into account the telescope availability, overall

telescope recon®guration and target visibility win-

dows, whereas the detailed level is responsible for

determining the executable and detailed schedules of

HST. Even though the detailed level generates the

schedules that are executable for the HST, abstract

level is the main stage that guides the detailed

schedules. Therefore, it is important to have a good

sequencing methodology at the abstract level. Smith

and Pathak (1991) proposes three strategies for the

abstract level of HSTS. The ®rst strategy is a

dispatch-based methodology, namely the nearest

neighbor (NN) algorithm. The second strategy, the

most-constrained ®rst (MCF), focuses on maxi-

mizing the number of scheduled observation

programs and tries to add the observation with the

fewest number of allowable start times. Moreover a

third strategy is suggested to balance both of the

objectives of maximizing the utilization of HST and

maximizing the number of scheduled observation

programs, namely the MCF/NN. However, these

methodologies are relatively simple and myopic. In

fact, developing a more sophisticated scheduling

methodology that considers the different priorities of

the observation programs is mentioned as a future

research direction.

2. Problem statement

The HST scheduling problem is to ef®ciently allocate

viewing time to competing candidate observation

requests in the presence of complex operational

constraints and priorities associated with the observa-

tion requests. Our objective is to maximize the

scienti®c return, that can be stated as to maximize

the number of requests that can be viewed during the

planning horizon, or equivalently to minimize the

number of rejected requests. In brief, a candidate

observation represents a user request for an exposure

of a certain duration of a particular celestial object

using a particular viewing instrument in a particular

operational con®guration as discussed in Johnston

(1987) and STScI (1986). Consider the following

example.

Example: Take a picture of Global Cluster NGC

7078, angular distances of DEC � 12:167 and

RA � 322:492, before June 14, 1998. The picture

has to be taken with the wide ®eld camera in normal

con®guration. The exposure must have a duration of 1

minute.

STScI receives these requests and assigns priorities

to the approved observation requests considering

their scienti®c value and operational ef®ciency as

follows:

(i) ``high-priority'' observations (nearly 20% of

the estimated available time)

(ii) ``medium-priority'' observations (nearly 70%

of the estimated available time)

(iii) ``supplemental-pool'' observations (nearly

30±50% of the estimated available time).

There are six different viewing instruments on

HST, namely wide-®eld/planetary camera (WF/PC),

faint object camera (FOC), faint object spectrograph

(FOS), high resolution spectrograph (HRS), and high

speed photometer (HSP). The ®ne guidance system

(FGS) of the telescope is also used for astronomic

observations. Each instrument can be used with

several different con®gurations as summarized in

Table 1. The last column of Table 1 presents the

expected percentages of the observations that require

the speci®c instrument. Spacecraft power and

thermal balance constraints limit the number of

instruments that can be operational at any point,

which requires execution of complex power-up/

power-down sequences as changeovers are made
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from one instrument to another. These changeovers

can be between instruments, referred as the major

recon®guration, or can be mode changes of the

instruments, referred as the minor recon®guration.

In order to start an execution, HST must be pointing

at the target. This can be achieved by slewing the

telescope from its previous direction to its new

direction. The slewing duration mainly depends on

the slewing angle between two locations and the

angular slewing velocity. Two angular distances

namely the declination (DEC) and right ascension

(RA), both in radians, are used to specify the position

of the celestial object on the coordinate system. In

order to calculate the slewing time between two

celestial objects the well known cosine formula is

used. Suppose that HST was previously picturing the

target f and next will take the pictures of the

target t, then the slewing time of the telescope is

calculated as follows. Let angular slewing velocity

� 0:0017453294, relÿ RA � jRAf ÿ RAtj, b � p
2ÿjDECf j, and if signum DECf � signum DECt then

c � p
2
ÿ jDECtj, else c � p

2
� jDECtj.

Slew time from f to t

� arccos�cos�b�6 cos�c� � sin�b�6 sin�c�6 cos�relÿ RA��
angular slewing velocity

Since HST is in low earth orbit, the execution

possibilities are limited by target visibility windows.

There are also high-radiation regions over the South

Atlantic where the instruments cannot be operated.

The visibility windows of two celestial targets A and

B are presented in Fig. 1 as an example. Periodically

each target has an interval that it is visible and

consecutively an interval that it is not visible. As we

can see from Fig. 1, the exposure of the celestial target

B can only start if it is in its visibility window, the

required instrument is active and the telescope is

repointed. We will refer to the time that is spent after

maximum of recon®guration and slewing times until

the next scheduled observation is visible again as the

idle time. Finally, an astronomer may specify a

speci®c deadline for an observation request.

The following assumptions are made to de®ne the

scope of this paper. The recon®guration time is

implicitly accounted as temporal time delay rather

than explicitly modeled it as complex power-up/

power-down sequences. Only one instrument can be

operational at any time because of the limited power

on board. Recon®guration of the instruments can be

managed simultaneously with the slewing of the

telescope, hence the maximum time of both is used as

the overall set-up of HST. All of the mentioned factors

that limit the size of visibility windows will be

implicitly handled at once in a single visibility

window for each target that speci®es the available

time for an exposure of that particular target at each

orbit. These assumptions are very similar to the ones

that are available in the literature on the HST

scheduling problem, such as Muscettola et al.
(1992) and Smith and Pathak (1991).

The notation used in the proposed mathematical

model is as follows:

Parameters:
bvj � Beginning time of a visibility window v for an

observation j
Dj � Speci®c deadline for an observation request j (i.e.

