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An analysis of heuristics in a dynamic job shop with weighted tardiness

objectives

E. KUTANOGLU² and I. SABUNCUOGLU³ *

Meeting due dates as a re¯ ection of customer satisfaction is one of the scheduling
criteria that is frequently encountered in today’s manufacturing environments.
The natural quanti ® cation of this qualitative goal involves tardiness related meas-
ures. In this study, we consider the dynamic job shop scheduling problem with the
weighted tardiness criterion. After we present a comprehensive literature survey
on the topic, we measure the long-run performances of more than 20 single-pass
dispatching rules under various experimental conditions. In this study, we pay
special attention to recently proposed dispatching heuristics such as CEXSPT,
CR+ SPT, S/RPT+ SPT, and Bottleneck Dynamics (BD). We also investigate the
e� ects of six resource pricing schemes proposed recently for BD. Moreover, we
extend the earlier versions of inserted idleness and identify the conditions in which
these techniques can be applied without incurring too much computational cost.
Future research directions are also outlined in light of the computational results.

1. Introduction

Even though ¯ exible manufacturing systems and computer integrated manu-
facturing are today’s key words that frequently appear in many research agendas,
scheduling of job shops still receives ample attention from both researchers and
practitioners. A part of the reason is that job shop problems in various forms still
exist in most of the advanced manufacturing systems. Besides, analysis of job shop
scheduling problems provides important insights into the solution of the scheduling
problems encountered in more realistic and complicated systems.

Meeting due dates, as a re¯ ection of customer satisfaction, is one of the sched-
uling criteria that is frequently encountered in practical problems. The natural quan-
ti® cation of this qualitative goal involves the tardiness measure. Tardiness is the
positive lateness a job incurs if it is completed after its due date. When the jobs
have di� erent importance levels or weights, the resulting problem is called a weighted
tardiness problem. In general, weighted tardiness problems (even the single machine
version) are NP-hard (Lenstra and Rinnooy Kan 1978). Hence, heuristics are gen-
erally preferred especially for dynamic and stochastic job shop problems. (In this
study, we assume that all the jobs are accepted for processing and each job has an
externally set due date.)

These heuristics can be classi® ed into two categories: (1) single-pass (one-pass)
and (2) multi-pass heuristics. In one-pass heuristics, a single complete solution is built
up one step at a time. Most priority dispatching rules proposed in the literature
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(Panwalker and Iskander 1977) can be considered in this category. In multi-pass
heuristics, an initial schedule is generated in the ® rst pass, and then the consecutive
passes search, for improvement in performance. In this category, we can list neigh-
bourhood search, tabu search, simulated annealing, and iterative dispatching (see
Morton and Pentico (1993) for further discussion).

We focus on the single-pass heuristics, speci® cally priority dispatch rules. As we
discuss in the next section, there are studies which investigated performances of
dispatching rules by using discrete-event simulation. The general picture seems to
be that no single rule is the best under all possible conditions and the relative
performances of the rules are a� ected by factors such as shop load level, due date
tightness, and scheduling criteria. Since all these studies have been done in di� erent
operational settings, the results sometimes give con¯ icting reports. Hence, there is a
need for comprehensive research and testing to clarify these points, which is one
objective of this study. The rules evaluated in this study are listed in Appendix B
along with the notation as shown in Appendix A.

Some of these rules have been recently developed (such as CEXSPT, MDSPRO,
CR+ SPT, S/RPT+ SPT, and BD) and hence their performances are not generally
known in the literature. One goal of this study is to compare these new rules with the
existing ones so that a more complete picture can be drawn. Note that the majority
of these new rules are more complex and they demand more job and shop-related
information, which may not be available in unsophisticated systems. In this paper,
we will also show whether these complex heuristics can justify their high information
need with higher performance quality.

We also observed that the majority of the existing studies have been done in a
uniform (or balanced) environment (i.e. all machines are approximately equally util-
ized). Their relative performances are not generally known for the unbalanced
systems (i.e. non-uniform or bottleneck case). In this paper, we also analyse the
bottleneck case to see if the conclusions drawn from the uniform systems are still
valid.

We employ di� erent resource pricing schemes for BD, most of which have been
proposed in Morton and Pentico (1993). Some of these are tested for the ® rst time in
a dynamic job shop environment. Since the mechanisms involved in resource pricing
distinguish loaded machines from less utilized ones, the performance of resource
pricing is expected to be dependent on whether the shop is balanced or unbalanced.

It is well known that schedules without idle time constitute the dominant set of
schedules in static single machine problems with regular performance measures and
that the semi-active schedules constitute a dominant set for dynamic problems
(Baker 1974). Unfortunately, dispatching heuristics normally generate a non-delay
schedule which does not include inserted idleness. However, with little additional
computation, some heuristics can be modi® ed to myopically search possibilities with
inserted idleness. One such method is proposed by Morton and Ramnath (1992) for
a dynamic single machine problem. In this study, we extend this technique for BD
and implement it for a job shop. By considering inserted idleness, we will try to
identify the conditions under which it may be better to keep the resource idle for a
soon-to-arrive urgent job.

In our experiments, we did not use multi-pass heuristics such as the lead time
iteration (LTI) method. First of all, such an iterative approach assumes either a
static environment or perfect information on the system’s future in the dynamic
case. Since we consider unknown job arrivals we cannot directly employ these
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multi-pass mechanisms. More importantly, we think that LTI and other multi-pass
heuristics are search heuristics. Since the aim of this study is to test dispatching
heuristics, we only included the dispatch versions of BD. We think that search
heuristics and dispatching rules are two di� erent categories that should be compared
with careful analysis of solution quality versus computational cost.

The rest of the paper is organized as follows: we present a comprehensive review
of the relevant literature along with the discussion of the rules tested in section 2.
Section 3 gives the system considerations and experimental conditions. Computa-
tional results are presented in section 4. (We primarily reported weighted tardiness,
although we present selected results for percent tardy jobs and conditional weighted
tardiness to initiate deeper discussion.) The paper ends with concluding remarks and
suggestions for future research in section 5.

