Math. Program. (1998) / DOI 10.1007/s10107980017a © Springer-Verlag 1998

Kaj Madsen Hans Bruun NielsenMustafa C. Pinar

Bound constrained quadratic programming via piecewise
guadratic functions

Received May 1, 1997 / Revised version received March 17, 1998
Published online November 24, 1998

Abstract. We consider the strictly convex quadratic programming problem with bounded variables. A dual
problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained,
piecewise quadratic function. Itinvolves a lower bound gfthe smallest eigenvalue of a symmetric, positive
definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and
its implementation including estimation &f, how to get a good starting point for the iteration, and up- and
downdating of Cholesky factorization. Results of extensive testing and comparison with other methods for
constrained QP are given.

Key words. bound constrained quadratic programming — Huber’'s M—estimator — condition estimation —
Newton iteration — factorization update

1. Introduction

The purpose of the present paper is to describe a finite, dual Newton algorithm for the
bound constrained quadratic programming problem.d_et IR" andH € IR™" be

a given vector and a symmetric, positive definite matrix, respectively. WeySeekR"

as the solution to the constrained quadratic programming problem

min{ay) = 3y"Hy—cTy}|
y 1)
subjectto —e<y<e.

Here,e € IR" is the vector of all ones.

The special form with unit bounds leads to particularly elegant duality results: In
a straight forward way we demonstrate that the dual of (1) is a Huber M-estimator [7],
i.e. a convex quadratic spline functiéh This function is minimized using a special
version of the Newton iteration with line searches [12].

The duality property has been derived in a more general setting by Li and Swe-
tits [10], [11]. They also propose a Newton iteration, and our testing in Sect. 5 includes
their implementation for the quadratic programming problem with simple bounds.

The main contribution of the present paper is to demonstrate how the implementation
problems are overcome. We efficiently compute a guaranteed positive lower bound of
the smallest eigenvalue &f, demonstrate how the Newton iteration can be implemen-
ted efficiently using factorization updates, and derive an efficient starting procedure.

K. Madsen, H.B. Nielsen: Institute of Mathematical Modelling, Technical University of Denmark, 2800
Lyngby, Denmark, e-maikm@imm.dtu.dk, hbn@imm.dtu.dk

M.C. Pinar: Department of Industrial Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey,
e-mail: mustafap@Bilkent.EDU.TR

K. Madsen, H.B. Nielsen, M.C. Pinar

The numerical experiments indicate that the new method is computationally viable. In
particular, we demonstrate that it is competitive with established software systems. We
substantiate this claim in Sect. 5 where we present our computational results. In addition
to the algorithm of Li and Swetits [10] we compare withpd , a commercial software
system for convex quadratic programming by R. Fletcher [4], and to a primal-dual
interior point algorithm by Han et al. [6].

In a closely related paper [14] we discuss the solution of the quadratic programming
problem via a dual;-problem, which inits turn is solved via a series of Huber problems,
cf. [13]. In [18] a more detailed account of the implementation of the present paper’s
algorithm is given.

The literature on quadratic programming is vast. We refer the reader to the paper
by Moré and Toraldo [16] for a list of references. Some recent papers include Coleman
and Hulbert [2] and Li and Swetits [10], [11]. In [2] Coleman and Hulbert reformulate
(1) as an uncontrained minimization problem involvingéarierm. This reformulation
is obtained by manipulating the Karush-Kuhn-Tucker conditions of (1). They apply
a superlinearly convergent modified Newton method to this reformulation. Li and Swe-
tits [10], [11] derive their reformulation of the convex quadratic programming problem
by starting from the Karush-Kuhn-Tucker optimality conditions and deriving an uncons-
trained problem whose minimizer coincides with an optimal solution to (1). They use
several auxiliary results on monotone mappings to arrive at their equivalence results.

The rest of this paper is organized as follows. First, we give a technical preview of
our approachin Sect. 2. We derive our dual problem in Sect. 3. Section 4 is devoted to the
description of the proposed algorithm and implementational details, and we conclude
with a detailed summary of our computational experience in Sect. 5.

2. Preliminaries

Let A1 > 0 denote the smallest eigenvalue ldf and lety be a number such that
0 < y < A1. Further, letA € IR™" be a matrix that satisfies

ATA=H -yl . (2)
Now, define the function
1 T Y 11
F(x) = 2yr Wr +s (r - 23>+ 2x X, (3a)
where
r=rix)=A"'x—c, (3b)
$1(%) ~1if 1< -y
S=5(X) = : with §(x) = Oif (X <y , (3¢)
Sh(X) 1if ri(x) > Y

W = W(x) = diagws, ... , wn) with wj =1—&. (3d)

Bound constrained quadratic programming via piecewise quadratic functions

In Sect. 3 we show that (1) has the dual problem

max{—F(X)} = —min{F(x)} . 4)
X X

The hyperplanes given by (x) = £y divide IR" into subregions, in each of which

F(x) is a quadratic. So the dual problem is to minimize the piecewise quadratic function
F. Itis easy to show thdk is differentiable, and also that the gradient

, 1
F(x)=A<;Wr+s>+x (5)

varies continuously across the hyperplanes.
The minimizerx, of F satisfiesy(x,) = 0, or

X, = Ay, , (6a)

where we have defined
1
Y, = — <;W(x,,)r(x,,) + s(x,,)) . (6b)
In Sect. 3 we show that, = y* andq(y,) = —F(x,). Thus,

Fe0 = F9 + (~2Weoro — s0)

