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Statistics of Raman-active excitations via measurement of Stokes–anti-Stokes correlations

Özgür E. Müstecaplıog˘lu and Alexander S. Shumovsky
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey
~Received 9 November 1998; revised manuscript received 1 March 1999!

A general fundamental relation connecting the correlation of Stokes and anti-Stokes modes to the quantum
statistical behavior of vibration and pump modes in Raman-active materials is derived. We show that under
certain conditions this relation can be used to determine the equilibrium number variance of phonons. Time and
temperature ranges for which such conditions can be satisfied are studied and found to be available in today’s
experimental standards. Furthermore, we examine the results in the presence of multimode pump as well as for
the coupling of pump to the many vibration modes and discuss their validity in these cases.
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I. INTRODUCTION

The concept of squeezed state has been established i
language of physics mainly by the developments in quan
optics. On the other hand, a basic requirement of findin
system in a squeezed state is to have bosons as the con
ents of the system interacting in a pairwise manner and
might be fulfilled not only in optical systems but in som
other Bose-type systems as well. In actual fact, the introd
tion of squeezed states in optics1 was based on the previou
consideration of superfluidity2 in liquid 4He ~also see Ref.
3!. While the squeezing of quantum fluctuations is the m
well-known aspect of squeezed states, a rich variety of
fects might be expected due to their interesting statist
properties even at thermal equilibrium. Certain effects l
antibunching have already been observed in the realm
quantum optics and this makes it an intriguing question h
to find squeezed states and their effects in other places
this context, few proposals have been suggested for the
eration and detection of squeezed states of Bose-type ex
tions in solids.4–6 Quite recently, squeezed phonons ha
been produced and detected.7

It is very interesting that, unlike the case of light, th
squeezed states of phonons may arise from different mi
scopic interactions in solids even at thermal equilibrium8

Deviations from typical equilibrium distribution of phonon
namely, Bose-Einstein distribution, might arise from anh
monic interactions among phonons or from some ot
mechanisms, such as the polariton coupling in io
crystals4,9 or polaron mechanism.10 In such cases, the equ
librium distribution of phonons is that of squeezed therm
phonons.11 Therefore, it seems to be an important quest
how to determine the equilibrium distribution of phono
when there is a possibility that phonons can be found to b
nonclassical states. As a particular example of some con
erable interest, the squeezed states of phonons due to
photon-optical phonon interaction in an ionic crystal9 should
be mentioned here. The polariton coupling in such a sys
is described by the following Hamiltonian:12

H5
1

2 (
k

Hk ,
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Hk5vkak
†ak1vbbk

†bk1 igk@~ak
†2a2k!~bk

†1b2k!

1~a2k
1 2ak!~b2k1bk

1!#,

where vk is the photon frequency,vb is the frequency of
transversal oscillations of optical phonons,gk is the polariton
coupling constant, and the operatorsak ,bk describe the an-
nihilation of photons and optical phonons, respective
Since the Hamiltonian under consideration is the Hermit
bilinear form, it can be diagonalized by the Bogolubov c
nonical transformation2 similar to that used in the definition
of squeezed states.1 As a result, the thermal equilibrium stat
of the system is described by the following density matri

r~b!5
e2bHp

Tr e2bHp
,

whereHp denotes the HamiltonianH in diagonal~polariton!
representation andb is the reciprocal temperature. In ana
ogy to the quantum optics, consider the so-called degre
coherence,13

G(2)5
^b†2b2&

^b†b&
,

where ^ & denotes the average with respect to the den
matrix r(b). It is straightforward to calculateG(2) as a func-
tion of temperature for typical parameters of an ionic crys
~see Fig. 1!. One can see that, at low temperatures,G(2)

'8, while the same correlation function calculated with t
Bose-Einstein distribution givesGBE

(2)52. It is also seen tha
the strong quantum fluctuations can be observed only be
T;50 K because they are eroded by thermal fluctuati
with the increase of temperature.