2. Review of literature

In this study, we only consider systems where jobs are independent. Hence, we
did not include assembly type work in which coordination of jobs plays a more
important role than dispatching. As stated earlier, there are a number of dispatching
rules proposed in the job shop literature. Among them, some are very simple, known
and used for many years. We ® rst review these conventional rules. Then we discuss
more recent studies especially on bottleneck dynamics. Table 1 lists these papers
along with shop type, performance measure and rules tested.

2.1. Conventional priority dispatching rules
The information needed by dispatching rules are classi ® ed by Ramasesh (1990)

according to their information content as follows:

� arrival times (e.g. FCFS),
� processing times (e.g. SPT),
� due date information,

Ð allowance-based (e.g. EDD),
Ð slack based (e.g. SLACK),
Ð ratio-based (e.g. CR, S/RPT, S/OPN, A/OPN),

� combination of one or more of the above (e.g. WSPT, MOD, ODD, OSLACK).

Among the rules, FCFS is generally used as a benchmark. WSPT is the weighted
version of the shortest processing time (SPT) rule. Flow allowance of a job is the time
between the release date and the due date, Ai = di - ri. The remaining allowance of a
job i at time t is calculated as Ai (t) = di - t. Since t is the same for all jobs, the
simplest version of the allowance based priority is the earliest due date rule (EDD).
The global slack time Sij (t) of a job is time after remaining work is deducted from
allowance (Sij (t) = Ai (t) - Pij where Pij is the total remaining processing time). The
simplest slack-based priority rule is the slack time rule (SLACK), which gives pri-
ority to the job with the smallest Sij (t) .

The ratio-based rules utilize a kind of ratio in their implementation. For instance,
critical ratio rule (CR) gives priority to the job with the smallest Ai (t) /Pij . Another
ratio-based rule is slack per remaining processing time (S/RPT) with the priority
index Sij (t) /Pij . The priority index of the slack per remaining operation rule (S/
OPN) is calculated as Sij (t) /mij , where mij is the remaining number of operations
from operation j to the last operation. S/RPT gives priority to the job with the longer
remaining processing time, while S/OPN considers the job with more operations
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remaining as urgent. The S/RPT rule is equivalent to the one with CR in the sense
that their priority indexes yield the same sequence (i.e. S /RPTij (t) = CRij (t) - 1.0).
Another ratio rule is the slack/allowance ratio which gives priority to the job with
minimum ratio of SL ACK/Aij (t) = Sij (t) /Ai (t) .

Since a negative ratio is di� cult to interpret, the ratio-based priority rules have
drawbacks: when the remaining allowance or slack time is negative, these rules
behave contrary to their intent. For example, the intent of the S/OPN rule is to
give relatively higher priorities to the jobs which have more remaining operations
because they may encounter more queuing delay. However, when the slack becomes
negative it tends to misbehave as a result of assigning higher priorities to the jobs
with fewer remaining operations. Kanet (1982) resolved this anomaly by proposing
the rule called modi® ed dynamic slack per remaining operation (MDSPRO).
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Authors Conditions Measure Rules tested

Gere (1966) Dynamic JS Unweighted T FCFS, SPT, SLACK SLACK/
A, EDD, S/OPN

Elvers (1973) Dynamic JS Percent T FCFS, EDD, LWKR, SPT ,
SLACK, S/OPN, CR

Weeks (1979) Dynamic JS Unweighted L SPT , S/OPN

Miyazaki (1981) Dynamic JS Unweighted T FCFS, S/OPN, A/OPN,
SLACK/A

Elvers and Taube (1983) Dynamic JS Unweighted T SPT, EDD, SLACK, S/RPT
Kanet and Hayya (1982) Dynamic JS Unweighted T SPT , EDD, SLACK, CR,

ODD, OSLACK, OCR
Baker and Kanet (1983) Dynamic JS Unweighted T COVERT, CR, S/RPT,

SLACK, MDD, MOD

Baker (1984) Dynamic JS Unweighted T S/OPN, A/OPN, MDD, MOD

Carroll (1965) Dynamic JS Unweighted T SPT, S/OPN, COVERT

Russell et al. (1987) Dynamic JS Unweighted T EDD, SLACK, S/OPN, SPT,
MDD, MOD, AU,
COVERT

Shultz (1989) Dynamic JS Unweighted T SPT, S/OPN, OCR, MOD,
COVERT, CEXSPT

Anderson and Nyirenda
(1990)

Dynamic JS Weighted T WSPT, MOD, COVERT,
CEXSPT, CR+ SPT ,
S/RPT+ SPT

Vepsalainen and Morton
(1987)

Dynamic JS Weighted T FCFS, WSPT, EDD, S/RPT,
COVERT, ATC

Vepsalainen and Morton
(1988)

Dynamic JS Weighted T FCFS, WSPT, EDD, S/OPN,
COVERT, ATC

Kanet and Zhou (1993) Dynamic JS Unweighted T FCFS, SPT, MOD, COVERT,
ATC, MEANP

Ovacik and Uzsoy (1994) Dynamic JS Maximum L EDD, ODD, ATC
Morton et al. (1988) Static FS

and JS
NPV CR, COVERT, EXP-ET,

SCHED-STA R

Lawrence and Morton
(1993b)

Static RCPS Weighted T 20 dispatching rules, pricing

heuristics

Lawrence and Morton
(1993a)

Static JS Weighted T FCFS, WSPT, ODD,
OSLACK, ATC , BD

Table 1. Papers reviewed and their main characteristics (JS: Job Shop, FS: Flow Shop,
RCPS: Resource-constrained project scheduling, T: Tardiness, L: Lateness, NPV: Net
present value of revenues and costs). (The rule(s) found to be best in corresponding
experimental study are in bold face.)



