
Math. Program. (1998) / DOI 10.1007/s10107980017a c© Springer-Verlag 1998

Kaj Madsen·Hans Bruun Nielsen·Mustafa Ç. Pınar

Bound constrained quadratic programming via piecewise
quadratic functions

Received May 1, 1997 / Revised version received March 17, 1998
Published online November 24, 1998

Abstract. We consider the strictly convex quadratic programming problem with bounded variables. A dual
problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained,
piecewise quadratic function. It involves a lower bound ofλ1, the smallest eigenvalue of a symmetric, positive
definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and
its implementation including estimation ofλ1, how to get a good starting point for the iteration, and up- and
downdating of Cholesky factorization. Results of extensive testing and comparison with other methods for
constrained QP are given.

Key words. bound constrained quadratic programming – Huber’s M–estimator – condition estimation –
Newton iteration – factorization update

1. Introduction

The purpose of the present paper is to describe a finite, dual Newton algorithm for the
bound constrained quadratic programming problem. Letc ∈ IRn and H ∈ IRn×n be
a given vector and a symmetric, positive definite matrix, respectively. We seeky∗ ∈ IRn

as the solution to the constrained quadratic programming problem

min
y

{
q(y) ≡ 1

2 yT H y− cT y
}

subject to − e≤ y ≤ e .
(1)

Here,e∈ IRn is the vector of all ones.
The special form with unit bounds leads to particularly elegant duality results: In

a straight forward way we demonstrate that the dual of (1) is a Huber M-estimator [7],
i.e. a convex quadratic spline functionF. This function is minimized using a special
version of the Newton iteration with line searches [12].

The duality property has been derived in a more general setting by Li and Swe-
tits [10], [11]. They also propose a Newton iteration, and our testing in Sect. 5 includes
their implementation for the quadratic programming problem with simple bounds.

The main contribution of the present paper is to demonstrate how the implementation
problems are overcome. We efficiently compute a guaranteed positive lower bound of
the smallest eigenvalue ofH , demonstrate how the Newton iteration can be implemen-
ted efficiently using factorization updates, and derive an efficient starting procedure.

K. Madsen, H.B. Nielsen: Institute of Mathematical Modelling, Technical University of Denmark, 2800
Lyngby, Denmark, e-mail:km@imm.dtu.dk, hbn@imm.dtu.dk

M.Ç. Pınar: Department of Industrial Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey,
e-mail:mustafap@Bilkent.EDU.TR

K. Madsen, H.B. Nielsen, M.Ç. Pinar

The numerical experiments indicate that the new method is computationally viable. In
particular, we demonstrate that it is competitive with established software systems. We
substantiate this claim in Sect. 5 where we present our computational results. In addition
to the algorithm of Li and Swetits [10] we compare withbqpd , a commercial software
system for convex quadratic programming by R. Fletcher [4], and to a primal-dual
interior point algorithm by Han et al. [6].

In a closely related paper [14] we discuss the solution of the quadratic programming
problem via a dual̀1-problem, which in its turn is solved via a series of Huber problems,
cf. [13]. In [18] a more detailed account of the implementation of the present paper’s
algorithm is given.

The literature on quadratic programming is vast. We refer the reader to the paper
by Moré and Toraldo [16] for a list of references. Some recent papers include Coleman
and Hulbert [2] and Li and Swetits [10], [11]. In [2] Coleman and Hulbert reformulate
(1) as an uncontrained minimization problem involving an`1 term. This reformulation
is obtained by manipulating the Karush-Kuhn-Tucker conditions of (1). They apply
a superlinearly convergent modified Newton method to this reformulation. Li and Swe-
tits [10], [11] derive their reformulation of the convex quadratic programming problem
by starting from the Karush-Kuhn-Tuckeroptimality conditions and deriving an uncons-
trained problem whose minimizer coincides with an optimal solution to (1). They use
several auxiliary results on monotone mappings to arrive at their equivalence results.

The rest of this paper is organized as follows. First, we give a technical preview of
our approach in Sect. 2. We derive our dual problem in Sect. 3. Section 4 is devoted to the
description of the proposed algorithm and implementational details, and we conclude
with a detailed summary of our computational experience in Sect. 5.

2. Preliminaries

Let λ1 > 0 denote the smallest eigenvalue ofH , and letγ be a number such that
0< γ < λ1. Further, letA ∈ IRn×n be a matrix that satisfies

ATA = H − γI . (2)

Now, define the function

F(x) = 1

2γ
r T Wr + sT

(
r − γ

2
s
)
+ 1

2
xT x , (3a)

where

r = r(x) = AT x− c , (3b)

s= s(x) =
 s1(x)

...

sn(x)

 with si (x) =
−1 if ri (x)≤ −γ

0 if |ri (x)|< γ
1 if ri (x)≥ γ

, (3c)

W = W(x) = diag(w1, . . . , wn) with wi = 1− s2
i . (3d)

Bound constrained quadratic programming via piecewise quadratic functions

In Sect. 3 we show that (1) has the dual problem

max
x
{−F(x)} = −min

x
{F(x)} . (4)

The hyperplanes given byr j (x) = ±γ divide IRn into subregions, in each of which
F(x) is a quadratic. So the dual problem is to minimize the piecewise quadratic function
F. It is easy to show thatF is differentiable, and also that the gradient