(7)
= F(xy) +aty,) =0

can serve as a gap function.
In the discussion of the algorithm we say thatand theith column of A) is active
atx, if 5(x) = 0 (and thereforev; (x) = 1). Thedual active sets

A=AX) ={i|l<i<nAsX =0}. 8)
From (6b) it follows that an active(x,) is equivalentwithy*| < 1, sotheth constraint

in (1) is primal non activeNote, that if we knew the solutioy*, then it follows from
(5) that the correspondirsgx,) is given by

—yrif |y =1

. (9a)
0 otherwise

S (XV) = {
andx, is the solution to the linear problem derived from the conditiox,) = 0,

(A Wix,) AT + yl) X, = A(W(X,)C — ¥ S(X,)) - (9b)

K. Madsen, H.B. Nielsen, M.C. Pinar

3. The dual problem

In this section we show that (1) has the dual problem

max{—FX)} = —min{F(x)} . (10)

X X

Our reference on duality in convex programming is the book by Rockafellar [19].
Let M = H — yl wherey > 0 is picked so as to hawel positive definite. Clearly,
a strict upper bound on the choicejofs A1 wherei1 denotes the smallest eigenvalue
of H. Then (1) can be written

min —cTy+ 3y"(M + yl)y
y
st. —e<y<e.

SinceM is symmetric, positive definite, it can be writtends= ATAwhereA e IRM"
has full rank. Further, lat = Ay, and the problem takes the form

min —c'y+ uTu+3yyTy
uy
st. Ay=u and —e<y<e.

Now, we are in a position to derive a dual problemto (1). Associating dual multipliers
x € IR" with the equality constraints we form the following Lagrangean max-min
problem:

max{ min {%uTu—l—%y yTy—CTy—l—XT(Ay—U)]} , (11)

X u —e<y=<e

which is equivalent to

max{min {%uTu - uTx} + min {%y yTy+y (ATx — c)}})
X u —e<y=<e
From [19, Thm. 28.3] it is well-known that faly, u) to be an optimal solution for (1),
and forx to be a Lagrange multiplier vector, it is necessary and sufficieni{hat x)
is a saddlepoint of the Lagrangean function. This holds if and only if the components
of (y, u, x) satisfy the stationarity conditions with respectitandy.

The first minimization problem overyields the identity

u=x, (12)
which, when plugged back in, yields the tem%xTx.
The second minimization overin the unit sphere yields the following cases:

1) If (ATx —c); > y, theny; = —1.
2) If (ATx —)i < —y, theny; = 1.
3) If I(ATx - ©)i| <y, theny; = —2(ATx —©)i.

Bound constrained quadratic programming via piecewise quadratic functions

Notice that the above is equivalent to the following relation betweandx:
1
y=—-Wr(x)—s. (13)
14

From this relation we obtain

n

min {%nyy+ yT(ATX — c)] == py ((ATx - C)i) :

—-e<y<e i=1
where, for a scalaz,

1zl —3yiflzl=y

= 1 _
Py —7Z iflzl<y
2y

Thus, the dual problem is the unconstrained minimization of a Huber’'s M-estimator.

The triple(y, u, x) is a primal-dual optimal triple if and only if the above three cases
and (12) hold for them. An equivalent statement of this duality-optimality relation is
summarized in the following theorem:

Theorem 1. Let x be a minimizer of, and lets = s(x) with W defined accordingly.
Then, the unique optimal solution of (1) is given by (13).

In the rest of the paper we are concerned with exploiting the above duality corres-
pondence via a Newton-type algorithm.

4. The algorithm

The algorithm for computing the solution to problem (1) can be stated as follows.
1° ComputeR as the upper triangular Cholesky factortdf
RR=H. (14)

2° Computey andA; Sects. 4.1 and 4.2.

3° Find the starting point; Sect. 4.3.

4° Compute the dual solutiox, ; see below.

5° Compute the primal solution (see below) and return.

The problem may be given in termsBfandc, in which case step®lis omitted. Further,
the algorithm is suited for “warm starts”: If a problem with the sarhbas been solved
previously, then steps°land 2 can be skipped. Also, step ®an be replaced by
information from the previous solution and the new

The algorithm for computing the minimizes, of F, (3), is described in greater
detail in [12] and [17]. We shall briefly repeat it here.

K. Madsen, H.B. Nielsen, M.C. Pinar

Givenx and the correspondirrg s, W. The gradient of is computed by (5), and
if this is zero apart from rounding errors, then the algorithm stops. More specifically,
we use the test

IF' Moo < emUlAlls + IXllog) =1, (15)

whereey is the machine accuracy (unit round-off).
If this criterion is not satisfied, then the Newton skegming at making the gradient
zero is found as the solution to

(AWAT + yhh = —yF/(x) . (16)

Note, that the coefficient matrix is symmetric and positive definite. This impliesthat
exists and is unique.

If s(x+h) = s(x), thenx+h is a stationary point and hence a global minimizer
of F. Otherwise, a line search aloigis made. This consists in computitiywhich
minimizesF(x+th).

This dual algorithm is summarized below.

Dual Algorithm (Given starting poink and correspondingands)
stop :=false
while (not stop) do
ComputeF’(x) by (5)
if [F' (Xl <n then stop :=true
else
Find h from (16)
if (s(x+h) =s(x)) then stop :=true
else x := x + t*h {Line search; Sect. 4.5}
end
end

Theorem 2. The Dual Algorithm terminates in a finite number of iterations with a mi-
nimizerx, of F.