All these rules except MDSPRO have been extensively tested in the previous
studies although not every study included all of them and used the same test bed
(i.e. experimental conditions). It seems that the relative performances of the rules are
very sensitive to the system conditions. In general, EDD, SLACK, S/RPT perform
well in light-loaded shop conditions, whereas SPT performs well in congested shops
with tight due dates, but fails with light loads and loose due dates (Elvers 1983,
Elvers and Taube 1983, Gere 1966, Miyazaki 1981, Weeks 1979).

Some rules utilize operation due dates. Among several ways of assigning opera-
tion due dates, the work content method is generally suggested for mean tardiness
(Baker 1984). According to this method, the initial ¯ ow allowance of a job is allo-
cated to the operations proportional to their processing times. The rules such as
EDD, SLACK and CR have their operation due date versions (ODD, OSLACK and
OCR). It seems that operation-based rules perform better than their job-based
counterparts (Kanet and Hayya 1982).

There are also rules which combine the processing time and due date informa-
tion. One such rule is the modi® ed due date (MDD) in which the job’s original due
date serves as the due date until the job’s slack becomes zero when its earliest ® nish
time acts as the modi® ed due date (Baker and Bertrand 1982). Another operation-
based rule is the Modi® ed Operation Due date (MOD) rule. The MOD priority is
de® ned as its original ODD or its earliest ® nish time, whichever is larger. Baker and
Kanet (1983) tested these rules under various conditions and found that MOD out-
performs other rules for unweighted tardiness at high utilization. Later, Baker (1984)
compared allowance based, slack-based, and ratio-based rules against the modi® ed
rules (MDD and MOD). His results showed that slack-based rules do not o� er an
advantage over simpler allowance-based rules, and operation-based rules perform
better than job-based rules. In another study, Christy and Kanet (1990) showed that
OD is the preferred rule for the mean tardiness criterion in systems with forbidden
early shipment.

Another popular rule is COVERT (Cost OVER Time) which was speci® cally
developed for the tardiness objective (Carrol 1965). The COVERT priority index
represents the expected incremental tardiness cost per unit of imminent processing
time. The expected tardiness is a relative measure of how much tardiness a job might
experience if it is delayed by one time unit. COVERT can be converted into the
weighted version since its derivation depends on the tardiness costs. In this case,
COVERT includes weight as a multiplier. If job i queuing for operation j has zero or
negative slack, then its expected cost per unit time is wi and priority is wi /pij . If its
slack exceeds some worst case estimate of the remaining waiting time over remaining
operations, its expected cost is set to zero. If slack is between these extremes, then the
priority goes up linearly as slack decreases.

Russell et al. (1987) examined the sensitivity of the COVERT rule to various
operating conditions and proposed di� erent versions of COVERT. These rules were
compared with EDD, SLACK, S/OPN, SPT, truncated SPT, MDD, MOD, and
Apparent Urgency (AU, the very ® rst version of ATC). The results showed that
COVERT is the best rule for the mean tardiness and mean conditional tardiness
criteria. Shultz (1989) proposed an expediting heuristic (CEXSPT) which attempts to
lessen the undesirable properties of SPT by controlling the jobs with long processing
times. Job-based and operation-based due date information is employed to expedite
the late jobs. In the simulation experiments, CEXSPT and COVERT produced lower
unweighted tardiness.
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In a recent study, Anderson and Nyirenda (1990) developed two new rules. The
® rst rule combines CR and SPT by assigning operation due date dij for each job i
waiting for operation j as

dij = max{t + CRij (t)pij ,t + pij}.

The other rule combines S/RPT and SPT (S/RPT+ SPT) by assigning operation due
date

dij = max {t + S /RPTij (t)pij,t + pij}or dij = max {t + (CRij (t) - 1)pij,t + pij}.

It seems that these two rules are very competitive and hence they will be tested in our
study.

2.2. Bottleneck dynamics studies
Early BD studies started with the development of Apparent Tardiness Cost (ATC)

by Vepsalainen and Morton (1987). ATC is very similar to COVERT with two main
di� erences: First, the slack is local resource constrained slack which takes into
account the waiting times on downstream machines. Second, the decay function
for the weight/processing time ratio is exponential rather than linear. In ATC,
global slack is allocated to the remaining lead time, which gives local resource-con-
strained slack as

SSij (t) = di -
mi

q=j+1

(W iq + piq) - pij - t,

where the summation is over all un® nished downstream operations indexed as
j + 1, . . . ,mi and W iq is the estimated waiting time for operation q of job i. (The
negative local slack can also be interpreted as the estimated lateness if the job is
scheduled immediately at time t so that its estimated completion time is
t + pij + m i

q=j+1 (W iq + piq) .)
The full priority formula is then

ATCij (t) =
wi

pij
´ exp - (SSij (t) )

+

Kpavg
,

where (x)+ = max{0,x}. In this formula, the exponential term is called the urgency
factor if the job is scheduled and expected to be completed with slack SSij . Hence, the
urgency factor is

Uij (t) = exp - (SSij (t) )
+

Kpavg
.

There are several methods to estimate waiting times. One quick and dirty method
called standard estimation inspired from the total work content rule was proposed by
the inventors of the rule: calculate W iq as proportional to its processing time as
W iq = bpiq, where b is a constant multiplier. One issue in this method is selecting
the right multiplier value. In actual systems this can be done by using regression
analysis with historically collected waiting times. In our study, we tried a couple of
values for b and ® xed at one level. Vepsalainen and Morton (1988) proposed two
additional techniques for waiting time estimation. The method called priority-based
estimation estimates shorter waiting times for high-priority jobs and longer for low
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priority jobs. The method referred to as lead time iteration (LTI) is an iterative
procedure which aims to improve waiting time estimates from one iteration to the
next. The results showed an improvement in the performances of ATC and
COVERT with the LTI method whereas there is no signi® cant e� ect of the pri-
ority-based estimation as compared to the standard method outlined above.
Another alternative might be to calculate waiting times based on queue content
and length as proposed in Kanet and Zhou (1993). (We test both the standard
and these queue-based methods in our study.)