Dj � T)

evj � Ending time of a visibility window v for an

observation j
M � Very large positive number

N � Total number of observation requests

Pj � Requested viewing time of an observation j
SCji � Instrument recon®guration time from observation

request j to i
SLji � Slewing time from observation request j to i
T � Length of the planning horizon

wj � Relative priority of an observation request j

Table 1. The viewing instruments of HST and their possible

con®gurations

Instrument Con®guration Mode Percent

WF N

WF/PC WF UV 35%

PC N

PC UV

/48

FOC /96 25%

/288

FOS BL 10%

RD

HRS 10%

PHOT

HSP PMT 15%

PRISM

POL

FGS 5%
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Decision variables:
Sjk � Starting time of an observation request j at

sequence k
xj � 0±1 binary variable which is equal to 1 if an

observation request j is rejected

yjk � 0±1 binary variable which is equal to 1 if an

observation request j is scheduled at sequence k
zjv � 0±1 binary variable which is equal to 1 if an

observation request j is scheduled during the time

window v

A mathematical formulation of the problem can be

given as follows:

Minimize
XN

j�1

wj ? xj

Subject to Sjk � bjv ? zjv Vj; k; v �1�
Sjk � Pj � ejv �M�1ÿ zjv� Vj; k; v �2�
XV

v�1

zjv � 1 Vj �3�

Sik ÿ �Sj�kÿ1� � Pj� � SCji Vi; j; k �4�
Sik ÿ �Sj�kÿ1� � Pj� � SLji Vi; j; k �5�
Sjk � Pj ÿ Dj � M ? xj Vj; k �6�

Sjk � M ? yjk Vj; k �7�
XN

j�1

yjk � 1 Vk �8�

XN

k�1

yjk � 1 Vj �9�

Sjk � 0; and xj; yjk; zjv � 0; 1 Vj; k; v �10�

In this formulation, objective function corresponds

to maximizing the scienti®c return, or equivalently

minimizing the number of rejected observation

requests. Constraint sets (1), (2), and (3) ensure that

the observation requests can only be started and

completed when they are visible. Constraint sets (4)

and (5) calculate the time required to go from one

observation request to another which is the maximum

of the instrument recon®guration time and the slewing

time. Constraint set (6) ®nds the number of rejected

observation requests. Constraint sets (7), (8), and (9)

ensure that two observation requests are not scheduled

to use the HST at the same time, and no observation

requests can be scheduled during either slewing or

instrument recon®guration time. Constraint set (10)

gives the nonnegativity and integrality requirements

for the decision variables.

Fig. 1. Visibility windows.
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3. Algorithms

Most of the real-life scheduling problems, as well as

SMS problem, cannot be solved with exact algorithms

in a reasonable computational time because of their

complex nature. Therefore heuristics are developed to

®nd not necessarily the optimal but a good solution to

such problems. Several features that demonstrate the

effectiveness of these search heuristics are their

ability to adapt to a particular realization, avoid

entrapment at local optima and exploit the basic

structure of the problem. In this paper, we will

propose a new dispatching rule and local search

algorithms utilizing ®ltered beam search, simulated

annealing and GRASP methodologies for generating

short term observation schedules of SM projects along

with the nearest neighbor algorithm that we have used

while testing the ef®ciencies of the proposed

algorithms.

The additional notation used in the proposed

algorithms is as follows:

ctlt � Completion time of the last scheduled

observation l at iteration t
ctjt � Completion time of observation j if scheduled

at iteration t
FASTjt � First available start time of observation j at

iteration t
lt � Last scheduled observation at iteration t
Scorec � Objective function value of a given schedule c
slackjt � The remaining time available to schedule

observation j after iteration t
stjt � End of setup time of observation j if scheduled

at iteration t
St � Set of observations that are scheduled until the

iteration t
TWvj � Visibility window interval v for an

observation j
Ut � Set of observations that are not scheduled until

the iteration t
GFjt � Global ranking index of observation j at

iteration t
Ljb � Local ranking index of observation j for the

partial schedule of beam b
CNSb � Set of observations that cannot be scheduled at

partial schedule of beam b because of

deadline restrictions

GESjb � Global evaluation function value of the

augmented partial schedule obtained by

adding observation j to the end of the partial

schedule b
BS � Best schedule

CN � Candidate neighbor obtained after each

exchange

CSt � Current schedule at iteration t
frozen � Boolean variable, and if it is false then repeat

the search, else end

mp � Probability of mutating the current schedule

Tt � Temperature at iteration t, i.e. Tt � a � Ttÿ1

and a � rate of decrease

b � The rate used when constructing restricted

candidate list (RCL)

RCLt � Restricted candidate list at iteration t
MT � Maximum number of iterations

3.1. Nearest neighbor algorithm

The nearest neighbor (NN) rule is used by Smith and

Pathak (1991) for scheduling the over-subscribed

systems such as SMS problems to obtain a high

resource utilization. The NN rule is a well-known,

simple, computationally fast, dispatch based algo-

rithm widely used for solving traveling salesperson

problems. The basic idea is to select the ®rst available

candidate for the next step. An outline of the NN rule

can be given as follows:

1. Calculate stjt � maxfSClt j; SLlt jg � ctlt
; Vj [Ut

2. For any observation j[Ut calculate FASTjt.

There are two possible cases,

Either FASTjt � stjt if 9v� [V such that stjt [ TWv�j
Or FASTjt � bv�j if stjt 6[ TWvj Vv [V and v� � min

fvjbvj4stjtg
3. Select the observation j� that has the earliest

FASTjt and schedule it. Set lt � j�, ctlt
� FASTj�t

�Pj� ; t � t� 1;Ut � Utÿ1 ÿ fj�g and St � Stÿ1

�fj�g. Goto step 1 until ctlt � T

In step 2, either the end of setup time of the

observation j is in the visibility window of observation

j or not. In the ®rst case, FASTjt is equal to the end of

required setup time, however in the second case to start

the observation j we must wait until it is visible again.

3.2. New dispatching rule

We propose a new composite dispatching rule that

combines the weighted shortest processing time

(WSPT), nearest neighbor, and min-slack rules.