F′(x) = A

(
1

γ
W r + s

)
+ x (5)

varies continuously across the hyperplanes.
The minimizerxγ of F satisfiesg(xγ) = 0, or

xγ = A yγ , (6a)

where we have defined

yγ = −
(

1

γ
W(xγ)r(xγ)+ s(xγ)

)
. (6b)

In Sect. 3 we show thatyγ = y∗ andq(yγ) = −F(xγ). Thus,

0(x) ≡ F(x)+ q
(
− 1
γ

W(x)r(x)− s(x)
)

≥ F(xγ)+ q(yγ) = 0
(7)

can serve as a gap function.
In the discussion of the algorithm we say thatr i (and thei th column ofA) is active

at x, if si (x) = 0 (and thereforewi (x) = 1). Thedual active setis

A = A(x) = { i | 1≤ i ≤ n ∧ si (x) = 0} . (8)

From (6b) it follows that an activer i (xγ) is equivalent with|y∗i | < 1, so thei th constraint
in (1) is primal non active.Note, that if we knew the solutiony∗, then it follows from
(5) that the correspondings(xγ) is given by

si (xγ) =
{−y∗i if |y∗i | = 1

0 otherwise
, (9a)

andxγ is the solution to the linear problem derived from the conditiong(xγ) = 0,(
A W(xγ) AT + γI

)
xγ = A

(
W(xγ)c− γ s(xγ)

)
. (9b)

K. Madsen, H.B. Nielsen, M.Ç. Pinar

3. The dual problem

In this section we show that (1) has the dual problem

max
x
{−F(x)} = −min

x
{F(x)} . (10)

Our reference on duality in convex programming is the book by Rockafellar [19].
Let M = H − γI whereγ > 0 is picked so as to haveM positive definite. Clearly,
a strict upper bound on the choice ofγ is λ1 whereλ1 denotes the smallest eigenvalue
of H . Then (1) can be written

min
y
−cT y+ 1

2 yT(M + γI)y

s.t. −e≤ y ≤ e .

SinceM is symmetric, positive definite, it can be written asM = ATA whereA ∈ IRn×n

has full rank. Further, letu = Ay, and the problem takes the form

min
u, y
−cT y+ 1

2uTu+ 1
2γ yT y

s.t. Ay= u and − e≤ y ≤ e .

Now, we are in a position to derive a dual problem to (1). Associating dual multipliers
x ∈ IRn with the equality constraints we form the following Lagrangean max-min
problem:

max
x

{
min

u, −e≤ y ≤ e

{
1
2uTu+ 1

2γ yT y− cT y+ xT(Ay− u)
}}

, (11)

which is equivalent to

max
x

{
min

u

{
1
2uTu− uT x

}
+ min
−e≤ y ≤ e

{
1
2γ yT y+ yT(AT x− c)

}}
.

From [19, Thm. 28.3] it is well-known that for(y,u) to be an optimal solution for (1),
and forx to be a Lagrange multiplier vector, it is necessary and sufficient that(y,u, x)
is a saddlepoint of the Lagrangean function. This holds if and only if the components
of (y,u, x) satisfy the stationarity conditions with respect tou andy.

The first minimization problem overu yields the identity

u = x , (12)

which, when plugged back in, yields the term− 1
2xT x.

The second minimization overy in the unit sphere yields the following cases:

1) If (ATx− c)i ≥ γ , thenyi = −1.
2) If (ATx− c)i ≤ −γ , thenyi = 1.
3) If |(ATx− c)i | < γ , thenyi = − 1

γ
(AT x− c)i .

Bound constrained quadratic programming via piecewise quadratic functions

Notice that the above is equivalent to the following relation betweeny andx:

y ≡ − 1

γ
W r(x)− s . (13)

From this relation we obtain

min
−e≤ y ≤ e

{
1
2γyT y+ yT(AT x− c)

}
= −

n∑
i=1

ργ

(
(AT x− c)i

)
,

where, for a scalarz,

ργ (z) =
|z| −

1
2γ i f |z| ≥ γ

1

2γ
z2 i f |z| < γ .

Thus, the dual problem is the unconstrained minimization of a Huber’s M-estimator.
The triple(y,u, x) is a primal-dual optimal triple if and only if the above three cases

and (12) hold for them. An equivalent statement of this duality-optimality relation is
summarized in the following theorem:

Theorem 1. Let x be a minimizer ofF, and lets = s(x) with W defined accordingly.
Then, the unique optimal solution of (1) is given by (13).

In the rest of the paper we are concerned with exploiting the above duality corres-
pondence via a Newton-type algorithm.

4. The algorithm

The algorithm for computing the solution to problem (1) can be stated as follows.

1◦ ComputeR as the upper triangular Cholesky factor ofH ,

RTR= H . (14)

2◦ Computeγ andA; Sects. 4.1 and 4.2.
3◦ Find the starting point; Sect. 4.3.
4◦ Compute the dual solutionxγ ; see below.
5◦ Compute the primal solution (see below) and return.

The problem may be given in terms ofRandc, in which case step 1◦ is omitted. Further,
the algorithm is suited for “warm starts”: If a problem with the sameH has been solved
previously, then steps 1◦ and 2◦ can be skipped. Also, step 3◦ can be replaced by
information from the previous solution and the newc.

The algorithm for computing the minimizerxγ of F, (3), is described in greater
detail in [12] and [17]. We shall briefly repeat it here.