In contrast to the case of nonclassical states of phot
there is no efficient direct method of measurement allow
the characterization of the quantum state of Bose-type e
tations in solids.5 Even though correlation functions to an
order would be demanded to describe fully a quantum st
it is usually good enough to distinguish quantum states
their number variances.13 Here, we present a way to dete
mine the number variance of phonons at equilibrium in
Raman-active medium. It is already suggested that corr
3970 ©1999 The American Physical Society
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tion Raman spectroscopy may be used to measure the q
tum statistical properties of a vibration mode for the case
Stokes~S!-type Raman scattering through a measuremen
the intensity and the Mandel’sQ factor of the Rayleigh
mode.15 However, even at low temperatures vacuum fluct
tions of the anti-Stokes~AS! modes might disturb measure
ments of high-order correlations, and thus careful study
the role of the AS modes in such measurements is deman
In this paper, we follow a similar ideology in more gener
terms by examining both theS and AS components of mul
timode Raman scattering. Even though the problem beco
analytically intractable when AS modes are included, it
now possible to establish an interesting connection betw
the number variance of phonons and the correlations ofSand
AS modes. Moreover, due to the removing low-temperat
restriction in the exclusion of AS modes, influence of te
perature in the high-order quantum correlations can be
amined as well.

The paper is outlined as follows. In Sec. II, using a ge
eral model of Raman-type three-body scattering, we find
intermode correlation function ofS and AS modes. Discus
sion of this general result under standard approximation
Raman scattering, with an emphasis of modifications in th
range of validity, is the subject of Sec. III. Finally, Sec. I
gives a brief summary of our results and conclusions.

II. CORRELATION OF STOKES
AND ANTI-STOKES PHOTONS

General relations between the correlation function oS
and AS modes and the number variance of phonons are
veloped in this section for the following Raman-type Ham
tonian,

H5(
kl

vklakl
† akl1 (

kk8q
~M kk8q

S ak8S
† akRaqV

†

1M kk8q
A ak8A

† akRaqV1H.c.!, ~1!

whereakl
† (akl) are the creation~annihilation! operators for

the l mode with momentumk and corresponding frequenc
vkl . Here the mode indexl5S,A,V,R stands for Stokes
anti-Stokes, vibration, and Rayleigh modes, respectively.

FIG. 1. Phonon degree of coherenceG(2) versus temperature fo
typical parameters of an ionic crystal:V5200 K, g525 K.
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usual, the polarization labels are suppressed within the
mentum symbols for the sake of notational simplicity. Co
pling constants are denoted byM kk8q

S for the S-type scatter-
ing andM kk8q

A for the AS-type scattering. While writing this
trilinear bosonic Hamiltonian we assumed as usual17 that the
Raman scattering is observed under the conditionvR,S,A
@vV when the pairwise creation of radiation modes h
quite small probability so that energy is conserved. This s
position is equivalent to the rotating-wave approximation
the quantum optics.16 We also assumed that the radiatio
consists of threeR, S, and AS pulses that are well separat
on the frequency domain so that@akl ,ak8l8

†
#5dkk8dll8 . If a

single-mode strong coherent~classical! pumping is assumed
all one can expect is that the phase-matching conditi
would have limited the number of active phonon modes
one. Nevertheless, it seems to be reasonable to conside
Raman scattering by an infinite Markoffian system
phonons.18,19 In particular, it permits oneself to take into ac
count the broadening ofS and AS lines. The usual selectio
rules of Raman scattering, namely, phase-matching or q
siresonance conditions,17 are not essential for the derivatio
of the general relations below. Therefore, the results give
this section are also valid in not so perfect Raman coup
situations that should be important in real materials.

If we define the number operatornkl for thel mode with
momentumk asnkl5akl

† akl , then the total number opera
tor Nl for l mode becomesNl5(knkl . Heisenberg equa
tions of motion yield the conservation laws, also known
Manley-Rowe relations,17

NS1NA1NR5C1 ,

NS2NA2NV5C2 . ~2!