Under the proposed rule, observations are scheduled

one at a time; that is, every time the telescope

becomes free, a ranking index is computed for each
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remaining observation. The observation with the

highest ranking index is then selected to be scheduled

next. This ranking index is a function of the time t at

which the telescope became free as well as the set up

time, visibility windows, Pj;wj and Dj of the

remaining observations. This index is de®ned as

pj�t� �
wj

Pj

� exp

�ÿ�FASTjt ÿ ctlt
�

k1

�
� exp

�ÿslackjt

k2

�

where k1 � c=�2 � �������
�s=�p

p �, c and k2 are constants, and
�s and �p are the average of setup times and viewing

times of the remaining observations to be scheduled.

The remaining time available to schedule observation

j at time t, slackjt, depends on the relative positions of

stjt;Dj and visibility windows as follows:

(a) If 9v�[V such that stjt [ TWv�j and 9v0[V such

that Dj [ TWv0j then slackjt � �ev�j ÿ stjt� �
Pv0ÿ1

v��1

�evj ÿ bvj� � �Dj ÿ bv0j�
(b) If 9v�[V such that stjt [ TWv�j and

Dj 6[ TWvj Vv [V in this case v0 � maxfvjev0j5Djg
then slackjt � �ev�j ÿ stjt� �

Pv0
v��1�evj ÿ bvj�

(c) If stjt 6[ TWvj Vv [V in this case

v� � minfvjbvj4stjtg and 9v0[V such that Dj [ TWv0j
then slackjt �

Pv0ÿ1
v� �evj ÿ bvj� � �Dj ÿ bv0j�

(d) If stjt 6[ TWvj Vv [V in this case v� �
minfvjbvj4stjtg and Dj 6[ TWvj Vv [V in this case

v
0 � maxfvjev0j5Djg then slackjt �

Pv0
v� �evj ÿ bvj�

The proposed rule is a generalization of the

apparent tardiness cost (ATC) rule discussed in

Morton and Pentico (1993) for the 1kPwjTj problem

to take into account SMS constraints, such as

visibility windows and state dependent set up times.

The proposed rule works as the WSPT rule when the

observations are away from their deadlines and state

dependent set up times between the candidate

observations are not too diverse. However, because

of the exponential term as the t gets closer to the

deadlines of the observations the third term becomes

more important and higher index values are assigned

to the observations with the closer deadlines.

Similarly, if the difference between the set up times

is large then the middle term becomes more urgent

and higher index values are assigned to the

observations that can be scheduled earlier because

of their low set up time. An outline of the proposed

rule is as follows:

1. Calculate stjt � maxfSClt j; SLlt jg � ctlt
Vj [Ut

2. For every observation j [Ut, calculate

FASTjt; slackjt, and pj�t�
3. Select the observation j� that has the highest

pj�t� value and set ctj�t � FASTj�t � Pj� . If ctj�t � Dj�

then schedule j� and let lt � j�; cllt
� t � ctj�t;Ut �

Utÿ1 ÿ fj�g and St � Stÿ1 � fj�g. Goto step 1 until

ctlt
� T. Else, Ut � Ut ÿ fj�g and goto step 2.

3.3. Filtered beam search

A ®ltered beam search resembles the famous branch

and bound (B&B) algorithm, however it differs from

it by pruning the nodes that are not seemed to be the

most promising ones, which can be done only after a

guarantee of non optimality is provided in a B&B

algorithm. A ®ltered beam search is a fast, approx-

imate B&B method which uses heuristics to estimate a

®xed number of best paths, permanently pruning the

rest. Lowerre (1976) was the ®rst one to use beam

search for a speech recognition called HARPY. Ow

and Morton (1988) present a thorough analysis of a

®ltered beam search methodology for different

scheduling problems. Sabuncuoglu and Karabuk

(1998) employed it as an off-line scheduling

algorithm for a ¯exible manufacturing system. A

conventional ®ltered beam search has two decision

parameters, namely beamwidth (b) and ®lterwidth

( f ). Each one of b beams is a temporary partial

schedule. At each step of the algorithm, for each b
beams, f promising unscheduled observations are

determined with respect to a local evaluation function.

Then global evaluation function scores are obtained

for b ? f partial schedules that are obtained by

temporary addition of these f promising unscheduled

observations to the corresponding b partial schedules.

The best b of the b ? f partial schedules are selected

with respect to the global evaluation function scores

until no more observations can be scheduled to any of

the partial schedules.

In this paper, we add another parameter, called

``childwidth'' (c), to the classical ®ltered beam search

and test its impact on the overall solution. If we denote

the initial observation scheduled at each beam as a

parent then the parameter (c) determines the max-

imum number of the children allowed for each parent,

hence we limit the number of beams that originate

from the same parent. The motivation behind this

modi®cation is to prohibit the premature entrapment

of local optima that is quite possible after several
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iterations. An outline of the ®ltered beam search

algorithm is given below in which the parameters ctjlb
,

ctlb
, FASTjb, lb, Sb, slackjb stjlb

, and Ub are found for

each partial schedule of beam b.