K. Madsen, H.B. Nielsen, M.Ç. Pinar

Givenx and the correspondingr, s, W. The gradient ofF is computed by (5), and
if this is zero apart from rounding errors, then the algorithm stops. More specifically,
we use the test

‖F′(x)‖∞ ≤ εM(‖A‖∞ + ‖x‖∞) ≡ η , (15)

whereεM is the machine accuracy (unit round-off).
If this criterion is not satisfied, then the Newton steph aiming at making the gradient

zero is found as the solution to

(AWAT + γI)h = −γF′(x) . (16)

Note, that the coefficient matrix is symmetric and positive definite. This implies thath
exists and is unique.

If s(x+h) = s(x), thenx+h is a stationary point and hence a global minimizer
of F. Otherwise, a line search alongh is made. This consists in computingt∗ which
minimizesF(x+th).

This dual algorithm is summarized below.

Dual Algorithm (Given starting pointx and correspondingr ands)
stop :=false
while (not stop) do

ComputeF′(x) by (5)
if ‖F′(x)‖∞ ≤ η then stop :=true
else

Find h from (16)
if (s(x+h) = s(x)) then stop :=true
else x := x+ t∗h {Line search; Sect. 4.5}

end
end

Theorem 2. The Dual Algorithm terminates in a finite number of iterations with a mi-
nimizerxγ of F.

A proof of this theorem may be obtained by suitable modification of the proof of [12,
Theorem 4.1]. Alternatively, the proof may be given similarly to the proof of [10,
Theorem 3.2].

The work is dominated by solution of the system (16) in each iteration. However,
the number of changes in active set between two consecutive iterations often is small
compared withn, and in Sect. 4.4 we show how this can be exploited so that the
determination of each Newton step is anO(n2) process rather thanO(n3).

When the dual algorithm stops, we have the information needed to compute the
solution to the QP problem,

y = −
(

1

γ
W(x)r(x)+ s(x)

)
, (17)

wherex = xγ , cf. (6a). If the value of the gap function (7) is too big,

F(x)+ q(y) > min{n,20} · εM · |F(x)| , (18)

then we refine the solution

Bound constrained quadratic programming via piecewise quadratic functions

refactorize AWAT + γI ,

h = γ(AWAT + γI)−1F′(x) ,
x := x− h; r := r − ATh ,

(19)

and usex, r and the correspondings to restart the Dual Algorithm. This restart is
allowed once, only. The condition (18) is rarely satisfied, but when it is, this refinement
drastically improves the accuracy ofy.

In the remaining parts of this section we describe some important computational
modules used in the implementation of the dual algorithm.

4.1. Computeγ

The shift parameterγ in (2) should be smaller thanλ1, the smallest eigenvalue ofH .
We choose it as

γ = f · λ1 , (20)

where 0< f < 1, andλ1 is an estimate ofλ1. In [18, Section 4.3] we discuss the choice
of f . The conclusion – supported by experiments – is that generallyf = 0.5 is a good
choice.

To explain our algorithm for computingλ1 we introduce the singular value decom-
position (SVD) for the Cholesky factorR, (14),

R= U6VT ⇐⇒ RT = V6UT , (21a)

whereU andV are orthogonal, and

6 = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn > 0 . (21b)

Equations (14) and (20a–b) imply

H = RT R= V62VT = V3VT , i.e. λ1 = σ2
n . (21c)

The estimateλ1 is computed in two major steps:

1◦ Compute(u, v): estimates of(U:,n, σ−1
n V:,n).

2◦ Refine the estimate by one step of simultaneous inverse iterations.

The pair(u, v) is computed by using ideas from some well-known condition esti-
mators; see e.g. [5]. Details are described in the technical report [18]. The total cost of
this estimator is about 4n2 flops.

Note, that we do not need a high accuracy: We use

γ = f · λ1 = f · (λ1 + δ) ⇐⇒ λ1 − γ = (1− f)λ1 − fδ .

Thus,γ < λ1 if δ <
1− f

f
λ1. With the recommended choicef = 0.5 it suffices to

estimateλ1 with a relative error less than 100%. In all our experiments we found that
this was satisfied, [18]. However, we use a “safety valve”: If the matrixH−γI is found
to be indefinite – i.e.γ ≥ λ1 – then we replaceγ by γ := 0.1·γ . This is described more
precisely at the end of Sect. 4.2.

K. Madsen, H.B. Nielsen, M.Ç. Pinar

4.2. ComputeA

The matrixA in the Huber function is defined by

AT A = RT R− γI , (22)

whereR is upper triangular, cf. (14). We choose also to letA have this property. We
might compute it simply as the upper triangular Cholesky factor ofH−γI . If, however,
the problem is given directly byR, this approach would lead to unnecessary loss of
accuracy. Instead we computeA via orthogonal transformation: From (22) we see that

RT R= AT A + γI , (23a)

which is equivalent with [
R
0

]
= Q

[
A√
γ I

]
, (23b)

whereQ is orthogonal. The transformation is computed via a series of Householder
reflections. Before thekth transformation the partly transformed matrix has the structure
shown in Fig. 1 forn = 5, k = 3.



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

}
Part ofR (overwritten byA)

? ? ?

? ?

?

Unknown Part ofA

? ? ?

? ? ?
?

?

?