Here constant operatorsC1 ,C2 are specified by the initia
conditions. Similar relations can also be constructed for
scattering of photons of a monochromatic laser beam fro
dispersionless optical phonon.20,8 Solving these equations fo
NS andNA , theSand AS correlation function is found to b

^NA ;NS&5
1

4
@V~C1!2V~C2!1V~NR!2V~NV!

22^C1 ;NR&22^C2 ;NV&#, ~3!

where the correlation function̂A;B& of two operatorsA,B is
defined by

^A;B&5^AB&2^A&^B&,

and hence variance of operatorA is given by the self-
correlation functionV(A)5^A;A&. Here the averageŝ& are
with respect to the initial state, since the Heisenberg pict
is used. It is natural to consider an initial state in which theS
and AS modes are in their vacuum states when we obta

^NA~ t !;NS~ t !&5
1

4
$V@NR~0!#2V@NV~0!#1V@NR~ t !#

2V@NV~ t !#22^NR~0!;NR~ t !&

22^NV~0!;NV~ t !&%. ~4!
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An operatorA at timet is indicated byA(t) while initially by
A(0). That equation connects theSand AS correlation func-
tion to the quantum statistical behavior of phonons and pu
photons.

Within conventional Raman theory quantum properties
pump are usually neglected through the classical pu
assumption.21,22 This approximation introduces a time rang
to the problem during which changes in the pump intens
remains negligible. We can apply a similar approximation
assuming an intense laser pump with photons in cohe
states and performing a mean-field average over them in
above equations. Under this assumption, the correla
function of theS and AS modes is related only to phono
statistics and the initial, known, number variance of t
pump photons. However, time range of validity for the pa
metric approximation should be modified in our case. As
shall show in the subsequent section, statistical behavio
the pump might change significantly in shorter time than
occurrence of a significant change in its intensity. Our p
pose is to examine the equilibrium statistics of phonons
termined byV@NV(0)#; therefore we need to express a
time-dependent terms on the right-hand side of Eq.~4! in
terms of initial operators to see any further relation betwe
the S and AS correlation function and the equilibrium va
ance of phonons. For that aim we specify a model sys
and study its dynamics.

We conclude this section by noting that a similar relati
can be derived for the molecular Raman model, which
equivalent to the full bosonic Raman model under
Holstein-Primakoff approximation in the case of low
excitation density.23 In that case,S and AS correlations de
pend on the quantum statistics of population distributions
the molecular energy levels.

III. DISCUSSIONS FOR PARAMETRIC RAMAN MODEL

In reality, coupling of one vibration mode to the pum
beam for a sufficiently long time of measurement is not
easy task. Therefore, in this section we investigate a Ra
scattering in which coupling of pump photons to all phon
modes are allowed. We shall treat the pump as an inte
coherent beam of photons and thus its stateucR&, in general,
is described by a multimode coherent state,

ucR&5)
l

^ ua l&, ~5!

in which a l are the coherence parameters of the model.
According to the remarks at the end of the previous sect
we now perform mean-field averaging with respect to pu
photon states in Eq.~1!, assuming the Raman-active mater
is placed in an ideal cavity that selects single modes foS
and AS radiations, namelyk85kA,S. Then after dropping
constant terms, the Hamiltonian in Eq.~1! reduces to an
effective one,

He f f5 (
l5S,A

vlnl1(
q

vqVaqV
† aqV

1(
q

~gq
SaS

†aqV
† 1gq

AaA
†aqV1H.c.!, ~6!
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where new effective coupling constantsgq
A,S are introduced

by

gq
A,S5(

k
M kkA,Sq

A,S ak . ~7!