Algorithm: While not done do

1. Procedure Filter_with_one_step

1.1 Calculate stjlb
� maxfSCjlb

; SLjlb
g � ctlb

1.2 For every observation j [Ub, calculate

FASTjb and slackjb

1.3 Find the Ljb � wj

pj
� exp

�
ÿ�FASTjbÿctlb

�
k1

�
� exp�ÿslackjb

k2
� Vj [Ub

1.4 Select f observations j�1; . . . ; j�f [Ub that

has the highest Ljb values. If

ctj�lb � FASTjb � Pj� � Dj� then set

i � i� 1, Ub � Ub ÿ fj�g, Sb � Sb � fj�g,
and Filtersetb � Filterselb � fj�g. Other-

wise, delete the observations j� that have

ctj�lb4Dj� from Ub � Ub ÿ fj�g and add to

CNSb � CNSb � fj�g
2. Procedure Evaluate_the_global_evaluation

_scores

2.1 For each j�[Fillersetb repeat the following

2.2 Augment j� to partial schedule of beam b
2.3 Schedule the remaining unscheduled obser-

vations to the augmented partial schedule

with respect to

GFjt �
wj

pj

� exp

�ÿ�FASTjt ÿ cllt
�

k1

�
2.4 Set GESj�b to the corresponding objective

function value of the schedule obtained by

this explosion

3. Select the best b of b ? f partial schedules with

respect to the GESjb values by considering the

limitation of c for the beams that are originating

from the same parent

4. For each b repeat the following

IfjWj � jSbj � jUbj � jCNSbj then doneb � True

else doneb � False

5. done � Pbdoneb

In the procedure Filter_with_one_step, we evaluate

the local ranking indexes of the unscheduled

observations for each b partial schedules with respect

to Ljb values that we have proposed in the previous

section. After the f promising candidates are

determined for each of the b partial schedules, b ? f
augmented partial schedules are exploded by sche-

duling the remaining unscheduled observations

dynamically with respect to the global ranking

index, GFjt, to obtain the global evaluation function

scores, GESjb. The GESjb is the total weight of the

observations that are scheduled before their deadlines

for each exploded partial schedule. We then select the

best b of the augmented partial schedules using the

GESjb values. Note that while selecting the best partial

schedules, the number of children that belong to a

speci®c parent is limited with the parameter c.

3.4. Simulated annealing

Simulated annealing (SA) is a well known widely used

iterative improvement technique for optimization

problems, initially developed by Kirkpatrick et al.
(1983). It takes an initial solution, searches the

neighbors of this solution, and moves to the neighbor

if it has better objective value. It is also allowed to

move to the neighbors with worse objective values

with a probability of p usually set to e
ÿDEij

T , where DEij

is the loss in the objective function at a transition from a

con®guration i to its neighbor j and T is a control

parameter corresponds to temperature. BothDEij and T
are positive numbers. The probability of accepting a

transition is called as the acceptance function. In this

procedure, the probability of making uphill moves is

initially higher. This is provided by selecting a high

value of initial temperature, denoted as T0, to avoid

from premature entrapment of local optima. As the

iterations proceed, T is lowered by a mechanism, which

is known as cooling, and the ®nal state is called the

frozen level. Connolly (1990) shows that a sequential

construction of neighborhood search is more effective

than the random search method. Moreover an

intelligent neighborhood generation mechanism can

be used to overcome the most important shortcomings

of SA, namely the huge computational time. Zegordi et
al. (1995) propose such an algorithm for ¯ow-shop

scheduling problem by generating a list of promising

neighbors that is called the moving desirability of jobs

index and ®nd the next neighbor according to that

index rather than random or sequential. By this way it is

possible to construct a smaller neighborhood space

from the most promising ones. There are hundreds of

papers available in the literature both in theoretical

aspects and applications of SA. A review of the SA

literature can be found in Collins et al. (1988) and

Johnson et al. (1989).

In the proposed SA algorithm, we ®nd an initial

schedule by using the new dispatching rule discussed
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in Section 3.2 and apply a neighborhood search

mechanism. We have previously mentioned that there

are six different viewing instruments of HST and each

instrument has several operating modes. Each

instrument mode can be viewed as a ``family'', and

there are 15 different observation families. The

consecutive observations that belong to same family

constitute the observation groups in the current

schedule. We generate the neighbors of the current

schedule simply by exchanging groups of observa-

tions that belong to different families. We calculate

the exchange desirability values and generate the

neighbors with respect to the most promising ones.

Let us explain this procedure on an example problem

with 5 observations. The observations 1, 2 and 5

require the WF/N camera and called Family A,

whereas observations 3 and 4 require the FOC/96

camera and called Family B. The setup times from the

initial state of the telescope, called state ``0'', to the

required cameras are equal to S0A � 300 and

S0B � 400 time units, whereas the family set up

times are SAB � SBA � 600 time units. Suppose that

the current schedule on hand is {5-1-3-2-4}, which

has the following family structure: A(2)-B(1)-A(1)

-B(1). The numbers in parenthesis represent the

number of consecutive observations that belong to

the given family, such as ``5'' and ``1'' are from

family A whereas 3 is from family B. There are 6

different ways of possible group exchanges for the

given example. All of the possible exchanges, their

outcomes and exchange desirability values are given

in Table 2. Note that the exchanged groups for each

exchange number are represented in bold letters.

In Table 2, the New Family Structure column

represents the new order of families after each

exchange. For example, we interchanged the groups

of observations A(2) and B(1) for the exchange

number 1. The order of the observations in the

parenthesis, i.e. (5-1-2), in the New Schedule column

does not necessarily re¯ect the exact order. The exact

order within the groups are determined by resche-

duling each group using the new dispatching rule

explained in Section 3.2, that considers the visibility

windows and slewing times. However it might be

computationally ineffective to reschedule all of the

possible exchanges. Therefore, we determine the most

promising exchanges by using the heuristic desir-

ability values given in the last column. These

exchange desirability values indicate the net gain

from the family setups that will be obtained by the

corresponding exchange. For example, if we exchange

B(1) and A(1) for the exchange number 4 then we can

save three family setups and incur an additional

family setup resulting in a net gain of 1200 time units.

Furthermore, we only generate the neighbors that have

the highest exchange desirability values determined

by the parameter desirable_exchanges_list_width

(DELW). We use the ®rst wins strategy while passing

to the next neighbor. The main motivation behind this

neighborhood generating mechanism is to augment

the groups of observations that belong to same family

to save from setup times. By this way we try to

overcome the myopic nature of the dispatching rule

that we have used while creating the initial schedule.