A proof of this theorem may be obtained by suitable modification of the proof of [12,
Theorem 4.1]. Alternatively, the proof may be given similarly to the proof of [10,
Theorem 3.2].

The work is dominated by solution of the system (16) in each iteration. However,
the number of changes in active set between two consecutive iterations often is small
compared withn, and in Sect. 4.4 we show how this can be exploited so that the
determination of each Newton step is@m?) process rather tha@®(n%).

When the dual algorithm stops, we have the information needed to compute the
solution to the QP problem,

1
y=- (;W(X)r(X) + S(X)> : 17
wherex = x,, cf. (6a). If the value of the gap function (7) is too big,
FX) + q(y) > min{n, 20} - ey - |F(X)| , (18)

then we refine the solution

Bound constrained quadratic programming via piecewise quadratic functions

refactorize AWAT + yI |,

h = p(AWAT +yD)~1F' (x), (19)

X:=x—h: r:=r—ATh,
and usex, r and the corresponding to restart the Dual Algorithm. This restart is
allowed once, only. The condition (18) is rarely satisfied, but when it is, this refinement
drastically improves the accuracy pf

In the remaining parts of this section we describe some important computational
modules used in the implementation of the dual algorithm.

4.1. Compute

The shift parametey in (2) should be smaller thaky, the smallest eigenvalue &f.
We choose it as

where O< f < 1, andi; is an estimate of;. In [18, Section 4.3] we discuss the choice
of f. The conclusion — supported by experiments — is that genefay0.5 is a good
choice.

To explain our algorithm for computingy we introduce the singular value decom-
position (SVD) for the Cholesky factdr, (14),

R=UZV' = R =vsuT, (21a)
whereU andV are orthogonal, and
¥ =diago1,...,0n) with o1>...>0,>0. (21b)
Equations (14) and (20a—b) imply
H=R R=V2?VT =VAVT, ie. 11 =02. (21c)
The estimate.; is computed in two major steps:

1° Compute(u, v): estimates ofU. n, o7 1V.).
2° Refine the estimate by one step of simultaneous inverse iterations.

The pair(u, v) is computed by using ideas from some well-known condition esti-
mators; see e.g. [5]. Details are described in the technical report [18]. The total cost of
this estimator is aboutr# flops.

Note, that we do not need a high accuracy: We use

y=f~X1=f~()»1+5) — M—y=A-"Hr—1§.

f
estimater; with a relative error less than 100%. In all our experiments we found that

this was satisfied, [18]. However, we use a “safety valve”: If the madrixyl is found
to be indefinite —i.ey > A1 —then we replace by y := 0.1.y. This is described more
precisely at the end of Sect. 4.2.

Thus,y < A if § < M1. With the recommended choice = 0.5 it suffices to

K. Madsen, H.B. Nielsen, M.C. Pinar

4.2. ComputeA

The matrixA in the Huber function is defined by
ATA=R'R—ylI, (22)

whereR is upper triangular, cf. (14). We choose also toAehave this property. We
might compute it simply as the upper triangular Cholesky factat ef y1. If, however,

the problem is given directly byr, this approach would lead to unnecessary loss of
accuracy. Instead we compulevia orthogonal transformation: From (22) we see that

RTR=ATA + 1, (23a)
which is equivalent with
R A
o)l] @)

where Q is orthogonal. The transformation is computed via a series of Householder
reflections. Before thieth transformation the partly transformed matrix has the structure
shown in Fig. 1 fom = 5,k = 3.

ek e Part of R (overwritten byA)
k ok ok ok
* K Kk
* % Unknown Part ofA
*
* K K
* Kk ok
* B = Partly transformed/yT
*
- * -
Fig. 1.

Thekth reflection involves rovk of AandR and rows 1. .. , k of B. See [18] for
details. Here, we only mention that tkih diagonal element i\ is computed by

k
akk = —sigr(rkk)ﬂ, where dyx = rfk — Z bik . (24a)
i=1
The matrixH —yI is significantly positive definite only if atlk are significantly positive.
We use the test
dk > (min{2k, 20} - em - ri)? . (24b)

The total cost of the transformation (23) is ab§m13 flops. This is the same as
if we computed the upper triangle &' R — yl (%n3 flops) followed by Cholesky
factorization (alsciil n3 flops).

If, for somek < n the condition (24b) is not satisfied, then the process is repeated
with y := 0.1y. If this also fails, then the QP—algorithm gives an error return: The
problem is too ill conditioned.

Bound constrained quadratic programming via piecewise quadratic functions

4.3. Starting point

In (9) it was seen that if the sign vectsr= s(x,) were known, then we could find
X, = Xs as the solution to the linear system

(AWA' + phxs = A(Wc—y5) . (25)

Therefore, we look for a good strategy for choosing the ingtfal the Newton iteration
in the dual algorithm.

We experimented with a number of strategies, [18], and settled for the algorithm
givenin (29) below. This is based on the relation (9) between the primal solgtiand
the dual sign vectas(x,). This relation can be written &x,) = S(—y*, 1), where the
generalized sign vect&v, 7) is defined by

0 if lvil| <1

sign(vi) otherwise - (26)

S(v,f)={

An approximation toy* is found by considering the behaviour of the unconstrained
minimizer ofq,

y=H1c. (27)

This vector is easily computed, since we know the factorization (14). There are two
extreme cases,

1° If |Vl < 1, thenyis the solution also for the constrained problem {13 y*. If
IVl > 1 but not too big, they/|| V|, is a good approximation tg*. In this case
[IH s and|lc]l =~ IHY*| are of the same order of magnitude.