The summation above can be calculated once the densi
states for the pump is also specified. As one can see,
Hamiltonian will be in the given form, involving summation
over phonon modes, in all cases except the case of perfe
phase-matched single pump and phonon modes. In orde
make sure that our results are not too susceptible to
imperfectness of the system arising from the multimode
ture of pump or phase mismatches among the phonon
photon modes, we shall treat the problem using the mo
described by the above Hamiltonian involving summatio
over phonon modes. When finite number of phonon mo
are assumed, which is reasonable for real crystals of fi
size, then such a model becomes integrable since the dyn
ics is ruled by the following closed set of operator line
differential equations:

i
d

dt
aqV5vqVaqV1gq

SaS
†1gq

A* aA ,

i
d

dt
aS

†52vSaS
†2(

q
gq

S* aqV ,

i
d

dt
aA5vAaA1(

q
gq

AaqV . ~8!

Let us introduce a vector of operators such thatY
5@aS

† ,aA ,$aqV%#T. We denote the matrix of coefficients i
the above set of equations byM and its diagonalizing matrix
by D, so thatD21MD5E1 with eigenvaluesE. Thus, we get

Yi~ t !5Di j D jk
21Yk~0!exp~2 iE j t !, ~9!

where summation over repeated index is implied. It is the
fore possible to write the solution forl5S,A modes in the
form,

al~ t !†5ul~ t !aS
†1vl~ t !aA1(

q
wql~ t !aqV . ~10!

Operators without time arguments are taken att50. Time-
dependent parametersu,v,w are determined by the elemen
of matrix D and eigenvaluesE. Let us note here that som
general relations exists amongu,v,w due to the commuta-
tion relations foral operators and they are not independe
of each other. A more explicit way of evaluatingu,v,w is
presented below for the single mode phonon case where
tor Y reduces to three dimensions in operator space. W
there are no scattered light modes initially, the correlat
function of S and AS modes becomes

^nS~ t !;nA~ t !&5A~ t !1(
kq

Bkq~ t !^akV
† aqV&1(

klpq
Cklpq~ t !

3^akV
† aqV ;alV

† apV&. ~11!

Here, parametersA,B,C are functions ofu,v,w. Since the
summations above can be converted into integrals involv
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phonon density of states, we see that if there are Van H
singularities corresponding to the modes selected by Ra
scattering, as in the case of recent experiments on the
eration of nonclassical phonon states via Raman scatterin7

then the correlation ofS and AS modes will be determine
strongly by that mode. If this is not the case, then one
still expect domination of the modes obeying Raman se
tion rules. Then for that mode the random phase approxi
tion permits us to write14

^nS~ t !&5uvS~ t !u21uwS8u
2~11nV!,

^nA~ t !&5uuA~ t !u21uwA8 u2nV ,

^nS~ t !;nA~ t !&5A8~ t !1B8~ t !nV1C8~ t !V~nV!, ~12!

in which the momentum label corresponding to the relev
mode is fixed and dropped for the notational simplicity a
primed parameters evaluated at that mode. It is possibl
argue by the results above that a measurement of the c
lation betweenS and AS can be utilized to determine th
variance of vibration modes, which we usually consider
phonons here, provided one knows the mean number of s
modes initially. The latter information can be determined
either one of the first two relations in Eq.~12! after measure-
ment of radiation mode intensities. Also, measurement
radiation mode intensities and the knowledge of initial ph
non number allow one to keep track of the evolution of me
phonon number through the Manley-Rowe relations given
Eq. ~2!. Interestingly, since the mean number of phono
with nonclassical distributions deviate significantly from th
of Bose-Einstein distribution, it might be possible to fin
some traces of nonclassicality even here. However, in o
to classify the distribution of phonons strictly it would st
be necessary to find the next moment of the distribution
other words the variance of phonons.

Now, an explicit way of determiningu,v,w parameters
will be demonstrated for the case of a single phonon mo
Because of the three-dimensional operator space in this
ation, eigenvaluesEl are found to be as the roots of the cub
equation,

E313vVE22@vR
223vV

21~ ugAu22ugSu2!#E

1@ ugSu2~vR1vV!1ugAu2~vR2vV!#

1vV~vV
22vR

2 !50.