Furthermore, we can also mutate the current

schedule obtained after each exchange with a certain

mutation probability. The basic idea of mutation is

to delete one of the scheduled observations in the

current schedule. We consider two criteria while

selecting the observation to be deleted. The ®rst

obvious one is to select the observations that are

scheduled after their deadlines, which is called type

I mutation, since the neighborhood generation

mechanism ignores the observation deadlines. The

second one is to select the observation that

consumes highest amount of time due to recon®-

guration times, slewing times and visibility windows

availability, which is referred as the idle time of the

Table 2. Possible exchanges and their outcomes in the example problem

Exc. # Exchange New family structure New schedule Desirability

1 B(1)-A(2)-A(1)-B(1) B(1)-A(3)-B(1) (3)-(5-1-2)-(4) 500

2 A(1)-B(1)-A(2)-B(1) A(1)-B(1)-A(2)-B(1) (2)-(3)-(5-1)-(4) 0

3 B(1)-B(1)-A(1)-A(2) B(2)-A(3) (3-4)-(2-5-1) 1100

4 A(2)-A(1)-B(1)-B(1) A(3)-B(2) (5-1-2)-(3-4) 1200

5 A(2)-B(1)-A(1)-B(1) A(2)-B(1)-A(1)-B(1) (5-1)-(4)-(2)-(3) 0

6 A(2)-B(1)-B(1)-A(1) A(2)-B(1)-A(2) (5-1)-(3-4)-(2) 600
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telescope in Fig. 1. Each observation has a backward

idle time that is the time needed to execute the

current observation after the previous observation,

and a forward idle time that is the time needed to

execute the next observation after the current

observation. The total idle time of each observation

is the sum of backward and forward idle times. After

determining the total idle times, we create the

deletion_observation_list (DOL) that comprises of

the observations that need type I mutation and the

observations with the highest total idle times. The

number of the observations in DOL is determined by

the parameter deletion_observation_list_width

(DOLW), and each observation in this list deleted

one at a time. We reschedule the remaining

observations and calculate the new objective

function value. Consequently, we either generate

the next neighbor or select the next mutation

candidate with a given probability acceptance

function. We again use the ®rst wins strategy while

mutating the current schedule so that we can both

obtain a diversity of search in the decision tree and

calculate the opportunity cost of deleting one

observation from the current schedule.

Algorithm:

1. Create the initial schedule �IS0� by scheduling

all the observations with the new dispatching rule

described in Section 3.2

2. Set t � 1, frozen :� false, current schedule

CSt � IS0 and calculate the objective function

value of CSt�ScoreCSt
� then set BS � CSt,

ScoreBS � ScoreCSt
and Tt � T0

3. While not ( frozen) do

3.1 Establish desirable_exchange_list (DEL)

with respect to heuristic desirability values

and select one pair randomly

3.2 Set the candidate neighbor (CN) to the

sequence obtained after the exchange,

reschedule CN, and calculate ScoreCN

3.3 Evaluate DE � ScoreCSt
ÿ ScoreCN

3.4 If DE � 0 then set CSt � CN and

ScoreCSt
� ScoreCN

3.5 Else if DE40 then set CSt � CN and

ScoreCSt
� ScoreCN with probability e

ÿDE
Tyt .

If not accepted goto 3.2

3.6 If ScoreCSt
4ScoreBS then BS � CSt and

ScoreBS � ScoreCSt

3.7 Call Procedure Mutate for CSt with a given

probability mp
3.8 Set t � t� 1 and Tt � Ttÿ1 � a
3.9 If Tt5 (critical temperature) then

frozen :� true

In step 3.7, we mutate the current schedule with a

probability mp as follows:

Procedure Mutate:

1. While k5DOLW do

1.1 Establish deletion_observation_list (DOL)

1.2 Select one observation from DOL randomly

and delete it

1.3 Set the CN to the new sequence obtained

after 1.2, reschedule CN and calculate

ScoreCN . Let DE � ScoreCSt
ÿ ScoreCN

1.4 If DE � 0 then set CSt � CN,

ScoreCSt
� ScoreCN and k � DOLW

1.5 Else if DE40 then set CSt � CN,

ScoreCSt
� ScoreCN and k � DOLW with

probability to cÿDE=Tt. If not accepted then

k � k � 1

2. If ScoreCSt
4ScoreBS then BS � CSt and

ScoreBS � ScoreCSt

3.5. GRASP

Greedy randomized adaptive search procedure

(GRASP) is an iterative process that provides a

solution to the problem at the end of each iteration and

the ®nal solution is the best one that is obtained during

the search. There are various applications of GRASP

in the areas of production planning and scheduling,

graph theory and location problems as discussed in

Feo and Resende (1995). Feo et al. (1996) apply the

GRASP methodology to a single machine scheduling

problem with sequence dependent set up costs and

linear delay penalties. A typical GRASP consists of

mainly two phases. The ®rst phase is the construction

phase. In this phase GRASP builds a feasible schedule

by selecting and adding one element from a restricted

candidate list (RCL) randomly to the partial schedule

at a time with respect to a greedy function.

RCL � fj : bj � bg where bj is the ratio of the

greedy function score of observation j to the highest

greedy function score obtained at that iteration and b
is a prede®ned ratio parameter. The second phase is
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the local optimization phase, in which GRASP

explores the neighborhoods of the schedule obtained

from the construction phase and tries to move to a

better neighbor. In this phase we propose an algorithm

that is similar to the neighborhood generation

mechanism of SA algorithm, although we do not use

mutation and only move to the neighbor if it gives a

better solution than the current schedule. Furthermore,

we modify the generic GRASP by applying the

second phase if the constructed schedule seems to be a

promising one. If the ratio of the objective function

value of the current schedule to the upper bound value

is greater than the ``allowable_percentage'' parameter

then we apply the second phase, otherwise we return

to the ®rst phase and construct a new schedule.