2° If |Iclloo>1IH |l then a steepest descent direction frory &; c/||c||, is a better
approximation to the primal solutioyt.

We use the following interpolation between these two extreme cases,

¢ 4
y = Lc+l~—°‘y with a:=o.9.<1—w) ; (28)
IClloe I¥llac n

where the factor 0.9 and the exponent 4 were decided experimentally\/and)
denotes the number of indicegor which S (v, t) = 0.

The choice between different approximatigrs decided by the number of elements
in the dual active set for the corresponding starting vecter xs with s = S(—v, 1).
We aim at having at leasin elements ind(x). This is motivated by experience from
similar algorithms for other problems, [13] and [15], and confirmed by experiments with
the present problem. ¥/ (r(x), y) is too small, then the Newton iteration may have too
slow initial convergence.

K. Madsen, H.B. Nielsen, M.C. Pinar

Now, the starting algorithm can be expressed as follows,

Computey by (27)
if IVl < 1then
y*:=y, STOP
end
if N(—=¥,1) > Inthen
Computex by (25) withs = S(—¥,1); s:=s(X)
else
Computey by (28} s:= S(—Y, tn/2) (29)
Computex by (25} §:=s(x)
if N'(r(x),) < 3nthen

S:=SdS;
Computex by (25 s:=s(X)
else
s:=8§
end
end

Here,rm denotes thenth smallestvi|, so that\ (v, Tm) > m, where 0< m < n. In the
innermost part of the algorithm the vector= s@ Shas elements; = 0if§ =§ =0
ors = —§, otherwisey; = 5 = §. This is equivalent with saying that an index is
considered to belong td(x) only if both S(—y, 7h/2) ands(x) = S(r(x), y) agree on
this or if they show opposite sign.

Compared with the other strategies described in [18] we found that (29) generally
gave the smallest number of iterations with the algorithm of Sect. 4.1. The dominant
part of the computation is one factorization AWA' + yl and 2 or 3 updates (or
refactorizations), cf. Sect. 4.4.

4.4. Factorization

During the iterations for computing the Huber solution we have to solve problems of
the form

(AWA" + yhh = —yF'(x) , (30)

whereW = diag(wj) with wi € {0, 1}. Let A. j denote thg th column of the matrixA.
Then we can write

AWA' = A4AT

whereA 4 consists of the columngA. j} with j € A, the active set. Between iterations
there is usually only a few changesih and we are interested in a cheap (but accurate)
updating of a triangular factorization of the coefficient matrix in (30).

We have chosen to use an untraditional factorization, viz.

AWA' +yl =LTL, (31)

Bound constrained quadratic programming via piecewise quadratic functions

wherelL is a lower triangular matrix. This implies that the solution of (30) is done by
a back substitution followed by a forward substitution.

This choice is made because it leads to simple updatings: Let the active set be
augmented by (for “enter”). Then

LTE=LTL+AAL =[LT Ag][ALﬂ.

This shows that we can compuiteby an orthogonal transformation

§]-<[5]

The structure of the rightmost matrix is shown belowfio= 8 and columns 2 and 5
entering the active set

rox
* k
* * *
* * * *
* Kk Kk ok Kk
* Kk * ok K K
* kK ok K K Kk
* kK ok K Kk ok K
* k
L % % % x * €

Fig. 2.

As in Sect. 4.2 the transformation is done by a series of Householder reflections.
Now, however, we start fro = n and go back. For the example shown in figure Fig. 2
the first change occurs f&er= 5. Fork = 5, 4, 3 the transformations involve rokof L
and the last row oAg. Fork = 2, 1 thekth row of L and both rows oﬁg are involved.

We use standard Householder reflections in the implementation.

The changes in active set can also imply that colummslefve (31). Therefore we

are also interested in downdating the factorization; i.e. to compute

LTE=LTL - AzA]. (33)

This is done using the update procedure and ideas from Sect. 4.2. Here, we check
for severe loss of accuracy and signal an error return in that case. Remember that the
columns ofA that are removed have contributed to the curtent

Typically a change in active set involves that some columné &fave and some
enter. This means that we seek

LTE=LTL — AZAL + AcAL . (34)

The transformation is made in two steps. The details are discussed in [18].

K. Madsen, H.B. Nielsen, M.C. Pinar

For both up- and downdating the cost of entering (deletmgjolumns to (from)
the active set is betwe%m3 flops (the firstm columns) and &r? flops (the lasm
columns). Thus, in the typical case, wheng+m, <« n, the cost of adjusting the
factorization isO(n?) flops.

4.5. Line search

Givenx andr = r(x) and a search directidm that satisfies
(AWA' + yhh = —yF'(x) = — AWr + y5) — X .

We seek the minimum of the functian(t) = F(x + th). It is easily verified thay’ is

a continuous, piecewise linear function, whose coefficients charkijgkataluesywhere
one or more residual components pass the threghdlthe kink values are the positive
aj—values defined by

Irk +aj-(AThy| =y for somek = Kk; .
The line search algorithm is similar to the algorithm of [12], and details can be found

in [18].

5. Testing

The algorithm has been tested on a large number of problems generated as described in
Sect. 5.1. In Sect. 5.2 we present three competing algorithms, and in Sect. 5.3 we give
computational results.