B = Partly transformed
√
γI



Fig. 1.

Thekth reflection involves rowk of A andR and rows 1, . . . , k of B. See [18] for
details. Here, we only mention that thekth diagonal element inA is computed by

akk = −sign(rkk)
√

dk, where dk = r 2
kk−

k∑
i=1

bik . (24a)

The matrixH−γI is significantly positive definite only if alldk are significantly positive.
We use the test

dk > (min{2k,20} · εM · rkk)
2 . (24b)

The total cost of the transformation (23) is about2
3n3 flops. This is the same as

if we computed the upper triangle ofRT R− γI (1
3n3 flops) followed by Cholesky

factorization (also1
3n3 flops).

If, for somek ≤ n the condition (24b) is not satisfied, then the process is repeated
with γ := 0.1γ . If this also fails, then the QP–algorithm gives an error return: The
problem is too ill conditioned.

Bound constrained quadratic programming via piecewise quadratic functions

4.3. Starting point

In (9) it was seen that if the sign vectors = s(xγ) were known, then we could find
xγ = xs as the solution to the linear system

(A WAT + γI)xs = A(Wc− γs) . (25)

Therefore, we look for a good strategy for choosing the initials for the Newton iteration
in the dual algorithm.

We experimented with a number of strategies, [18], and settled for the algorithm
given in (29) below. This is based on the relation (9) between the primal solutiony∗ and
the dual sign vectors(xγ). This relation can be written ass(xγ) = S(−y∗,1), where the
generalized sign vectorS(v, τ) is defined by

Si (v, τ) =
{

0 if |vi | < τ
sign(vi) otherwise

. (26)

An approximation toy∗ is found by considering the behaviour of the unconstrained
minimizer ofq,

ỹ = H−1c . (27)

This vector is easily computed, since we know the factorization (14). There are two
extreme cases,

1◦ If ‖ỹ‖∞ ≤ 1, thenỹ is the solution also for the constrained problem (1),ỹ = y∗. If
‖ỹ‖∞ > 1 but not too big, theñy/‖ỹ‖∞ is a good approximation toy∗. In this case
‖H‖∞ and‖c‖∞ ' ‖Hy∗‖∞ are of the same order of magnitude.

2◦ If ‖c‖∞�‖H‖∞, then a steepest descent direction from 0,ŷ = c/‖c‖∞ is a better
approximation to the primal solutiony∗.

We use the following interpolation between these two extreme cases,

y := α

‖c‖∞
c+ 1− α
‖ỹ‖∞

ỹ with α := 0.9 ·
(

1− N (−ỹ,1)

n

)4

, (28)

where the factor 0.9 and the exponent 4 were decided experimentally, andN (v, τ)
denotes the number of indicesi , for which Si (v, τ) = 0.

The choice between different approximationsy is decided by the number of elements
in the dual active set for the corresponding starting vectorx = xs with s = S(−y,1).
We aim at having at least12n elements inA(x). This is motivated by experience from
similar algorithms for other problems, [13] and [15], and confirmed by experiments with
the present problem. IfN (r(x), γ) is too small, then the Newton iteration may have too
slow initial convergence.

K. Madsen, H.B. Nielsen, M.Ç. Pinar

Now, the starting algorithm can be expressed as follows,

Computeỹ by (27)
if ‖ỹ‖∞ ≤ 1 then

y∗ := ỹ; STOP

end
if N (−ỹ,1) ≥ 1

2n then
Computex by (25) withs= S(−ỹ,1); s := s(x)

else
Computey by (28); s := S(−y, τn/2)
Computex by (25); ŝ := s(x)
if N (r(x), γ) < 1

2n then
s := s⊕ ŝ;
Computex by (25); s := s(x)

else
s := ŝ

end
end

(29)

Here,τm denotes themth smallest|vi |, so thatN (v, τm) ≥ m, where 0≤ m≤ n. In the
innermost part of the algorithm the vectoru := s⊕ ŝ has elementsui = 0 if si = ŝi = 0
or si = −ŝi , otherwise,ui = si = ŝi . This is equivalent with saying that an index is
considered to belong toA(x) only if both S(−y, τn/2) ands(x) = S(r(x), γ) agree on
this or if they show opposite sign.

Compared with the other strategies described in [18] we found that (29) generally
gave the smallest number of iterations with the algorithm of Sect. 4.1. The dominant
part of the computation is one factorization ofAWAT + γI and 2 or 3 updates (or
refactorizations), cf. Sect. 4.4.

4.4. Factorization

During the iterations for computing the Huber solution we have to solve problems of
the form

(AWAT + γI)h = −γF′(x) , (30)

whereW = diag(wi) with wi ∈ {0,1}. Let A:, j denote thej th column of the matrixA.
Then we can write

AWAT = AAAT
A ,

whereAA consists of the columns{A:, j } with j ∈ A, the active set. Between iterations
there is usually only a few changes inA, and we are interested in a cheap (but accurate)
updating of a triangular factorization of the coefficient matrix in (30).

We have chosen to use an untraditional factorization, viz.

AWAT + γI = LT L , (31)

Bound constrained quadratic programming via piecewise quadratic functions

whereL is a lower triangular matrix. This implies that the solution of (30) is done by
a back substitution followed by a forward substitution.

