
ARI (1999) 51 : 268}276 ( Springer-Verlag 1999

ORIGINAL ARTICLE

N. S. S, engoK r ' Y. xak1r ' C. GuK zelis, ' F. Pekergin
OG . MorguK l

An analysis of maximum clique formulations and
saturated linear dynamical network

Received: 18 March 1999/Accepted 26 April 1999

Abstract Several formulations and methods used in solv-
ing an NP-hard discrete optimization problem, maximum
clique, are considered in a dynamical system perspective
proposing continuous methods to the problem. A
compact form for a saturated linear dynamical network,
recently developed for obtaining approximations to
maximum clique, is given so its relation to the classical
gradient projection method of constrained optimization
becomes more visible. Using this form, gradient-like
dynamical systems as continuous methods for "nding the
maximum clique are discussed. To show the one to one
correspondence between the stable equilibria of the
saturated linear dynamical network and the minima of
objective function related to the optimization problem, La
Salle's invariance principle has been extended to the sys-
tems with a discontinuous right-hand side. In order to
show the e$ciency of the continuous methods simulation
results are given comparing saturated the linear dynam-
ical network, the continuous Hop"eld network, the
cellular neural networks and relaxation labelling net-
works. It is concluded that the quadratic programming
formulation of the maximum clique problem provides
a framework suitable to be incorporated with the continu-
ous relaxation of binary optimization variables and hence
allowing the use of gradient-like continuous systems
which have been observed to be quite e$cient for minim-
izing quadratic costs.
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1 Introduction

The maximum clique problem is to "nd a maximum
complete subgraph of a graph. This graph theoretical
problem is computationally equivalent to some other
graph theoretical problems such as the maximum inde-
pendent set and minimum vertex cover problem. The
maximum clique problem and its equivalents are NP-hard
optimization problems. However, it is essential to "nd the
solution to them since these problems have theoretical
and practical importance and are encountered in a diverse
domain. The simplest method of "nding the largest clique
is to test all subsets of the vertices of a graph to see if they
induce a complete graph. In the worst case, this method of
solving the problem will give rise to a computing time that
will exponentially grow with graph size. So in order to
cope with its NP-hardness, di!erent formulations and
di!erent algorithms have been used to solve the maximum
clique problem and its equivalents. A complete review of
the formulations and algorithms developed can be found
in Pardalos and Xue (1994), Pelilo (1995), Jagota (1995)
and Pekergin et al. (1998). In Pardalos and Rogers (1992),
the problem is formulated as an unconstrained quadratic
0}1 program. In Pardalos and Rogers (1992), it is also
given in a linear programming formulation with a unit
simplex feasible region. In the papers that aim to solve
maximum clique and equivalents in the neural network
domain (Pelilo 1995, Jagota 1995, Funabihi et al. 1992,
Grossman 1995, S, engoK r et al. 1998), energy descent opti-
mizing dynamics are used. Yet another work is Pekergin
et al. (1998) which bene"ts the saturated unstable linear
dynamics. It is shown in Pekergin et al. (1998) that, for
almost all initial conditions, any solution of this saturated



linear gradient dynamical network de"ned on a closed
hypercube reaches one of the vertices of the hypercube
and any reached vertex corresponds to a maximal clique.

In recent years, there has been an interest in approaches
based on continuous optimization. One of the main pur-
poses of this paper is to show with a particular emphasize
on the maximum clique problem, that gradient and gradi-
ent-like systems present e$cient continuous solution
methods for quadratic discrete optimization problems,
and that the dynamical system theory provides a useful
framework for analyzing such continuous methods and
many others. Gradient dynamical systems can be de-
scribed in a state equation from whose vector "eld is
produced by the gradient of a scalar function, called
energy. Energy descent and convergence properties of its
completely stable equilibria to which trajectories converge
correspond to local minima of the cost function. So called
gradient-like systems covering quasi-gradient systems in
Chiang and Chu (1996) and many dynamical neural net-
works (as special cases) which are in fact not gradient
systems, but they also have the same kind of dynamics,
can be used for minimizing cost functions with continuous
optimization variables. It should be noted that the con-
tinuous Hop"eld network (Hop"eld 1982), the Grossberg
neural network (Grosberg 1976), and the cellular neural
network (Chua and Yang, 1988) are of gradient-like sys-
tems and are used for solving several optimization
problems. Some variants of these networks such as the
Continuous Hop"eld Network (CHN) in Jagota (1995),
the Grossberg type neural networks in Funabihi et al.
(1992), the Relaxation Labeling Network (RLN) in Pelilo
(1995), the Cellular Neural Network (CNN) in S, engoK r et
al. (1998) and the Saturated Linear Dynamical Network
(SLDN) (Pekergin et al. 1998) are used for "nding approx-
imate solutions to the maximum clique problem (Jagota
1995; Pekergin et al. 1998; Pardalos and Rogers 1992;
Pardalos and Phillips 1990; Funabihi et al. 1992; Gross-
man 1995; S, engoK r et al. 1998). This paper analyzes the
dynamics of gradient-like systems which, in the case of
SLDN, gives rise to dynamical systems with a discontinu-
ous right-hand side. The analysis shows that: 1. SLDN,
which has been recently proposed (Pekergin et al. 1998) to
obtain approximate solutions to the maximum clique
problem and found to be successful, is, indeed, a
continuous version of the classical gradient-projection
algorithm of optimization theory. 2. La Salle's invariance
principle can be extended to the systems with a discon-
tinuous right-hand side, as a special case it is extended
here for SLDN.