5.1. Test problems

The test problem generator is based on the Kuhn—Tucker condition
Hy*—c+u=0, (35)

whereu; # 0 only if theith constraint is primal active. This is the background for the
widely used test problem generator of Moré and Toraldo [16]. The vedsdiound as

c=Hy"+u, (36a)

whereH, y* andu are generated so that a prescribed number of constraints are active
and

0 if |y | <1

_ —des| —
H=10""Hy, uj= {_yi* . 10799 gtherwise

(36D)

Bound constrained quadratic programming via piecewise quadratic functions

Here,v is uniform random in [0,1]Ho is a symmetric, positive definite matrix with
IHoll, = 10"°"d anddesg ncond degare chosen, nonnegative parameter values. It
follows that

1Y lo=1 Ul <1,
I Hy*”c>o < |IH ||oo — 1O_desﬂ|H0||oo ~ 10ncond-desc

The original Moré—Toraldo generator correspondsiésc= 0. In that case we
are sure thaHy* has a dominating influence an and the starting point given by
s= S—V, 1) (cf. Sect. 4.3), has been found to work well. The choicdesfc> 0 leads
to more difficult problems.

The matrices have the form

H=M'M with M=D3?Z, (37a)
where

i—1

D = 10" %SGiag(dy, ... ,dy) with logyod = — ncond. (37b)

Heredescandncondare prescribed numbers. Furth&ris a Householder matrix,
Z=1-—27 (37¢)
wherez € IR" has elements that are uniform random in]-1,1[. Sidde orthogonal, it
follows that the condition numben(H) = k2(D) = 10%°nd
H=D-2 (uvT +uT), (374)
where
u=1z/||zll,, v=Du—(u'Duu. (37e)

The generator involves two more parameters:

nb Controls the number of “large” componentsyif i.e.|yf| = 1.
deg Controls near—degeneracy: The non active residuals are computed-ass -
10-"9¢9 wherev is uniform random irf0, 1].

5.2. Competing methods

First, we compare with an interior point method. As a typical example we take the
primal-dual approach used by Han et al. [6]. They use the standard formulation

K. Madsen, H.B. Nielsen, M.C. Pinar

min{ f(x) = $xTHx+d"x }

. (38)
subjectto O< x <e.
This is equivalent with our formulation (1) when we set
d=—-1(c+He, (39a)
and
y=2x—¢€ q(y)= f(x) + Le’(2c+ He) . (39b)
The method of Han et al. is derived from the reformulation
min{ f(x) = ix"Hx + dTx
subjecttox+z=e and x,z>0,
and the dual
max{—e"v — $xT Hx}
. (40b)
subjecttov >0 and u=Hx+d+v>0.
The duality gap is
A=x"u+z'v>0. (40c)
The solution is found by minimizing the potential function
n n
(X, 2,u,v) = plog(A) — D "log(xiui) —) log(zivi) , (41)

i=1 i=1

where the scalas > 2n + +/2n.
Let (X, z, u, v) denote the current iterate, and Xt Z, U, V denote the diagonal
matrices with(X);j = x; etc. The next iterate is found as follows,

1° Find hy as the solution to
(DHD 4+ UZ + VX)(D thy) = %(DX*l —DZ YHe—-Du—v) (42)

with D = diag(,/Xiz;), and compute
A
hy = Z7X(Vhy + —e) —v.
0

2° Line search: Find, the largest value for which
X+6hy>0, z—6hy>0, v+6h,>0 and u-+6(Hhyx+h,) >0.
3° Update:
6 = po
X:=X+6hy; z:=e—X;v:=v+6h,; u:=Hx+d+v
A:=x"u+2z"v

Bound constrained quadratic programming via piecewise quadratic functions

The iteration is stopped when
A < minfeg, e2(1+ [f(X)])} . (43a)

The algorithm involves four iteration parameteps: 8, €1 andez. Han et al. [6]
found that the choices = n1°, 8 = 0.99 were close to optimal, and these are the
values used in our comparisons. Further, they recommend to use the stopping parameters:
€1 = 1072, ¢, = 1078, In an attempt to get more accurate results weajse 108,
€2 = 10712, but have found that often this results in an infinite loop: After a certain
number of steps the computed value fois not decreased further. To cure this problem
we supplement the stopping criterion (43a) with

if Anew > Aoid then SToP. (43b)

We also compare with a Simplex type method, vizligpd package of Fletcher [4].
This package has a broader range of applications. The option used in our comparisons
addresses a generalized version of (1),

min{q(y) = 3y"Hy—cTy}
y X R (44)
subjecttoby <y<b, andb <Gy<hy,

whereG is anmxn matrix, andby, b, arem-vectors. By choosingn = 0 andb, = —e,
by = ewe see that (44) is identical with (1).

The method used is an active set strategy, and demands an initial, feasiblggpoint
In the comparisons we usg, = 0. Further, we use the parameter values

tol tolmin fmin nrep | npiv
1019 | 10 | —9.0107 | 2 3

Finally, we compare with the algorithm of Li and Swetits [10]. They treat problem
(1) with general box constraints,< y < u. The method is based on minimizing the
following convex quadratic spline

D(x) = IxX"Bx— 10005 = 1T (o) — uT (p(x¥))u , (45a)

where
B=1-aH with O<a<|H|;*, (45b)
p(X) =X —a(Hx—c), (45c)

and(2)" (or (2),) is the vector whoseth component is mdg;, wi} (or min{z, w;}).
The gradient ofd is the piecewise linear function

'(x) = B(x = (o))} ,

K. Madsen, H.B. Nielsen, M.C. Pinar

and Li and Swetits use Newton’s method with line search to find the minintizer
@’(x*) = 0. The Newton directioh is found by solving

(B— BDB)h = —d/(X), (46)

whereD = diag(ds, ... ,dy) withdi = 1if l; < pj(X) < uj, otherwised; = 0. The
iteration is started witlk = (I + u).