This choice is made because it leads to simple updatings: Let the active set be
augmented byE (for “enter”). Then

L̃T L̃ = LT L + AE AT
E =

[
LT AE

] [L
AT
E

]
.

This shows that we can computeL̃ by an orthogonal transformation[
L̃
0

]
= Q

[
L
AT
E

]
. (32)

The structure of the rightmost matrix is shown below forn = 8 and columns 2 and 5
entering the active set



?

? ?

? ? ?
? ? ? ?

? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?


L

? ?

? ? ? ? ?

}
AT
ε



Fig. 2.

As in Sect. 4.2 the transformation is done by a series of Householder reflections.
Now, however, we start fromk = n and go back. For the example shown in figure Fig. 2
the first change occurs fork = 5. Fork = 5,4,3 the transformations involve rowk of L
and the last row ofAT

E . Fork = 2,1 thekth row of L and both rows ofAT
E are involved.

We use standard Householder reflections in the implementation.
The changes in active set can also imply that columns ofA leave (31). Therefore we

are also interested in downdating the factorization; i.e. to compute

L̃T L̃ = LT L − ALAT
L . (33)

This is done using the update procedure and ideas from Sect. 4.2. Here, we check
for severe loss of accuracy and signal an error return in that case. Remember that the
columns ofA that are removed have contributed to the currentL.

Typically a change in active set involves that some columns ofA leave and some
enter. This means that we seek

L̃T L̃ = LT L − ALAT
L + AEAT

E . (34)

The transformation is made in two steps. The details are discussed in [18].

K. Madsen, H.B. Nielsen, M.Ç. Pinar

For both up- and downdating the cost of entering (deleting)m columns to (from)
the active set is between23m3 flops (the firstm columns) and 2mn2 flops (the lastm
columns). Thus, in the typical case, wheremE+mL � n, the cost of adjusting the
factorization isO(n2) flops.

4.5. Line search

Givenx andr = r(x) and a search directionh, that satisfies

(AWAT + γI)h = −γF′(x) = −A(Wr + γs)− γx .

We seek the minimum of the functionϕ(t) = F(x + th). It is easily verified thatϕ′ is
a continuous, piecewise linear function, whose coefficients change atkink values,where
one or more residual components pass the thresholdγ . The kink values are the positive
α j –values defined by

|rk + α j ·(ATh)k| = γ for some k = kj .

The line search algorithm is similar to the algorithm of [12], and details can be found
in [18].

5. Testing

The algorithm has been tested on a large number of problems generated as described in
Sect. 5.1. In Sect. 5.2 we present three competing algorithms, and in Sect. 5.3 we give
computational results.

5.1. Test problems

The test problem generator is based on the Kuhn–Tucker condition

Hy∗ − c+ u = 0 , (35)

whereui 6= 0 only if the i th constraint is primal active. This is the background for the
widely used test problem generator of Moré and Toraldo [16]. The vectorc is found as

c= Hy∗ + u , (36a)

whereH , y∗ andu are generated so that a prescribed number of constraints are active
and

H = 10−descH0, ui =
{

0 if |y∗i | < 1
−y∗i · 10−ν·deg otherwise

. (36b)

Bound constrained quadratic programming via piecewise quadratic functions

Here,ν is uniform random in [0,1],H0 is a symmetric, positive definite matrix with
‖H0‖2 = 10ncond, anddesc, ncond, degare chosen, nonnegative parameter values. It
follows that

‖y∗‖∞ = 1, ‖u‖∞ ≤ 1 ,
‖Hy∗‖∞ ≤ ‖H‖∞ = 10−desc‖H0‖∞ ∼ 10ncond–desc.

The original Moré–Toraldo generator corresponds todesc= 0. In that case we
are sure thatHy∗ has a dominating influence onc, and the starting point given by
s= S(−ỹ,1) (cf. Sect. 4.3), has been found to work well. The choice ofdesc> 0 leads
to more difficult problems.

The matrices have the form

H = MT M with M = D
1
2 Z , (37a)

where

D = 10−descdiag(d1, . . . ,dn) with log10 di = i − 1

n− 1
ncond. (37b)

Heredescandncondare prescribed numbers. Further,Z is a Householder matrix,

Z = I − 2

zT z
z zT (37c)

wherez ∈ IRn has elements that are uniform random in]-1,1[. SinceZ is orthogonal, it
follows that the condition numberκ2(H) = κ2(D) = 10ncond.

H = D − 2
(
uvT + vuT

)
, (37d)

where

u = z/‖z‖2, v = Du− (uT D u)u . (37e)

The generator involves two more parameters:

nb Controls the number of “large” components iny∗, i.e. |y∗i | = 1.
deg Controls near–degeneracy: The non active residuals are computed asr i = si ·

10−ν·deg, whereν is uniform random in[0,1].

5.2. Competing methods

First, we compare with an interior point method. As a typical example we take the
primal-dual approach used by Han et al. [6]. They use the standard formulation

K. Madsen, H.B. Nielsen, M.Ç. Pinar

min
{

f(x) ≡ 1
2xT Hx+ dTx

}
subject to 0≤ x ≤ e .