Algorithm While the number of iterations � MT do

1. Procedure
Construct_the_greedy_randomized_schedule

1.1 Calculate stjt � maxfSCltj
; SLltj

g � ctlt
and

FASTjt Vj [Ut

1.2 Find the GFjt � wj

pj
� exp

�
ÿ�FASTjtÿctlt

�
k1

�
Vj [Ut

1.3 Let GFht � maxfGFjtg Vj [Ut and set

RCLt � fj :
GFjt

GFht
� bg. Select an observa-

tion j� randomly from RCLt, calculate

clj�t � FASTj�t � Pj� and schedule j�. Let

lt � j�; ctlt
� ctj�t; St � Stÿ1 � fj�g, and

Ut � Ut ÿ fj�g
2. Set CSt to the constructed schedule and calculate

ScoreCSt

3. If ScoreCSt
4ScoreBS then set BS � CSt and

ScoreBS � ScoreCSt

4. If ScoreCSt
5Allowable percentage � ScoreBS

then goto step 1

5. Procedure Local_optimization_phase

5.1 While iteration number < Maximum
_num-ber_of_exchange do

5.1.1 Establish desirable_exchange_list (DEL)

as discussed in the SA algorithm and

select one pair randomly

5.1.2 Determine the candidate neighbor (CN),

reschedule CN, and calculate ScoreCN

5.1.3 If ScoreCN4ScoreCSt
then set CSt � CN

and ScoreCst
� ScoreCN

5.2 If ScoreCSt
4ScoreBS then set BS � CSt and

ScoreBS � ScoreCSt

4. Computational results

The algorithms presented in the previous section were

coded in Pascal language and compiled with Sun

Pascal Compiler on a Sparc Station 10 under SunOS

5.4. In this section we perform an experimental design

to compare the proposed algorithms along with the

NN rule with respect to the objective function values

and the corresponding computation times. The

objective function value of each algorithm is equal

to the ratio of the total weight of the observations that

are not scheduled before their deadlines to the total

weight of all observations. There are ®ve experi-

mental factors, which are listed in Table 3, that can

affect the ef®ciencies of the proposed algorithms,

hence our experiment is 25 full-factorial design

corresponding to 32 combinations. The number of

replications for each combination is taken as 10,

giving 320 different randomly generated runs.

We have used the actual data on the visibility

windows, right ascension and declination data of 76

observations at Level 0, and randomly generated

additional 39 observations at Level 1. Time horizon is

a function of number of observations, oversubscrip-

tion rate and recon®guration times. We determine the

time horizon for each experiment by scheduling all of

the observations with respect to the NN rule and

Table 3. Experimental Factors

Factors De®nitions Low (0) High (1)

A Number of Observations 76 115

B Oversubscription Rate 20% 40%

C Recon®guration Times High Low

D Due Date Percentages 0 5

E Weight Assignments 1-2-3 1-5-9
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divide the makespan value by 1.2 and 1.4 for 20% and

40% oversubscription rates, respectively. Due to the

technological restrictions, HST needs long recon®-

guration times, although the new space mission

projects may need shorter recon®guration times

between the instruments. For the high recon®guration

times case, major and minor recon®guration times are

selected randomly from the interval UN* [5000,

12000] and UN* [1500,4000] seconds, respectively,

where UN stands for the uniform distribution. On the

other hand, for the low case, major and minor

recon®guration times are selected randomly from

the interval UN* [1600,4000] and UN* [800,2000]

seconds, respectively. The fourth factor determines

the percentage of user speci®c deadlines that are

before the prespeci®ed time horizon. In Level 0, there

is no user imposed deadlines, whereas for Level 1, 5%

of the observations have deadlines that are selected

randomly from the interval UN* [0.25 * time

horizon, time horizon] seconds. As discussed earlier,

STScI divides the observations into ``high'',

``medium'' or ``supplemental'' groups. There are

various ways of assigning values to each priority

group. We set them in two different ways of (1-2-3)

and (1-5-9), where the ®rst values in both levels are

assigned to the ``supplemental'', the second values to

``medium priority'' and the third values to the ``high

priority'' observations. The viewing times are treated

as ®xed parameters and generated randomly from the

interval UN* [100,600] seconds.

There are several parameters of the proposed local

search algorithms that should be set to speci®c values.

We specify several different values for some of these

parameters to determine their impact on the perfor-

mance of the corresponding algorithm. For the new

dispatching heuristic (NDH), we set c � 0:03 and

k2 � 0:0002. The values of these parameters are

determined after numerous pilot runs. For the ®ltered

beam search method, there are three parameters of

beamwidth, ®lterwidth and childwidth. We set 2

different values to each of them generating 8 different

®ltered beam search algorithms as summarized in

Table 4. For the GRASP algorithm, we tested the

impact of b (the rate that is considered while creating

the RCL) and MT by selecting two different values to

each. Furthermore, we also tested the effect of second

phase, i.e. local optimization, as shown in Table 5. In

the ®rst four of the algorithms we did not use the

second phase, whereas we allowed the second phase

with the allowable_percentage of 97% for the last

four. The parameters of maximum_number_of_ex-

changed and DELW that are used in the second phase

are set to 7 and 6, respectively. For the simulated

annealing algorithms, we examine the effect of the

mutation rate as shown in Table 6 such that we did not

allow any mutation for the algorithm Sno whereas the

Table 4. Parameter settings of different beam search algorithms

Algorithm B1 B2 B3 B4 B5 B6 B7 B8

Beamwidth 4 4 4 4 6 6 6 6

Filterwidth 8 8 10 10 8 8 10 10

Childwidth 3 4 3 4 3 6 3 6

Table 5. Parameter settings of different GRASP algorithms

Algorithm G1 G2 G3 G4 G5 G6 G7 G8

Allowable% No No No No 97% 97% 97% 97%

b 0.2 0.2 0.6 0.6 0.2 0.2 0.6 0.6

MT 250 500 250 500 250 500 250 500

Table 6. Parameter settings of different simulated annealing algorithms

Algorithm Sno S20 S50 S100

Mutation rate No 20 50 100
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mutation is always applied for the algorithm S100.