Introducing coefficientsPl ,Ql as

Pl52
~El1vV!~El1vR1vV!1ugSu22ugAu2

2gSvR

,

Ql52
gSPl1El1vV

gA*
,

we write the field operators as

âS
†~ t !5(

l
PlAle

iEl t,
ve
an
n-
s,

n
c-
a-

t

to
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âA~ t !5(
l

QlAle
iEl t. ~13!

Common operator coefficientsAl are determined in terms o
the operatorsaV(0),aS

†(0),aA(0) using the Cramer’s rule

Âl5det(Dl)/det(D), where

D5S 1 1 1

P1 P2 P3

Q1 Q2 Q3

D ,

and Dl is the matrix obtained by replacing the elements
the l th column of D by the column vector

@ âV(0),âS
†(0),âA(0)#T. Thus, parametersu,v,w are deter-

mined in terms of interaction constants and the frequenc
More explicit expressions are too long and not very illum
nating to reproduce here, but the above analysis is quite s
able for numerical computation when some experimen
data is available. At that moment we shall content oursel
with more fundamental discussions only.

In order to give a brief discussion of the dependence
the correlation function in Eq.~9! on squeezing paramete
and temperature, we consider an equilibrium distribution
vibration mode as of the squeezed thermal state with
following mean number and number variance:11

^nV&5n̄V cosh 2r 1sinh2 r ,

V0~nV!5~ n̄V
21n̄V!cosh 4r 1

1

2
sinh2 2r , ~14!

wheren̄V is the mean number of phonons according to Bo
Einstein~BE! distribution andr is the real squeezing param
eter. Whenr 50, we recover the usual BE distribution. Ac
cording to Eq.~10! the S and AS correlations increases wit
variance of phonons. And since both thenV and theV(nV)
increases with temperature due to Eq.~12!, we see that tem-
perature enforces stronger correlations ofS and AS modes.
However, we need to put a word of caution here, since
fluctuations that are determined by the self-correlations
the modes also increase with the temperature. In orde
represent this competition, one can consider the cro
correlation function defined by24

CS-AS5
^nS ,nA&

AV~nS!V~nA!
. ~15!

Since the denominator can be expressed in a similar struc
as with the correlation function in Eq.~10!, the cross-
correlation function will eventually saturate at high tempe
tures and at high-squeezing parameters. Therefore, at
temperatures thermal fluctuations becomes important but
more important than in any typical quantum measureme
An estimation for a typical ionic crystal, for example, show
that the level of quantum fluctuations of phonon number
ceeds that of thermal fluctuations below 30–50 K.8,9 We also
see through Eq.~10! and Eq.~12! that S and AS correlation
increases with the squeezing parameterr.

Finally, we examine the time range of validity for th
parametric approximation. For that aim, we consider
Hamiltonian given in Eq.~1! for the case of perfect coupling
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of single modes. Let us suppress the momentum within
mode labelsR,S,V,A and calculateaR(t) for times close to
the beginning of interaction.25 Up to the second order, we ge

aR~ t !5e2 ivRt@aR1 i t ~MS* aSaV1MA* aAaV
† !

2 1
2 t2~ uMSu2n1uMAu2m!#, ~16!

wheren5aR(nS1nV11),m5aR(nA2nV). Here, operators
at t50 are those without time arguments. Then, we calcu
that the mean number and the variance of pump photons
S and AS modes are in vacuum states initially as

nR~ t !5nR2t2@ uMSu2nR~11nV!1uMAu2nRnS#,

V@nR~ t !#5V~nR!12t2
„uMSu2$V~nR!~11nV!1nR~11nV!

1uMAu2@V~nR!nV2nRnV#%…. ~17!

In these equations the averaging symbol,^ &, is not shown.
Using the relationV(nR)5nR for a coherent field, we find
the time rangest!t1 ,t2, for which the field intensity and
the variance remain close to their initial values, as

t15
1

uMSu2~11nV!1uMAu2nV

,

t25
1

4uMSu2~11nV!
. ~18!