It is interesting to note some similarities between our method and the method of Li
and Swetits [10]:

1° We have to computg so that O< y < min{j(H)}, and Li and Swetits must find
asothatO< o < ||H ||2*l = 1/maxxj(H)}. They usex = ||H ||;Ql with a cost of
aboutn? flops, i.e. about one quarter of the cost of compujingf. Sect. 4.1.

2° Both methods operate with a dual active $&in (46) is equivalent withV in (30).
As described in Sect. 4.4 we use an efficient updating of the factorization. Li and
Swetits [10] use Cholesky factorization®Bf BDBin each step of the iteration. The
possibility of updating the factorization is mentioned in [11], dealing with general
linear constraints. There is no specific indication of how it should be done, however.

5.3. Computational results

We implemented the new algorithm and the algorithm of ldaal. in Fortran77 with
extensive use of BLAS, [3]. We used Fletcher’s own Fortran77 implementatlmopaf
exceptthat we changed it to double precision. Also for the method of Li and Swetits [10]
we used their own implementatiosimpbd .

The tests we performed on an HP9(B00-K460, and timings were done with the
-O option of thef77 compiler. The machine accuracysg = 2752 ~ 2.22.10°16,

Below we give results for varying values of the parameters of the problem generator
described in Sect. 5.1. In e.g. [6] such results are presented in the form of tables, where
each entry is the average over 10 problems with fixed value of the parameters, with
a few, selected values of the parameter under discussion (e.g. the size of the problem

with n = 100, 200, ..., 500). Instead, we have chosen to show a “more continuous”
variation i = 100, 110, ..., 500) with one instance of each. This presentation
illustrates both the influence of the parameter and the stochasticity in the problem
generation.
As regards accuracy of the computed results, we introduce
laty) — aty"l «
Cerr 90| and Yerr = 1Y — ¥Y*lloo (47)

wherey* is the solution generated as described in Sect. 5.1yaisdthe computed
solution. Sincd|y*||,, = 1, bothgerr andyerr are relative errors.
In Figures 3-7(a) we use the symbols

o Results frompqf : the new method based on minimizing a piecewise quadratic
function, and described in Sect. 4.
x Results fronhpy : the interior point method of Han et al. [6] as described in Sect. 5.2.

Bound constrained quadratic programming via piecewise quadratic functions

+ Results fronbgpd : the Simplex type method of Fletcher [4] as described in Sect. 5.2.
Here “iterations” is4—lo(the number of Simplex basegThe scaling factor 40 was
chosen to get nice figures).

* Results fromlisw : the Newton method of Li and Swetits [10] as described in
Sect. 5.2.

First, we show the influence of the size of the problem. Note, thapdbr, hpy
andlisw the number of iterations is almost constant, whildgpd the number of
Simplex steps seems to grow linearly within none of the cases a refactorization was
needed during the iterations jogf .

40

Iterations:
30¢ 4
x X R
X XXX X x XX XX XX XK X s XX X ¢
20 i
+++

+++
+4+++ T
10 +++++
N T KKK KKK Ky KKy ¥ 3
>¥%;$¥;$* KKy KKK x X7 ERX KXTKT TR X
005000 0%00850000009 0 000% j0,000000550

I | i | | i |

100 150 200 250 300 350 400 450 500
n

40
Time (secs)
301 £+

L +
20 L4t

X
++++ WX X
XXX E
WX XX TR RK Ky
XEL gk K x 50000
0o
$00Q00° ;

400 450 500

10F +
N

+F X% %%
R P S 11 LLLLLL L
100 150 200 250 300 35

Fig. 3. Varying size.(ncond deg nb, des¢ = (3, 1, 50% 0)

In allthe cases reported in Fig. 3we found that , bgpd andlisw all gaveqer =~
1018 andyerr ~ 10715, i.e. full precision. Withhpy we foundger ~ 1010 andyerr
in the rangg10~7, 10~3]. Interior point methods for LP problems use “extrapolation”
to the boundary, see e.g. [1, Section 7]. Similarly, from the results of the interior point
method it should be possible to identify the primal active set and find a more accurate
solution. Han et al. [6] do not consider this kind of “extrapolation”, however.

Next, in Fig. 4(a) we consider the influence of the condition numbér). Here,
the number of iterations grows slightly withcondfor pgf , hpy andlisw , but is
constant fobqpd . At most one refactorization was usedyf , and it is seen that the
increasing number of iterations is not reflected in the computing time. Each iteration in
the dual algorithm is a®(n?) process, wheras each iteration whighy andlisw is an
O(nd®) process, cf. (42) and (46).

In Fig. 4(b) we show the accuracy obtaingdf , bgpd andlisw all determine
the minimum value ofj with a relative error which is small multiple of the machine
accuracy, and the error in the computedrows proportional withco(H), which is to
be expected. The results frdiew could probably be improved by one final step of
iterative refinement. The results frampy are orders of magnitude worse.