(38)

This is equivalent with our formulation (1) when we set

d = − 1
2(c+ He) , (39a)

and

y = 2x− e, q(y) = f(x)+ 1
2eT(2c+ He) . (39b)

The method of Han et al. is derived from the reformulation

min
{

f(x) ≡ 1
2xT Hx+ dTx

}
subject tox+ z= e and x, z≥ 0 ,

(40a)

and the dual

max
{−eTv− 1

2xT Hx
}

subject tov ≥ 0 and u ≡ Hx+ d+ v ≥ 0 .
(40b)

The duality gap is

1 ≡ xTu+ zTv ≥ 0 . (40c)

The solution is found by minimizing the potential function

ϕ(x, z,u, v) ≡ ρ log(1)−
n∑

i=1

log(xi ui)−
n∑

i=1

log(zivi) , (41)

where the scalarρ ≥ 2n+√2n.
Let (x, z,u, v) denote the current iterate, and letX, Z,U,V denote the diagonal

matrices with(X)ii = xi etc. The next iterate is found as follows,

1◦ Find hx as the solution to

(DHD+UZ + VX)(D−1hx) = 1
ρ
(DX−1 − DZ−1)e− D(u− v) (42)

with D = diag(
√

xi zi), and compute

hv = Z−1(Vhx + 1
ρ

e)− v .

2◦ Line search: Findθ, the largest value for which

x+ θhx ≥ 0, z− θhx ≥ 0, v+ θhv ≥ 0 and u+ θ(Hhx + hv) ≥ 0 .

3◦ Update:

θ = βθ
x := x+ θhx; z := e− x; v := v+ θhv; u := Hx+ d+ v
1 := xTu+ zTv

Bound constrained quadratic programming via piecewise quadratic functions

The iteration is stopped when

1 ≤ min{ε1, ε2(1+ | f(x)|)} . (43a)

The algorithm involves four iteration parameters:ρ, β, ε1 andε2. Han et al. [6]
found that the choicesρ = n1.5, β = 0.99 were close to optimal, and these are the
values used in our comparisons. Further, they recommend to use the stopping parameters:
ε1 = 10−5, ε2 = 10−8. In an attempt to get more accurate results we useε1 = 10−8,
ε2 = 10−12, but have found that often this results in an infinite loop: After a certain
number of steps the computed value for1 is not decreased further. To cure this problem
we supplement the stopping criterion (43a) with

if 1new≥ 1old then STOP . (43b)

We also compare with a Simplex type method, viz. thebqpd package of Fletcher [4].
This package has a broader range of applications. The option used in our comparisons
addresses a generalized version of (1),

min
y

{
q(y) ≡ 1

2 yT Hy− cT y
}

subject tobl ≤ y ≤ bu and b̂l ≤ Gy≤ b̂u ,

(44)

whereG is anm×n matrix, andb̂l , b̂u arem-vectors. By choosingm= 0 andbl = −e,
bu = e we see that (44) is identical with (1).

The method used is an active set strategy, and demands an initial, feasible pointy(0).
In the comparisons we usey(0) = 0. Further, we use the parameter values

tol tolmin fmin nrep npiv
10−10 10−14 −9.0·1099 2 3

Finally, we compare with the algorithm of Li and Swetits [10]. They treat problem
(1) with general box constraints,l ≤ y ≤ u. The method is based on minimizing the
following convex quadratic spline

8(x) = 1
2xT Bx− 1

2‖(ρ(x))ul ‖22− l T(ρ(x))l − uT(ρ(x))u , (45a)

where

B = I − αH with 0< α < ‖H‖−1
2 , (45b)

ρ(x) = x− α(Hx− c) , (45c)

and(z)w (or (z)w) is the vector whosei th component is max{zi , wi } (or min{zi , wi }).
The gradient of8 is the piecewise linear function

8′(x) = B(x− (ρ(x))ul) ,

K. Madsen, H.B. Nielsen, M.Ç. Pinar

and Li and Swetits use Newton’s method with line search to find the minimizerx∗:
8′(x∗) = 0. The Newton directionh is found by solving

(B− BDB)h = −8′(x) , (46)

whereD = diag(d1, . . . ,dn) with di = 1 if l i ≤ ρi (x) ≤ ui , otherwisedi = 0. The
iteration is started withx = 1

2(l + u).
It is interesting to note some similarities between our method and the method of Li

and Swetits [10]:

1◦ We have to computeγ so that 0< γ < min{λ j (H)}, and Li and Swetits must find
α so that 0< α < ‖H‖−1

2 = 1/max{λ j (H)}. They useα = ‖H‖−1∞ with a cost of
aboutn2 flops, i.e. about one quarter of the cost of computingγ , cf. Sect. 4.1.

2◦ Both methods operate with a dual active set:D in (46) is equivalent withW in (30).
As described in Sect. 4.4 we use an efficient updating of the factorization. Li and
Swetits [10] use Cholesky factorization ofB−BDB in each step of the iteration. The
possibility of updating the factorization is mentioned in [11], dealing with general
linear constraints. There is no specific indication of how it should be done, however.

5.3. Computational results

We implemented the new algorithm and the algorithm of Hanet al. in Fortran77 with
extensive use of BLAS, [3]. We used Fletcher’s own Fortran77 implementation ofbqpd
except that we changed it to double precision. Also for the method of Li and Swetits [10]
we used their own implementation,simpbd .

The tests we performed on an HP9000/800–K460, and timings were done with the
-O option of thef77 compiler. The machine accuracy isεM = 2−52' 2.22·10−16.