Clearly, we see a rescaling of the time range of the us
time range of parametric approximation. At low tempe
turesnV'0, and thust25(1/4)t1 shows a reduction of time
range to 1/4 of the typical range of parametric approxim
tion. As an estimation, we may takegS'107 Hz,25 giving
time ranges ast1510 fs andt252.5 fs. These ranges ar
readily available due to the remarkable recent developm
in the field of femtosecond spectroscopy.26,27

IV. CONCLUSION

Summing up our results, we should stress that the m
surement of Stokes–anti-Stokes correlations looks like a
sonable method for detecting the number variance o
Raman-active vibration mode in solids. The most interest
and crucial fact is that the above method permits us to de
mine the number variance at thermal equilibrium, in oth
words, the variance just before the application of the pu
beam. The phonon subsystem could be in a nonclassical
due to an interaction providing necessary correlations am
phonons before the pump beam is applied. That interac
could be some anharmonic coupling with the heat bath,
laron, or polariton mechanisms. Since these mechanisms
usually weaker than the first-order Raman effect, after
application of the pump beam, dynamics of the phonon s
tem is governed mainly by the Raman effect. Therefore,
tial nonclassical state of phonons and nonclassical eff
like squeezing, which require that phase coherence migh
destroyed. That is why we have determined the general
e
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fundamental formula given by Eq.~4! in terms of the initial
state of phonons and showed that under certain condition
provides direct information on the initial, thermal equilib
rium variance of phonons. Analyzing those conditions of a
plicability, we propose that at liquid-N temperatures, usi
an intense coherent beam of ultrafast laser source suc
Ti-sapphire as a pump for a Raman-active medium, one
measure the number correlation of the scattered Stokes
anti-Stokes modes and the mean photon numbers in t
modes simultaneously by some photon counters, in orde
determine the number variance of the vibration mode at e
librium. The measurement can be realized through the us
a homodyne-type scheme13 in which theS and AS photons
are counted by two different detectors connected with a co
puter fixing the simultaneous arrival of theS and AS pho-
tons. It is also shown that when the vibration mode is in
squeezed state then an increase in the correlation of
Stokes and anti-Stokes modes occurs.

The case of a multimode pump, important for ultrash
pulses, can be handled easily for materials that involv
strongly preferred phonon mode due to a Van Hove sin
larity in the frequency range of the pump, by an appropri
calculation of the effective coupling constants defined by E
~7!, which in turn modify only the coefficientsA8,B8,C8 in
Eq. ~12!. Thus our conclusions should also be valid in th
case. For materials in which such phonon modes are man
do not exist at all, then application of a multimode pump a
measurement of the Stokes–anti-Stokes correlation wo
still provide information on multimode phonon correlation
according to the general formula Eq.~11!. This is a valuable
knowledge to classify a possible nonclassical multimo
state of phonons like a multimode squeezed state.

So far, the best achievement in squeezing of phonon
reported to be 0.01%,7 provided by second-order Rama
scattering. We would like to emphasize that this is not
squeezing parameterr of Eq. ~12! but related toV(nV).
Hence, the change in the Stokes–anti-Stokes correlation
expect to be in the same order. There are other mechan
that result in nonclassical excitations in solids with differe
expressions and larger values forr andV(n). In fact, squeez-
ing parameter reflects the strength of interaction prepa
the nonclassical state of these excitations,5 which is the ini-
tial phonon state in our scheme. The example of optical
lariton that we have discussed in the Introduction, provide
two-mode squeezed state with squeezing parameter in
ranger;0.120.01 in CuCl.4 Therefore, such a measureme
with the ultrafast Raman correlation spectroscopy should
be too challenging and looks promising in our opinion.

Let us finally note that the case of molecular Raman sp
troscopy can also be treated with a similar formalism to
information on the quantum statistics of populations of m
lecular energy levels.
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