Kanet and Zhou (1993) proposed a decision theory approach called MEANP. It
seems that MEANP produces low unweighted tardiness and the fraction of tardy
jobs as compared to FCFS, SPT, COVERT, MOD and ATC, COVERT. However,
the authors recommended MOD for practical applications, since it is simple and
does not require parameter estimations. In another study, Ovacik and Uzsoy (1994)
extended ATC by including sequence-dependent set-up times. They compared it with
several versions of EDD and ODD in a dynamic job shop environment. The results
showed that the maximum lateness performance of ATC is not as good as that of
ODD dispatching.

Morton et al. (1988) developed the early version of the Bottleneck Dynamics
(BD) rule called SCHED-STAR. They used cost-bene® t analysis to make scheduling
decisions based on net present value (NPV) of revenues and costs. In experiments
with small-size static problems, SCHED-STAR was found to be the best performer
when compared with the di� erent versions of COVERT, CR, and EXP-ET (Early/
Tardy version of ATC).

In another study, Lawrence and Morton (1993b) tested resource pricing heuris-
tics in static multi-project scheduling problems. They developed a resource price-
based rule similar to SCHED-STAR and tested ® ve pricing schemes. The results
indicated that all pricing heuristics dominate the 20 benchmark rules tested. In their
later work, Lawrence and Morton (1993a) tested two new resource pricing heuristics
in a static job shop. Results showed that resource pricing has the potential to
improve mean weighted tardiness.

Recently, Morton and Pentico (1993) brought together all the pieces of their
previous studies and called it Bottleneck Dynamics (BD). BD is very similar to
ATC in that it uses the numerator of the ATC function wiUij (t) as an activity
price which is a re¯ ection of the current scheduling decision to the weighted tardi-
ness. In contrast to ATC, BD trades o� this activity price with total remaining
resource usage instead of current processing time. The resource usage of job i for
operation q at machine k(q) at time t is calculated as the resource price of the
machine times the processing time of the operation, i.e. Rk (q) (t)piq, where Rk(q) (t)
is the resource price of the machine k(q) . The total remaining resource usage is
de® ned over all remaining operations of the job and the ratio of activity price to
this resource usage gives the BD priority:

BDij (t) =
wiUij (t)

wi
q=j Rk(q) (t)piq

.

In this way, BD prioritizes the jobs with larger activity prices (most urgent ones),
while penalizing the jobs with longer processing times on bottleneck machines which
presumably have high resource prices.
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2.2.1. Resource pricing
From an optimization point of view, resource price can be interpreted as the

value of a dual variable for the resource’s capacity constraint. Hence, the resource
price can be estimated by calculating extra costs if the resource capacity is decreased
for one time unit. One such approach, called empirical resource pricing, is proposed
in Lawrence and Morton (1993b). The change in objective function gives a relative
measure of resource price. Since both exact calculation and the empirical pricing are
di� cult to implement in a dynamic environment, approximation methods have been
developed.

We ® rst consider the price of the current machine in resource usage calculation,
which is referred to as myopic pricing in the terminology of Lawrence and Morton
(1993b). In this method, the current machine’s price is scaled to 1 and all others have
zero prices (we called BD with myopic pricing BD-Myp; this is actually equivalent to
ATC). The second alternative is uniform pricing (BD-Unif), which assumes that all
resources are of equal importance and assigns them resource prices of 1. In this case,
the denominator of the priority formula is the summation of processing times of
downstream operations, Pij . The third alternative, bottleneck pricing (BD-Bot), iden-
ti® es the bottleneck machine with highest utilization, and gives it a scaled price 1.0,
while other resources are assigned prices of zero.

Morton and Pentico (1993) developed other approximate methods based on
busy-period analysis and queuing theory. The static pricing (BD-Stat) depends on
the machine’s utilization:

Rk (t) = (wU)avg
q k

(1.0 - q k)2 ,

where (wU)avg is the average activity price of the jobs and q k is long term utilization
rate of machine k. A more complex dynamic price, which changes according to the
current queue length and utilization of the machine, is given by

Rk (t) =
L k (t)

i=1

wiUij (t) + (wU)avg L k (t)
q k

1.0 - q k
,

where L k (t) is the current queue length. We will test two di� erent versions of BD
with dynamic pricing. The ® rst one uses standard waiting time estimation (called
BD-DynSt), while the other uses the estimation technique developed by Kanet and
Zhou (1993) called BD-DynKZ). The waiting time for job i for operation j (i) at
machine k with queue length L k (t) is estimated by

W ij (i) =

L k (t)

i=1,l /=i
plj (l)

2
.

2.2.2. Inserted idleness
As pointed out previously, inserted idleness can improve the performance of the

dispatching rules in a dynamic environment. However, one should know when it is
worth keeping the machine idle even though it has jobs in its queue. As shown by
Morton and Ramnath (1992), for any regular objective, no operation can be sched-
uled next on a given machine, unless it is currently available in the queue, or else will
arrive before the current time plus the processing time of the shortest job in the
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queue. By observing this fact, they proposed a modi® cation of the ATC rule for the
dynamic single machine problem. Assuming arrival times to the machine are known,
they calculated the priorities of those jobs with a penalty proportional to inserted
idleness involved. In this paper, we have extended their approach to job shops.

In our case, the arrival times are not known in advance. However, for a job that
is being processed at a machine, we can exactly calculate the job’s arrival time to the
next machine in its routing. In this way, we extend the candidate job set by adding
the jobs that will arrive in the near future. We reduce the priorities of such jobs
proportional to the idleness. The proportionality multiplier b goes up linearly with
the utilization of machine k as suggested in Morton and Ramnath (1992). If we
denote the arrival time of job i to machine k for operation j as aij , then the priorities
of such jobs are revised according to the following

BDij (t) Â = BD ij (t) ´ 1.0 - b
(aij - t)+

pmin
,

where pmin is the processing time of shortest job in the queue. This means that the
original priority of a job is degraded by a term proportional to the idleness as a
fraction of the minimum of the processing times of waiting jobs. If this priority is still
greater than the priorities of the jobs in the queue, then the machine is kept idle until
this job arrives at the machine. We employ this method only for BD although it is
not too di� cult to modify other dispatching rules to include this type of inserted
idleness.