After several pilot runs, it is determined that

a � 0:998; T0 � 5; DELW � 10 and DOLW � 3

give good results and reasonable computational

times. Consequently, we compare 22 different

algorithms, namely NN, NDH, 8 ®ltered beam

search, 8 GRASP, and 4 SA algorithms.

In Table 7, we give the minimum, average and

maximum values of the unscheduled weight percen-

tages and the computational times over the 320

different randomly generated runs for each algorithm.

The unscheduled weight percentage for each experi-

mental run is equal to �TW7OFV� = �TW� where TW
corresponds to the total weight of the observations in

the experimental run and OFV is the objective

function value of the corresponding algorithm.

As indicated in Table 7, the NN rule gives the worst

unscheduled weight percentage value of 0.245 and the

minimum computation time of 16 milliseconds on the

average of the 320 experiments as expected. The new

dispatching heuristic (NDH) gives a better objective

function value than the NN rule on the average by

1.3% (0.245±0.232). We also performed a paired t-test

and the corresponding t value to the pair NN-NDH is

ÿ 5.88 with a signi®cance level of p � 0:0001,

although its computation time is slightly greater

than the NN rule. The averages of the unscheduled

weight percentages indicate that ®ltered beam search

algorithms perform better than the other competing

algorithms, while the B7 algorithm, which has the

parameters of b � 6, f � 10 and c � 3, is the best one

among the beam search algorithms. The B7 algorithm

improves the NN rule signi®cantly by 7.2% (0.245±

0.173) on the overall average. The highest improve-

ment of B7 algorithm over the NN rule is achieved by

9.2% (0.288±0196) for the experimental combination

of (1-1-1-1-1). This experimental combination corre-

sponds to the 115 observations, high oversubscription

rate, low recon®guration times, the case where some

of the observations have deadlines, and the weight

assignment of (1-5-9). This is quite meaningful since

the beam search algorithms, so as the B7 algorithm,

consider the weights and the deadlines that are

assigned to the observations while scheduling. The

B7 algorithm also reduces the myopic nature of the

dispatching heuristics with the help of the global

evaluation function mechanism. Furthermore, we

used a childwidth parameter to restrict the number

of beams that originates from the same parent. Note

that B1, B3, B5 and B7 are the beam search

algorithms that have a smaller childwidth parameters,

whereas B2, B4, B6 and B8 have the same beamwidth

and ®lterwidth parameters with the preceding algo-

rithms with higher childwidth parameters. From Table

7, we can conclude that childwidth parameter

improves the overall average by 0.33%. The

corresponding t values of the pairs B1-B2, B3-B4,

B5-B6, and B7-B8 are 6.17, 5.95, 5.89, and 6.69,

respectively, with p � 0:0001, and the computation

times do not differ too much.

GRASP algorithms also improve the NN rule on the

overall average of the unscheduled weight percen-

tages, although they are not as good as the beam

search algorithms. The best GRASP algorithm with

respect to the objective function value is G8 which is

worse than the B7 algorithm. The corresponding t
value of the pair G8-B7 is ÿ 4.29 with p � 0:0001.

However 16 out of 32 different experimental

combinations when there is a high recon®guration

time, the G8 algorithm gives better objective function

values than B7. In Table 8, we summarize the

unscheduled weight percentages and the computation

times of the algorithms for the high and low

recon®guration time cases. The unscheduled weight

percentages are the averages of 160 experiments that

correspond to each state. For the high recon®guration

time case, we ®nd that G8 has the best overall average

of 0.191, which is better than the B7 algorithm by

0.5% over the 160 experiments. The corresponding t
value of the pair G8-B7 is 5.92 with p � 0:0001. This

is mainly due to the local optimization phase of the

GRASP algorithm that utilizes the ``family scheduling

concept'', which becomes even more important when

there is a high setup time between the families. We

can also see that the local optimization phase

improves the overall results of the GRASP algo-

rithms, although it requires more computation time,

and the t values for the pairwise comparison of

objective function values of G1±G5, G2±G6, G3±G7,

and G4±G8 are ÿ 14.43, ÿ 14.07, ÿ 7.14 and

ÿ 7.46, respectively with p � 0:0001. Simulated

annealing algorithms also do not perform as good as

the beam search algorithms for the overall experi-

ments, although they perform relatively better for the

high recon®guration time cases due to the neighbor-

hood generation mechanism as indicated in Table 8.

S100 has the best overall average of 0.194 among the

simulated annealing algorithms, and it improves the

NN rule by 5.1%. The highest improvement of S100

over the NN rule is achieved at the experimental

Short-term observation schedules 399



Table 7. Unscheduled weight percentages and computational times

Algo Unscheduled weight per. Computation time (millisec.)