K. Madsen, H.B. Nielsen, M.C. Pinar

40

Iterations
30

XXXXXXXXX
exxxxxxxxxx

i+
+++++++++++++++ +++

X
101 KRy KK

PEI
%822 5880,000
O~¥0O0 ‘OO

o0
00_500 00
o
I

X
X
X Ky XX 5 X X
wx XXXXXXXXXXX XX XXXHX X XXy
x

o} * o
++++++¥+++++++++++++++++ ¥
* * *

*
* * * * *
* KX XX o]
* * % * &
* X% % * 8. 56 °
o]

0p0 o
o] o
0050450 © °

0 2 4

10 T

6 8 10 1

ncond

Time (secs)
8l

r FrEy
o

*
X XXX XK
XX TXRXKXX ¥

[P 3

[T S A
*

x¥

X< ¥

X KX o
65%%66590000000?0000000‘Ooooooo?ooooooo?ooooooo

*

+X

N
+++++++++++++++++$+++ ¥
*
* % * %X**
X X
§x§x§Xx;xXXX%* XEX XX x X
*

0 2 4

(a) Varying

condition.

6 8 10 12

Iteration and timing.

(n, deg nb, desg = (300, 1, 50% 0)

XXX XX x
XXX
L XX ¢ XX
XXXXXXXxxxX
XX x
PR KX Xy Ky s XXX XX

R T T LT T n Ty PR A Tl | AN

2 4

6 8 10 12

ncond

y_err
X X
S Xy
x

* kKK o%0
3 “§$§§®®@®@®°@0® :

X
LOCKHXIXKK XXX XXX K %Qx*%*

*x
*%****** ®
* 0a0®

i*X%iﬁii*g
¥x 13
% OOQQ¢¢OQO
P e@@@®®@+
&]
$¢@O®

206@

10 12

(b) Varying condition. Accuracyn, deg nb, desg =

(300, 1, 50% 0)

Fig. 4.

In Fig. 5 we give results for the influence of the paramdgsgy i.e. how well active
are distinguished from non active equations. Bbgly andbgpd show very little
sensitivity, whereas the the numberpzff — andlisw —iterations grows slightly with
deg In none of the cases a refactorization was needgjfn, and the accuracy is as

described in connection with Fig. 3.

Bound constrained quadratic programming via piecewise quadratic functions

40 T

Iterations
30+ « % % +
3¢ 3¢ XXX g XXX XXX XXX XX e X -) X X XXX XX

] T T T Lo U S

10- PR I X*x*xxx* *é* * x5 ggﬁi‘ﬁééiﬁyoqsigzﬁ
X* * Xoo o 00000,°%° 0%o
oooooo oo o
0 | | | | | |
0 1 2 3 4 5 6 7 8 9 10
deg
10 T
Time (secs)

+ +
L L EE o T TR O IS P

Xxxxxxxxxxxx><><><X><xx%x%ix*%x*%xgéxg&iﬁx*?&
2w wHw KKK KK XK x 1

oooooooooooooooo00000000000000000000000
I | | | | ! | | |

0 1 2 3 4 5 6 7 8 9 10

Fig. 5. Varying “near-degeneracy(n, cond nb, desg = (300 3, 50% 0)

40 T T T T T T T T T

Iterations x
301 x X B
XXy S XX X XK X 5 Ko Xy KX 5 XXX 5 X 5 X g ¢ X
L x P]
% ++++++++++++++++++++++++++++++++++++ A
¥ KoK *x falol * *
101 ok * T KX D km **O 8% CEXEE K xxm FyBOEE 7
oo oo %50 o ©7 © %o
50%07 "0° o
0 ? I | I | I I I
0 10 20 30 40 50 60 70 80 90 100
nb
10 T
Time(seés)
** * K N
6F +++¥++i+++++ P R ++++++ e]
*
xx

KX sexx < ><><><><><><><><)gxxgéxxxxx ><><><><><><><><><><><><
*x KK g K %

2r FREKH KKK

oooooooooOOooooooooooooooooooooooooéoooéio

o 1

0 10 20 30 40 50 60 70 BD 90 100

Fig. 6. Varying number of active constraint®), cond deg desg = (300 3, 6, 0)

Fig. 6 shows the effect of the parametéri.e. the number of active constraints. The
number of iterations seems to be independenttofor hpy, but grows slightly with
this parameter fopgf andbgpd, although it does not reflect in the timings. In 8 (3) of
the 41 cases shown one (two) refactorizations were usedfinForlisw the number
of iterations is almost constant, but the computing time increases significantlynishen
decreases, i.e. when the number of nonzero diagonal elemeb{g46), increases.

Finally, Fig. 7(a,b) shows the influence of the descaling factor. Heypd needs
an almost constant number of iterations, and its timings show a marked decrease as
descgrows. The interior point methokpy also performs faster for increasinigsc,
while pgf needs considerably more iterations (and up to three refactorizations). This
reflects in the computing times, which are up to 0.7 timedihe-time. Refering to the

K. Madsen, H.B. Nielsen, M.C. Pinar

discussion in Sect. 4.3 we see thiatv performs well both whetiH ||, and]|c||,,

are of the same order of magnitudeéc< 2) and wherj|H ||, < |Ic|, (desc> 5).

In the range 2< desc< 5 the number of iterations and the computing time increases
significantly.