Below we give results for varying values of the parameters of the problem generator
described in Sect. 5.1. In e.g. [6] such results are presented in the form of tables, where
each entry is the average over 10 problems with fixed value of the parameters, with
a few, selected values of the parameter under discussion (e.g. the size of the problem
with n = 100, 200, . . . , 500). Instead, we have chosen to show a “more continuous”
variation (n = 100, 110, . . . , 500) with one instance of each. This presentation
illustrates both the influence of the parameter and the stochasticity in the problem
generation.

As regards accuracy of the computed results, we introduce

qerr = |q(y)− q(y∗)|
|q(y∗)| and yerr = ‖y− y∗‖∞ , (47)

where y∗ is the solution generated as described in Sect. 5.1 andy is the computed
solution. Since‖y∗‖∞ = 1, bothqerr andyerr are relative errors.

In Figures 3–7(a) we use the symbols

o Results frompqf : the new method based on minimizing a piecewise quadratic
function, and described in Sect. 4.

x Results fromhpy : the interior point method of Han et al. [6] as described in Sect. 5.2.

Bound constrained quadratic programming via piecewise quadratic functions

+ Results frombqpd : the Simplex type method of Fletcher [4] as described in Sect. 5.2.
Here “iterations” is 1

40(the number of Simplex bases). (The scaling factor 40 was
chosen to get nice figures).

* Results fromlisw : the Newton method of Li and Swetits [10] as described in
Sect. 5.2.

First, we show the influence of the size of the problem. Note, that forpqf , hpy
and lisw the number of iterations is almost constant, while inbqpd the number of
Simplex steps seems to grow linearly withn. In none of the cases a refactorization was
needed during the iterations inpqf .

100 150 200 250 300 350 400 450 500
0

10

20

30

40

n

Iterations

100 150 200 250 300 350 400 450 500
0

10

20

30

40

Time (secs)

Fig. 3. Varying size.(ncond, deg, nb, desc) = (3,1,50%, 0)

In all the cases reported in Fig. 3 we found thatpqf , bqpd andlisw all gaveqerr '
10−16 andyerr ' 10−15, i.e. full precision. Withhpy we foundqerr ' 10−10 andyerr
in the range[10−7,10−3]. Interior point methods for LP problems use “extrapolation”
to the boundary, see e.g. [1, Section 7]. Similarly, from the results of the interior point
method it should be possible to identify the primal active set and find a more accurate
solution. Han et al. [6] do not consider this kind of “extrapolation”, however.

Next, in Fig. 4(a) we consider the influence of the condition numberκ2(H). Here,
the number of iterations grows slightly withncond for pqf , hpy and lisw , but is
constant forbqpd . At most one refactorization was used bypqf , and it is seen that the
increasing number of iterations is not reflected in the computing time. Each iteration in
the dual algorithm is anO(n2) process, wheras each iteration withhpy andlisw is an
O(n3) process, cf. (42) and (46).

In Fig. 4(b) we show the accuracy obtained.pqf , bqpd and lisw all determine
the minimum value ofq with a relative error which is small multiple of the machine
accuracy, and the error in the computedy grows proportional withκ2(H), which is to
be expected. The results fromlisw could probably be improved by one final step of
iterative refinement. The results fromhpy are orders of magnitude worse.

K. Madsen, H.B. Nielsen, M.Ç. Pinar

0 2 4 6 8 10 12
0

10

20

30

40

ncond

Iterations

0 2 4 6 8 10 12
0

2

4

6

8

10

Time (secs)

(a) Varying condition. Iteration and timing.
(n, deg, nb, desc) = (300,1,50%, 0)

0 2 4 6 8 10 12
10

−20

10
−15

10
−10

10
−5

10
0

ncond

q_err

0 2 4 6 8 10 12
10

−20

10
−15

10
−10

10
−5

10
0

y_err

(b) Varying condition. Accuracy.(n, deg, nb, desc) =
(300,1,50%, 0)

Fig. 4.

In Fig. 5 we give results for the influence of the parameterdeg, i.e. how well active
are distinguished from non active equations. Bothhpy and bqpd show very little
sensitivity, whereas the the number ofpqf – andlisw –iterations grows slightly with
deg. In none of the cases a refactorization was needed inpqf , and the accuracy is as
described in connection with Fig. 3.

Bound constrained quadratic programming via piecewise quadratic functions

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

deg

Iterations

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Time (secs)

Fig. 5. Varying “near-degeneracy”.(n, cond, nb, desc) = (300, 3,50%, 0)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

nb

Iterations

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Time (secs)

Fig. 6. Varying number of active constraints.(n, cond, deg, desc) = (300, 3,6,0)

Fig. 6 shows the effect of the parameternb,i.e. the number of active constraints. The
number of iterations seems to be independent ofnb for hpy , but grows slightly with
this parameter forpqf andbqpd , although it does not reflect in the timings. In 8 (3) of
the 41 cases shown one (two) refactorizations were used inpqf . For lisw the number
of iterations is almost constant, but the computing time increases significantly whennb
decreases, i.e. when the number of nonzero diagonal elements inD, (46), increases.