3. System considerations and experimental factors

The environment considered in this study is a dynamic shop with the classic job
shop assumptions (Morton and Pentico 1993, p. 387). It is a re-entrant job shop with
10 machines continuously available. Jobs arrive according to a Poisson process and
are released immediately to the system. The jobs have a number of operations uni-
formly distributed between 1 and 10. The operations are randomly processed
through the machines. Two types of shop are simulated: the ® rst one is a uniform
shop where every machine is approximately equally utilized with operation pro-
cessing times drawn from a uniform distribution (Anderson and Nyirenda 1990,
Vepsalainen and Morton 1988). The second is a bottleneck shop where one or
more machines are bottlenecks with longer processing times. The relative speeds
of three machines are highly utilized, some are lightly utilized. Job weights are
drawn from U (Anderson and Nyirenda 1990, Vepsalainen and Morton 1988).

Since our aim is not to investigate the due date setting policies, we assign more
general and somewhat random due dates controlled by a processing time multiplier
to generate desired levels of due date tightness (similar external setting of due dates
can be found in the literature, e.g. Vepsalainen and Morton (1989). Speci® cally, due
dates are assigned randomly over a full range of ¯ ow allowances, with a maximum of
12.0, 9 and 6.0 times the mean total job processing time for relatively loose, medium,
and tight due dates, respectively. We call this rule the random average total work
content rule (RATWK), formulated as follows:

di = ri + U 0,D *
(mmin + mmax)

2
pavg ,
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where D is the tightness parameter, mmin and mmax are minimum and maximum
number of operations, respectively. The average utilization of the shop is determined
by calibrating the arrival rate of the jobs. In a uniform shop, the arrival rate is
adjusted to achieve approximately 60% average utilization in the low level, 80%
in the medium level, 90% in the high level. In the bottleneck shop, the utilization of
the bottleneck determines the system load level. In this case, arrival rate is adjusted
to achieve 60% utilization on the bottleneck machine in the low level, 80% in the
medium level and 95% in the high level. (For a summary of experimental factors, see
table 2.)

The system is simulated by using SIMAN simulation language (Pegden et al.
1990) with additional C subroutines linked within the UNIX environment. We use
the method of batch means to collect the output data. Based on pilot runs, we
determine a conservative warm-up period for the system as 2500 job completions.
To reduce correlation between batches, we use 10 rather long batches with 1000 jobs
each. Common random numbers are used as a variance reduction technique to
provide the same experimental conditions for the rules (Law and Kelton 1991).

The dispatching rules presented in Appendix B are used in the experiments. We
test 6 di� erent pricing schemes for BD:

(1) BD with myopic pricing (BD-Myp);
(2) BD with dynamic pricing (standard waiting time estimation, BD-DynSt);
(3) BD with dynamic pricing (K-Z waiting time estimation, BD-DynKZ);
(4) BD with static pricing (BD-Stat);
(5) BD with uniform pricing (BD-Unif);
(6) BD with bottleneck pricing (BD-Bot).

Inserted idleness versions of these rules are represented by adding X as a pre® x
(X-BD-Myp, X-BD-DynSt, etc.). In the inserted idleness case, only the jobs whose
next operation is on the machine under consideration are considered as additional
candidates, as described in the previous section.

The previous research has indicated that the performances of parametric rules
such as COVERT and BD are sensitive to the selection of the parameter value. For
example, studies showed that look-ahead parameter K should be adjusted according
to conditions such as utilization and due date tightness (Morton and Rachamadugu
1982, Vepsalainen and Morton 1988). We have conducted some pilot experiments to
choose values for parameters. As a result of these simulation runs, COVERT is
found to be robust and we use b = 2.0 and h = 2.0 for all settings. For BD rules,
the waiting time estimation parameter (b) is set to 2.0. The look-ahead parameter
(K) is adjusted according to the job shop type and utilization level. In the uniform
shop K is ® xed at 2.0 in low utilization, K = 3.0 in medium, K = 4.0 in high utiliza-
tion. In the bottleneck shop, K is 1.5 in the low and medium levels of utilization, and
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Factor Number of levels Levels

Shop type 2 Uniform, bottleneck
Utilization 3 Low (60%), Medium (80%), High (90%± 95%)
Due date tightness 3 Loose, Moderate, Tight
Dispatching rules 30 BD rules (6), X-BD rules (6), Others (18)

Table 2. Experimental factors and their levels in the simulation experiments.



it is ® xed at 3.0 in high utilization. Experiments conducted by Morton and Ramnath
(1992) show that b = 1.3 + q k is appropriate for ATC with inserted idleness in the
single machine case. In order to ® nd the best value for the job shop, we have tried
di� erent values for b for the inserted idleness version of BD, and ® nally set
b = 2.0 + q k .

4. Computational results

First, we measure the performance of the BD rules and identify the promising
ones that can be used for further tests. Then we present the overall results of other
dispatching rules.

4.1. Experiments with bottleneck dynamics
Figure 1 shows e� ects of due date tightness and utilization level on the weighted

tardiness (T) performance of non-delay BD rules. As one can intuitively expect, the
performances deteriorate as the due date tightens and/or the utilization increases.
However, the sensitivity of BD to these changes varies for di� erent resource pricing
schemes. For example, while every pricing scheme yields almost the same WT at low
utilization rates, their performances are di� erent at medium and high utilization
levels. In the uniform shop case, BD with myopic pricing (BD-Myp) draws the
lower envelope regardless of the utilization level and due tightness. However, the
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Figure 1. E� ects of utilization and due date tightness on average weighted tardiness per-
formance of non-delay BD rule with di� erent resource pricing schemes for uniform and
bottleneck shops.



tests conducted at the 5% signi® cance level show that the di� erences among the best
four BD rules (BD-Myp, BD-DynSt, BD-DynKZ and BD-Bot) are statistically
insigni® cant in general, although they are all signi® cantly better than BD-Stat and
BD-Unif. The di� erence between the latter two is not distinguishable.