Min Ave Max Min Ave Max

NN 0.122 0.245 0.312 8 16 25

NDH 0.105 0.232 0.296 30 51 76

B1 0.050 0.174 0.244 8065 19919 33125

B2 0.056 0.177 0.250 8098 19889 32911

B3 0.050 0.174 0.242 10050 24624 41351

B4 0.051 0.177 0.245 10063 24610 41418

B5 0.053 0.174 0.244 12366 29978 49339

B6 0.052 0.177 0.250 11921 29806 50009

B7 0.050 0.173 0.243 14771 36789 61353

B8 0.057 0.177 0.244 14850 36941 62111

G1 0.129 0.225 0.280 5423 8827 12250

G2 0.123 0.219 0.276 10751 17623 24501

G3 0.074 0.185 0.240 5406 8821 12271

G4 0.073 0.180 0.239 10693 17716 24770

G5 0.121 0.214 0.279 6712 12575 20323

G6 0.111 0.208 0.271 12366 22465 34960

G7 0.072 0.183 0.238 9271 19070 30237

G8 0.071 0.178 0.237 16305 32637 49891

Sno 0.103 0.208 0.262 28690 100376 285239

S20 0.092 0.197 0.252 67303 165110 326189

S50 0.088 0.195 0.254 74116 206346 390555

S100 0.089 0.194 0.252 118283 333074 699810

Table 8. High and low recon®guration time cases

Algo High Setup Low Setup

Unsch. weight per. Comp. times Unsch. weight per. Comp. times

NN 0.266 16 0.224 16

NDH 0.254 51 0.212 52

B1 0.202 19521 0.145 20316

B2 0.204 19529 0.149 20249

B3 0.204 24144 0.144 25104

B4 0.206 24170 0.148 25050

B5 0.202 29411 0.145 30545

B6 0.205 29266 0.149 30346

B7 0.202 36083 0.144 37495

B8 0.205 36255 0.148 37628

G1 0.229 8821 0.221 8832

G2 0.224 17620 0.215 17624

G3 0.199 8831 0.171 8810

G4 0.194 17704 0.167 17704

G5 0.217 11583 0.211 13566

G6 0.212 21250 0.205 23679

G7 0.196 17015 0.169 21123

G8 0.191 30387 0.165 34886

Sno 0.220 87222 0.196 113030

S20 0.204 137242 0.189 192979

S50 0.203 175019 0.187 237674

S100 0.203 281535 0.186 384613
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combination of (0-0-0-0-1) by 8.6% (0.230±0.144).

Furthermore, the mutation concept improves the

ef®ciency of the algorithms in the expense of

computation times. The objective function value

decreases from 0.208 to 0.194 as the mutation

percentage increases, since SA can search more

nodes of the decision tree.

From the above discussion, we can conclude that in

general ®ltered beam search algorithms give the best

objective function values on the overall average of

320 experiments. The main reason of this fact is the

guided search methodology that is used in beam

search algorithms. By the help of the local and global

evaluation functions, the search on the decision tree is

guided so that lower level searches focus in areas most

likely to contain good solutions, however there is a

danger of local entrapment at this methodology

especially for the high recon®guration times case.

On the other hand, GRASP algorithms can break the

local entrapment by the help of the random search

methodology, hence they perform better than the

beam search algorithms for the high recon®guration

times case on the average of corresponding 160

experiments. To sum up, we will present the time

versus scienti®c return graphs of these algorithms in

Figs. 2 and 3. The scienti®c return corresponds to

average of scheduled weight percentages such that

Scientific Return � 1 ÿ (average of unscheduled

weight percentages). Note that in Fig. 2, the scienti®c

return is presented as the average of scheduled weight

percentages of 320 experiments, whereas it is the

average of 160 experiments that correspond to high

recon®guration time case in Fig. 3. The computation

times are presented in milliseconds and time axis is in

logarithmic scale. The lines in the ®gures correspond

to the Pareto curves, hence only for the algorithms on

Fig. 2. Time versus the scienti®c return for each algorithm.
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the Pareto curves, there is no other algorithm that

performs better both in scienti®c return and computa-

tion time.

5. Conclusions

In this paper, we have developed a new dispatching

rule, which provides a higher scienti®c return than the

NN rule used by Smith and Pathak (1991), and a set of

more sophisticated local search algorithms that can

identify the complex interactions between the candi-

date observations to construct the short-term

observation schedules for space mission projects.

While the speci®c constraints we have considered are

those most relevant to Hubble Space Telescope, the

proposed framework is more general, and could easily

handle other over-subscribed scheduling problems.

We can divide the proposed algorithms into two

groups. The ®rst group consists of the algorithms that

require low computational times although they do not

give good objective function values, and the second

group consists of the algorithms that give better

objective function values but require higher computa-

tional times. From Fig. 2 we can conclude that the

simple dispatching rules NN and NDH belong to the

®rst group whereas the local search algorithms belong

to the second group. So if the time is limited for

scheduling it is more preferable to use NDH since it

gives better objective function values than the NN

algorithm and requires a very small computational

time compared to the local search algorithms.

However, if the time permits we can use the B7

algorithm which gives the highest objective function

value for the overall experiments. On the other hand,

it is more preferable to use the G8 algorithm if the

problem domain has a high recon®guration time

between the equipments.

Fig. 3. Comparison of the algorithms for the high recon®guration times.
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Our proposed algorithms offer several advantages

such as inclusion of the priorities that are assigned to

the candidate observations by Space Telescope

Science Institute, user speci®ed deadlines, and the

modi®cations to the generic local search algorithms to

have a more realistic representation of the problem. In

®ltered beam search algorithms, we have utilized a

childwidth parameter that restricts the number of

beams that is generated from a particular beam. Our

experimental results indicate that this restriction

improves the objective function values of the beam

search algorithms with almost no additional computa-

tional time requirement. Furthermore, we have

introduced a mutation concept for the simulated

annealing algorithms that improve the overall solution

by 1.3%, although it requires more computational

time. Finally, we have created the desirable exchange

lists and eliminated less promising schedules in the

GRASP and simulated annealing algorithms to reduce

the search space.

There are several future research directions

emanating from this study. Other local search

algorithms such as tabu search and genetic algorithms

can be applied to the problem domain, and the

performance of these algorithms can be analyzed.

Finally, the new dispatching rule is used as the local

evaluation function for the beam search algorithms,

and it is also used to generate initial schedules for the

GRASP and simulated annealing algorithms.

Different dispatching rules can be used for these

algorithms and the performance of these new

dispatching rules can be analyzed.
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