Finally, Fig. 7(a,b) shows the influence of the descaling factor. Here,bqpd needs
an almost constant number of iterations, and its timings show a marked decrease as
descgrows. The interior point methodhpy also performs faster for increasingdesc,
while pqf needs considerably more iterations (and up to three refactorizations). This
reflects in the computing times, which are up to 0.7 times thehpy -time. Refering to the

K. Madsen, H.B. Nielsen, M.Ç. Pinar

discussion in Sect. 4.3 we see thatlisw performs well both when‖H‖∞ and‖c‖∞
are of the same order of magnitude (desc≤ 2) and when‖H‖∞ � ‖c‖∞ (desc≥ 5).
In the range 2< desc< 5 the number of iterations and the computing time increases
significantly.

0 2 4 6 8 10 12
0

10

20

30

40

50

60
Iterations

desc

0 2 4 6 8 10 12
0

2

4

6

8

10

Time (secs)

(a) Varying descaling. Iterations and timing.
(n, cond, deg, nb) = (300,1, 0,50%)

0 2 4 6 8 10 12
10

−20

10
−15

10
−10

10
−5

10
0

desc

q_err

0 2 4 6 8 10 12
10

−15

10
−10

10
−5

10
0

10
5

y_err

(b) Varying descaling. Accuracy.(n, cond, deg, nb) =
(300,1,1, 50%)

Fig. 7.

As regards accuracy, Fig. 7(b) shows that it is doubtful whether the solution can be
obtained by “extrapolation” from the results ofhpy : For desc≥ 9 we find 0.967≤

Bound constrained quadratic programming via piecewise quadratic functions

yerr ≤ 1. Alsobqpd has trouble findingy with full accuracy, while the extra effort pays
off with pqf , andlisw supplemented with a step of iterative refinement would also
give the solution to full accuracy.

6. Conclusion

We have described a new method for solving quadratic programming problems with
unit constraints. Careful attention to computational details has led to an efficient and
accurate algorithm that compares favourably with both interior point and Simplex type
methods.

The method is easily modified to non unit box constraints, and we are currently
working on a sparse implementation of the algorithm (together with Wolfgang Hartmann
from SAS). The results of the sparse code will be reported elsewhere. Future projects
include modification of the algorithm to general linear constraints.

Acknowledgements.The authors are grateful to Professor Roger Fletcher and Professors Wu Li and John
Swetits for making their programs available.

References

1. Andersen, E.D., Gondzio, J., Mészáros, C., Xu, X. (1996): Implementation of interior point methods for
large scale linear programming. In: Terlaky, T., Ed., Interior point methods in mathematical programming,
pp. 189–252, Kluwer Academic Publishers, Dordrecht

2. T. Coleman, Hulbert, L. (1993): A globally and superlinearly convergent algorithm for quadratic pro-
gramming with simple bounds. SIAM J. Optim.3, 298–321

3. Dongarra, J., Moler, C.B., Bunch, J.R., Stewart, G.W. (1988): An extended set of fortran basic linear
algebra subprogram. ACM Trans. Math. Software14, 1–17

4. Fletcher, R. (1993): Resolving degeneracy in quadratic programming. Ann. Oper. Res.47, 307–334
5. Higham, N.J. (1987): A survey of condition number estimation for triangular matrices. SIAM Rev.29,

575–596
6. Han, C-G., Pardalos, P., Ye, Y. (1990): Computational aspects of an interior point algorithm for qua-

dratic programming problems with box constraints. In: Coleman, T., Li, Y., Eds., Large scale numerical
optimization, pp. 92–112, SIAM, Philadelphia

7. Huber, P. (1981): Robust Statistics. Wiley, New York
8. Li, W. (1995): Linearly convergent descent methods for unconstrained minimization of convex quadratic

splines. J. Optim. Theory Appl.86, 145–172
9. Li, W. (1996): A conjugate gradient method for unconstrained minimization of strictly convex quadratic

splines. Math. Prog.72, 17–32
10. Li, W., Swetits, J. (1993): A Newton method for convex regression, data smoothing, and quadratic

programming with bounded constraints. SIAM J. Optim.3, 466–468
11. Li, W., Swetits, J. (1997): A new algorithm for solving strictly convex quadratic programs. SIAM J.

Optim.7, 595–619
12. Madsen, K., Nielsen, H.B. (1990): Finite algorithms for robust linear regression. BIT30, 682–699
13. Madsen, K., Nielsen, H.B. (1993): A finite smoothing algorithm for linear`1 estimation. SIAM J. Optim.

3, 223–235
14. Madsen, K., Nielsen, H.B., Pınar, M.Ç. (1995): A new finite continuation algorithm for bound constrained

quadratic programming. To appear in SIAM J. Optim.
15. Madsen, K., Nielsen, H.B., Pınar, M.Ç. (1996): A new finite continuation algorithm for linear program-

ming. SIAM J. Optim.6, 600–616
16. Moré, J., Toraldo, G. (1989): Algorithms for bound constrained quadratic programming problems. Numer.

Math.55, 377–400

K. Madsen, H.B. Nielsen, M.Ç. Pinar

17. Nielsen, H.B. (1991): Implementation of a finite algorithm for linear`1 estimation, Report NI-91-01.
Institute for Numerical Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark

18. Nielsen, H.B. (1996): Bound constrained quadratic programming solved via piecewise qua-
dratic functions: implementation, Report IMM-REP-1996–21. Department of Mathematical
Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark, Available as
http://www.imm.dtu.dk/ ∼hbn/publ/TR9621.ps

19. Rockafellar, R.T. (1970): Convex analysis. Princeton University Press, Princeton, NJ