In the bottleneck shop, although the main observations are somewhat similar to
those of the uniform case, there are some di� erences that show the e� ects of unbal-
anced machine loads. First, we observe that as expected the performances of the
rules are less distinguishable at low and medium utilization rates than the uniform
case, since the overall utilization is lower in the bottleneck case. The second best
performer after BD-Myp is BD with bottleneck resource pricing (BD-Bot) instead of
BD with dynamic pricing. This indicates the e� ectiveness of bottleneck resource
pricing for unbalanced shops.

Results show that our previous observations about non-delay BD rules are still
valid for X-versions of BD. For brevity, we plot WT with respect to inserted idleness
considerations in order to see the overall e� ect of inserted idleness. As seen in ® gure
2, there is always improvement due to inserted idleness, although the improvement
rate changes according to the pricing method and the shop type. For instance, in the
uniform shop, inserted idleness considerably improves performances of both
dynamic pricing methods (BD-DynSt and BD-DynKZ). The di� erence is almost
negligible for other pricing schemes. We also note that the improvement is more
signi® cant for almost all types of pricing schemes in the bottleneck case.

In general, the improvement achieved by inserted idleness over non-delay ver-
sions varies from 1.4% to 16.8%. The overall improvement due to inserted idleness is
statistically signi® cant at the low and medium utilization levels. This improvement is
especially visible for BD with dynamic pricing (BD-DynSt and BD-DynKZ). To
observe the e� ect of inserted idleness with respect to utilization and due date tight-
ness, we plot the percent decrease in WT of a selected BD rule (BD-DynKZ, see
® gure 3). It seems that the improvement in the bottleneck shop is always more than
the one in the uniform case. The improvement percentage decreases with increasing
utilization and tightening due dates.

We can summarize the main ® ndings as follows.

� BD with myopic pricing performs better than the others. This interesting result
can be attributed to several reasons. First, myopic pricing calculates the total
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Figure 2. E� ects of inserted idleness method on average weighted tardiness performance of
BD rule with di� erent resource pricing schemes.



resource usage by considering only the current machine’s price scaled to 1.0
and the current operation processing time, both of which are deterministic. In
global pricing schemes, the total usage cost depends on estimated prices of
downstream machines. If these prices are not accurate, they might lead to
inferior scheduling decisions. If we want to calculate the price of a downstream
machine we should know the load of that machine when the job arrives at that
machine. This is very di� cult to predict in dynamic environments such as ours.
As shown in the results, assuming that all machines have the same resource
price (BD with uniform pricing) does not yield encouraging performance.
Hence, discriminating machines using di� erent prices improves the perform-
ance signi® cantly. At this point, the focus should be on developing better
schemes with better predicting mechanisms. Global pricing was shown to be
better than myopic pricing in previous studies (Lawrence and Morton 1993b).
One important di� erence between these studies and ours is that they used a
static environment where the scheduler can estimate the prices with high accuracy.

� Inserted idleness improves the performance of BD, up to 16.8% in this
research. As we have shown, the improvement is considerably higher at low
utilization levels. Since there is slack in capacity and time in these cases, the
scheduler has more opportunities to wait for a hot job, and the cost of keeping
the machine idle is not as high as in a congested shop. Hence, inserted idleness
versions of BD can be suggested for low and moderately loaded shops.
However, it should be noted that in reality these are not usually the situations
in which tardiness is a major problem.

� The results with the bottleneck shop are somewhat di� erent from those of the
uniform case. This is expected because the purpose of resource pricing is to
discriminate the machines according to their loads. Therefore, in an unbal-
anced shop, resource pricing schemes e� ectively distinguish the resources as
bottleneck and non-bottleneck. The performance of BD with bottleneck pri-
cing is better in the bottleneck shop than in the uniform shop.

4.2. Experiments with other rules
Since the number of rules to be tested is quite large, we have put them into four

groups for easy presentation of the results: (1) FCFS, WSPT, WLWKR; (2) EDD,
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Figure 3. E� ects of due date tightness and utilization on the percentage improvement in
weighted tardiness achieved by implementing inserted idleness with BD-DynKZ dispatch-
ing rule.



MDD, SLACK, CD, S/OPN, MDSPRO (mostly job-based): (3) ODD, OSLACK,
OCR, MOD, CEXSPT (mostly operation-based); and (4) W(CR+ SPT), W(S/
RPT+ SPT), COVERT.

Relative performances of the rules are very similar in both uniform and bottle-
neck shops except that the di� erences are more visible in the bottleneck case.
Therefore, we present only the bottleneck shop results for brevity. As ® gures 4
and 5 show, the di� erences between the performances of the rules become more
signi® cant with tightening due dates and increasing shop loads.

The best rule in the ® rst group, WSPT, is most robust to changes in the levels of
experimental factors whereas FCFS is the worst. MDD is the best rule in the second
group, followed by CR and S/OPN. Although MDSPRO was designed to eliminate
the drawbacks of S/OPN, it performs poorly. Among the operation-based rules in
the third group, MOD and CEXSPT compete for the ® rst rank, while the opera-
tional slack rule (OSLACK) draws the upper envelope. The last group includes the
best performers among all the rules tested. The maximum di� erence between the
worst and the best performer in this group is around 4.3% in the uniform shop and
2.8% in the bottleneck case. It is di� cult to rank them since their performances are
close to each other. The statistical tests conducted on the overall results show that
the rules in the last group (W(CR+ SPT), W(S/RPT+ SPT) and COVERT) are all
signi® cantly better at the 5% signi® cance level than the others. However, the per-
formance di� erences within the last group are indistinguishable. If we group the
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Figure 4. E� ects of due date tightness on average weighted tardiness performance of the
non-BD rules for bottleneck job shop.



rules according to their statistically signi® cant di� erence, we achieve the following
ranking: (1) W(CR+ SPT), W(S/RPT+ SPT) and COVERT, (2) WSPT, (3) MOD,
(R) CEXSPT, WLWKR, OCR, (5) CR, MDD, ODD, S/OPN, OSLACK, (6)
SLACK, EDD, MDSPRO, (7) FCFS. The low ranked groups are better than the
higher ranked groups and the overall performance di� erence within a group is not
signi® cant.