60
sol Iterations ° ° ° ©04 o |
o o ~o o ©
40 R
301 % B
XXX X x xix X X X x
20} XOXXXXKR XXX 5 X3 55 5 XX
++++++++*;§++++++++++++§ AN S0 S5 8 5. S
X o
o 4
10¢ ***Qxééoo ooé e} Q R
0 B Qi x k RRKKKK Ry Ky x K gy g % Ry Rk X
0 2 4 6 8 10 12
desc
10 T
Time (secs)

*
*

L+ttt —
6 tatigy

*
Fraetty +++++++++++++++++++++
X X X
XXXx§xxxx¥xXXxxxx xxxxxxxXX XXXXxxxX
*¥ 00 _ 00000 o o
508 *ooooooooomax*ﬁﬁﬁ****éx*x** Ww*é&k*
0 2 4 6 8 10 12

(@) Varying descaling. Iterations and timing.
(n, cond deg nb) = (300, 1, 0, 50%)

q_err

107 1 1
)X XXX XXX XXX XXX XX XXX XXX XXX X XXX XX
10 X X % X

1015I$ﬁﬂ$aﬁ$E§ﬁfaﬁﬁa’aﬁﬂﬁﬁﬁﬂﬂﬂﬁﬁﬂﬁﬂﬂﬁ&ﬁaﬁﬂﬂﬁﬁﬁﬁ’

20 L L L L L

10
0 2 4 6 8 10 12
desc
10°
y_err
0
100 Xxxxxxxxxxxxxxxxxxxxxxxxxiw
X X X Xix X X XXX T
s b 1
10 %X
10°F : 1
KKKKx x KKKKK KKK XKKKKXKXKKK ¥¥KX KX ¥Xx
*
107 ©90000p6006000889909020%206%2090800%000
0 2 4 6 8 10 12

(b) Varying descaling. Accuracyn, cond deg nb) =
(300, 1, 1, 50%)

Fig. 7.

As regards accuracy, Fig. 7(b) shows that it is doubtful whether the solution can be
obtained by “extrapolation” from the results bpy : For desc> 9 we find Q967 <

Bound constrained quadratic programming via piecewise quadratic functions

Yerr < 1. Alsobgpd has trouble finding with full accuracy, while the extra effort pays
off with pqf , andlisw supplemented with a step of iterative refinement would also
give the solution to full accuracy.

6. Conclusion

We have described a new method for solving quadratic programming problems with
unit constraints. Careful attention to computational details has led to an efficient and
accurate algorithm that compares favourably with both interior point and Simplex type
methods.

The method is easily modified to non unit box constraints, and we are currently
working on a sparse implementation of the algorithm (together with Wolfgang Hartmann
from SAS). The results of the sparse code will be reported elsewhere. Future projects
include modification of the algorithm to general linear constraints.

AcknowledgementsThe authors are grateful to Professor Roger Fletcher and Professors Wu Li and John
Swetits for making their programs available.

References

1. Andersen, E.D., Gondzio, J., Mészaros, C., Xu, X. (1996): Implementation of interior point methods for
large scale linear programming. In: Terlaky, T., Ed., Interior point methods in mathematical programming,
pp. 189-252, Kluwer Academic Publishers, Dordrecht

2. T. Coleman, Hulbert, L. (1993): A globally and superlinearly convergent algorithm for quadratic pro-
gramming with simple bounds. SIAM J. Opti3,.298-321

3. Dongarra, J., Moler, C.B., Bunch, J.R., Stewart, G.W. (1988): An extended set of fortran basic linear
algebra subprogram. ACM Trans. Math. Softwade1-17

4. Fletcher, R. (1993): Resolving degeneracy in quadratic programming. Ann. Opet7R&7—-334

5. Higham, N.J. (1987): A survey of condition number estimation for triangular matrices. SIAM2Rev.
575-596

6. Han, C-G., Pardalos, P., Ye, Y. (1990): Computational aspects of an interior point algorithm for qua-
dratic programming problems with box constraints. In: Coleman, T., Li, Y., Eds., Large scale numerical
optimization, pp. 92—112, SIAM, Philadelphia

7. Huber, P. (1981): Robust Statistics. Wiley, New York

8. Li, W. (1995): Linearly convergent descent methods for unconstrained minimization of convex quadratic
splines. J. Optim. Theory App86, 145172

9. Li, W. (1996): A conjugate gradient method for unconstrained minimization of strictly convex quadratic
splines. Math. Progr2, 17-32

10. Li, W., Swetits, J. (1993): A Newton method for convex regression, data smoothing, and quadratic
programming with bounded constraints. SIAM J. OptBn466—-468

11. Li, W., Swetits, J. (1997): A new algorithm for solving strictly convex quadratic programs. SIAM J.
Optim. 7, 595-619

12. Madsen, K., Nielsen, H.B. (1990): Finite algorithms for robust linear regressior8@BB82-699

13. Madsen, K., Nielsen, H.B. (1993): A finite smoothing algorithm for lifgastimation. SIAM J. Optim.
3,223-235

14. Madsen, K., Nielsen, H.B., Pinar, M.C. (1995): A new finite continuation algorithm for bound constrained
quadratic programming. To appear in SIAM J. Optim.

15. Madsen, K., Nielsen, H.B., Pinar, M.C. (1996): A new finite continuation algorithm for linear program-
ming. SIAM J. Optim.6, 600-616

16. Moré, J., Toraldo, G. (1989): Algorithms for bound constrained quadratic programming problems. Numer.
Math. 55, 377—-400

K. Madsen, H.B. Nielsen, M.C. Pinar

17. Nielsen, H.B. (1991): Implementation of a finite algorithm for linéarestimation, Report NI-91-01.
Institute for Numerical Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark

18. Nielsen, H.B. (1996): Bound constrained quadratic programming solved via piecewise qua-
dratic functions: implementation, Report IMM-REP-1996-21. Department of Mathematical
Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark, Available as
http://iwww.imm.dtu.dk/ ~hbn/publ/TR9621.ps

19. Rockafellar, R.T. (1970): Convex analysis. Princeton University Press, Princeton, NJ