The major conclusions in this section can be summarized as follows.

� Priority rules which make use of operational information such as operation
due dates and operation processing times perform consistently better than their
job-based counterparts. The results also show that the performances of the
job-based and operation-based rules are very sensitive to the system con-
ditions.

� WSPT is more robust in general. For instance, while WSPT is worse than
almost all job- and operation-based rules at low load levels, it performs better
than these rules in congested shops with tight due dates.

� The rules in the last group perform quite well regardless of changes in due date
tightness and utilization levels. Complex and composite rules such as
COVERT and W(CR+ SPT) are very e� ective when compared with the
other rules. Although MOD is reported as the best rule for unweighted tardi-
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Figure 5. E� ects of utilization on average weighted tardiness performances of the non-BD
rules for bottleneck job shop.



ness in previous studies, it is outperformed by these new rules tested in our
study.

4.3. Cross comparisons of BD and other rules
Finally, we compare the best performing BD rules (non-delay and X-versions of

BD with myopic pricing) and selected rules WSPT, CR, MOD and W(CR+ SPT).
For the same of brevity, we present the results for the bottleneck shop. As depicted in
® gure 6, the BD rules are quite e� ective in improving the WT performance when
compared to all the rules except W(CR+ SPT). The tests show that the overall
performances of the best four BD heuristics and the best three among conventional
rules are not statistically signi® cant. This shows that W(CR+ SPT) is very successful
in combining the characteristics of CR and SPT into one rule. Note that CR is
relatively good at low load levels/loose due dates, whereas WSPT produces very
good WT results at high utilization rates/tight due dates. This rule discriminates
jobs with di� erent due dates and processing time requirements. This is similar to
the urgency factor idea behind the BD rules, but BD also discriminates between the
resources according to their loads. In our experiments, however, we did not observe
any additional bene® ts of pricing over the best non-parametric rule (W(CR+ SPT).

To get more insight, we have collected percent tardy (PT) and conditional
weighted tardiness (CWT) statistics. As shown in ® gure 7, BD is a good performer
in PT regardless of due date tightness and utilization level. Since its WT performance
is close to that of W(CR+ SPT), it is expected that BD yields poor CWT perform-
ances as compared to W(CR+ SPT) (see ® gure 8). In general, BD loses its advantage
by producing jobs with long tardiness even though tardy jobs are considerably less.
MOD has a similar drawback. We note that W(CR+ SPT) is the best in CWT in
almost every condition. Our previous observation about W(CR+ SPT) in combining
WSPT and CR is also strengthened with these graphs. The CWT measure of WSPT
is very high with loose due dates and low utilization levels, whereas CR is relatively
good in that region. As utilization increases or due dates tighten, WSPT’s curve
intersects CR’s curve and WSPT starts producing less CWT than CR does.
Hence, we see that W(CR+ SPT) combines the advantageous parts of the two rules.

180 E. Kutanoglu and I. Sabuncuoglu

Figure 6. E� ects of due date tightness and utilization level on weighted tardiness perform-
ances of selected rules.



5. Conclusions and further research directions

In this study, we measured the performance of numerous dispatch heuristics
using simulation. We also tested new scheduling techniques, such as dispatching
with inserted idleness and resource pricing. The results indicated that the priority
rules which make use of operational information such as operation due dates and
operation processing times perform consistently better than their job-based counter-
parts. Additionally, we observed that complex and composite rules designed speci® -
cally for tardiness, such as W(CR+ SPT), COVERT and BD, are very e� ective in
reducing weighted tardiness. We also tested several resource pricing heuristics for
BD and found that di� erent pricing schemes should be used in di� erent environ-
ments. In general, myopic pricing is very e� ective. In unbalanced shops, however,
bottleneck resource pricing can also be suggested.

The results show that inserted idleness improves the performance of ordinary
dispatching heuristics. The inserted idleness versions of BD can be especially sug-
gested for low and medium utilization rates. Actually, inserted idleness would have
improved the performance more if we had expanded the candidate job set. In this
study, we considered only the jobs that are being processed and those whose next
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Figure 7. E� ects of due date tightness and utilization on percent tardy performance of
selected rules in bottleneck shop case.

Figure 8. E� ects of due date tightness and utilization on conditional weighted tardiness
performance of selected rules in bottleneck shop case.



operations are on the machine under consideration. To achieve further improve-
ment, all the jobs in the system must be considered and the arrival times of these
jobs to the machine should be accurately estimated. We consider this a good future
research topic.

The results also indicated that there are very promising tardiness related rules
such as W(CR+ SPT) and COVERT. Although BD outperforms may other dis-
patching rules, we could not show that it can beat W(CR+ SPT) and COVERT.
One reason for this could be the resource pricing scheme utilized in BD. More e� ort
should be expanded to develop e� ective resource pricing schemes in a dynamic
environment. A second reason may be the urgency factor calculation, which is
based on estimated waiting times and a look-ahead parameter. For the look-ahead
parameter, we can decide on the value by making some pilot runs. However, as
Morton and Pentico (1993) noted, the lead time estimation is one of the important
issues for better performance. If the lead time is accurately estimated, then the
scheduler can predict estimated lateness of a job very well. Hence researchers need
to ® nd more e� ective ways of estimating waiting times or total lead time.

In this study, we tested Kanet and Zhou’s (1993) waiting time estimation whose
performance is good but not su� cient to get higher-quality performances. Another
option is the multi-pass version of BD known as lead time iteration (LTI). We did
not include LTI in our study because of the reasons outlined previously. Further
research can focus on LTI and other methods of estimating lead times in a dynamic
job shop. Additional improvement for BD might be achieved by analysing why the
rule yields few but long tardy jobs (high conditional weighted tardiness).

Another further research topic is testing the rules using di� erent order review
release (ORR) methods. In our study, we used immediate release, but it would be
very interesting to see the performance of sophisticated rules under other ORR
policies.

We also note that up-to-date accurate information need is highest for BD. The
majority of the rules in our test set are dynamic, which require recalculation of the
priority as time advances. However, they utilize mostly job-related attributes which
might be readily available in most of the real systems. In contrast, the rules such as
COVERT and BD need more shop status information (machine utilization, queue
length, etc.) which can be gathered only in sophisticated shops with a good informa-
tion collection/distribution system. If the shop lacks such an information network,
then it is better to use less-demanding rules such as W(CR+ SPT). On the other
hand, if such a network is already available, which is very viable with today’s hard-
ware and software infrastructure, then BD or other information-based rules can
easily be employed. In this case, historical data can be used for value estimation
in BD and other parametric rules (utilization, waiting time, etc.).
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Appendix A: Notation and symbols used in the paper

i job index
j, q operation index
j (i) operation j of job i
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k machine index
t current time
n number of jobs in a speci® c planning horizon or in a simulation run

mi number of operations of job i
wi weight or tardiness penalty of job i
di due date of job i
Ci completion time of job i
Ti tardiness of job i, max {0,Ci - di}
ai initial ¯ ow allowance of job i

Ai (t) ¯ ow allowance of job i at time t
aij arrival time of job i for operation j to the current machine
pij processing time of operation j of job i

pavg average processing time of jobs waiting for a resource
pij remaining total processing time of job i from operation j

Sij (t) slack of job i waiting for operation j at time t
mij remaining number of operations in job i from operation j

dij operation due date of operation j of job i
W ij estimated waiting time for operation j of job i

TL ij estimated tail lead time for operation j of job i
SSij (t) local resource constrained slack of operation j of job i at time t
Uij (t) urgency factor of operation j of job i at time t

APij (t) activity price of operation j of job i at time t
b waiting time estimation multiplier

K, h look-ahead parameters
k(q) the machine required for operation q of the job under consideration

Rk (t) resource price of machine k at time t
q k utilization of machine k

L k (t) queue length of machine k at time t
pmin k minimum processing time of operations waiting for machine k

b inserted idleness parameter
W T average weighted tardiness measure WT = ( n

i=1 wi Ti) /n
PT per cent tardy measure, PT = [( n

i=1 d (Ti) /n]́ 100

d (Ti) = 1.0 if Ti > 0
0.0 otherwise

CW T conditional weighted tardiness measure:

CWT =

n

i=1

wi Ti

(PT ´ n /100) .

(x)+ max {0, x}
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Appendix B: Priority dispatching rules

The priorities are calculated for job i waiting for operation j at machine k at time
t as listed in the following table.
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Priority rule Description

FCFS
(® rst come
® rst served)

FCFSij = aij

WSPT
(weighted shortest
processing time)

WSPTij =
wi

pij

WLWKR
(weighted least
work remaining)

WL WKRij =
wi

mi
q=j piq

EDD
(earliest due date)

EDDi = di

MDD
(modi® ed due date) MDDij (t) = max di, t +

mi

q=j
piq

SLACK
(least slack) SLACKij (t) = di - t -

mi

q=j
piq

CR
(critical ratio) CRij (t) =

di - t
m i
q= j piq

S/RPT
(slack per remaining
processing time) S /RPTij (t) =

di - t -
mi

q=j
piq

mi
q=j piq

S/OPN
(slack per remaining
operation) S /OPNij (t) =

di - t -
mi

q=j
piq

mi - j + 1

MDSPRO
(modi® ed dynamic
slack per remaining
operation)

MDSPROij (t) =

di- t-
m i

q=j
piq

mi- j+1 if di - t-
mi

q=j
piq > 0,

(mi - j + 1) di - t - mi
q=j piq otherwise

ODD
(operation due date) ODDij = ri +

di - ri
mi

q=j

´
j

q=1
piq
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OSLACK
(operation slack) OSLACKij (t) = ri +

di - ri
mi

q=j

´
j

q=1
pij - t - pij

OCR
(operation
critical ratio)

OCRij (t) =

ri + di- ri
m i

q=j
piq

´ j
q=1piq - t

pij

MOD
(modi® ed
operation due date) MODij (t) = max ri +

di - ri
mi

q=j
piq

´
j

q=1
piq, t + piq

CEXSPT (see Note 1)

W(CR+ SPT)
(weighted CR
and SPT

W (CR+ SPT ) ij (t) =
wi

pij ´ max 1.0, di- t
mi

q=j
piq

W(S/RPT+ SPT)
(weighted S/RPT
and SPT)

W (S /RPT + SPT ) ij (t) =
wi

pij ´ max 1.0,
di- t-

mi

q=j
piq

mi

q=j
piq

COVERT
(cost over time)

COVERTij (t) =
wi

pij
´

h
m i

q=j
Wiq - di - t -

mi

q=j
piq

h
mi

q=j
W iq

BD
(bottleneck dynamics)

BDij (t) =

wi exp -
di-

m i

q=j+1

(Wiq + piq) - piq - t

+

Kpavg

mi

q=j
Rk (q)p - iq

Note. CEXSPT rule partitions the original queue into 3 queues which are late queue, i.e. Sij (t) =
di - t - mi

q=j piq < 0, operationally late queue (behind the schedule), i.e. Oij (t) = dij - t - pij =
ri + (diri) / mi

q=j piq ´ j
q=1 piq - t - pij < 0, and ahead of schedule queue, i.e. Oij (t) ³ 0. Then the rule

selects SPT job from queue 1, if this job does not create a new late job with Sij (t) < 0. If it does, then a new
SPT job is selected from queue 2, if it does not create a new operationally late job in queue 3. If it does,
then a new SPT job is selected from queue 3.
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