In Sect. 2, the maximum clique problem will be de"ned,
di!erent formulations and algorithms for solving the max-
imum clique problem will be described brie#y. In Sect. 3,
where the main contribution is given, the dynamics of
gradient systems will be revisited. Then, the dynamics of
saturated linear dynamical networks will be set up in
a compact form and gradient-like systems will be dis-
cussed with the view of optimization. In this section, the
stability analysis of gradient-like systems in the La Salle's

sense will be given by extending La Salle's (La Salle 1968)
result on invariance principle to dynamical systems with
discontinuous right-hand sides; hence it will be shown
that there exists a one to one correspondence between the
stable equilibria of SLDN and the minima of objective
function. In Sect. 4, numerical results obtained using ran-
dom graphs will be given for SLDN, CHN, CNN and
RLN.

2 Comparison of maximum clique problem formulations

The maximum clique problem, which can be related to
a number of di!erent graph problems, is computationally
intractable. Even to approximate it with certain bounds
gives rise to the NP-hard problem. There is a large class of
important problems that can be reduced to a maximum
clique in principle. One example is the problem of "nding
the largest number of simultaneously satis"able clauses
(Crescenzi et al. 1991). Another class of problems that can
be e$ciently formulated as a maximum clique problem is
the satis"ability of Boolean formulas (Garey and Johnson
1979). Applications of the maximum clique problem cover
a large spectrum: pattern recognition, computer vision,
information processing, cluster analysis information ret-
rival. First, de"nitions related to the maximum clique
problem will be given. Also the adjacency matrix and
characteristic vectors will be introduced and some results
will be stated by a number of facts. Then, di!erent formu-
lations of the cost function for the problem will be given
and the algorithms used for solving them will be com-
pared.

In the following de"nitions, the graph is assumed to
have no loop, no more than one edge associated to a ver-
tex pair and has at least one edge.

De5nition Clique: ¸et G"(<, E) be an undirected graph,
where < is the set of vertices and EL<]< is the set of
edges. A subset SL< of vertices is called a clique if for
every pair of vertices in S there is an edge in E, i.e., the
subgraph introduced by S is complete.

De5nition Maximal Clique: A maximal clique S is a clique
of which proper extensions are not cliques, i.e. for any S@ if
SLS@ and SOS@ then S@ is not a clique.

De5nition Maximum Clique: A maximum clique of G is
a clique for which the cardinality is maximum.

The maximum clique problem is to "nd the maximum
cliques for a given graph.

For the formulations that will be introduced in the
sequel the notion of an adjacency matrix and a character-
istic vector is needed.

De5nition Adjacency Matrix: ¸et G"(<, E) be an undirec-
ted graph. ¸et n"D< D be the number of vertices and let
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v
i
3<, i"1, 2,2, n denote the vertices. A3M0, 1Nn]n is

called the adjacency matrix of G i+ ∀i, j3M1, 2,2, nN
a
ij
"a

ji
"1 when (v

i
, v

j
)3E and a

ij
"a

ji
"0 otherwise.

While A denotes the adjacency matrix of G, A1 denotes
the adjacency matrix of the complement graph GM . Since
G is an undirected graph and has no loops it follows that
A is a symmetric matrix with a

ii
"0 for i3M1, 2,2, nN.

De5nitions Characteristic <ector: ¸et SL< be a subset of
vertices, xs3M0, 1Nn is the characteristic vector of S i+ : 1)
xs
i
"1 when v

i
3S 2) xs

i
"0 when v

i
NS for i3M1, 2,2, nN.

Two results following these de"nitions will be given with-
out proof by Facts 1 and 2:

Fact 1 A1 3M0, 1Nnxn is an inde"nite matrix.
Fact 2 S is a maximal clique i! its characteristic vector xs

satis"es the quadratic equation (xs)TA1 (xs)"0.

Fact 2 does not characterize the maximal clique S com-
pletely, but it shows that the adjacency matrix A1 is closely
related to the characterization of clique.

The complete characterizations of the maximal cliques
will be given by means of the following formulations.
From the large number of max-clique problem formula-
tions and algorithms only fundamental ones will be
renewed. First the linear programming formulation, then
the quadratic 0}1 programming formulation will be
stated. Then di!erent algorithms used and approaches
dealing with the problem will be given for quadratic
formulation.

2.1 Linear programming formulation

The maximum clique problem can be formulated as the
simplest type of constrained optimization problems, i.e.
linear programming, as follows:

minimize f
1
(x)"!eTx, subject to x

i
#x

j
41,

∀(v
i
, v

j
)3EM x3M0, 1Nn

where, e :"[1, 1,2, 1]T3Rn. A solution x* to this pro-
gram de"nes a maximum clique S for G as follows: if
x*
i
"1 then v

i
3S and if x*

i
"0 then v

i
NS and the car-

dinality of S, DS D"!f
1
(x*). This formulation can be

carried to quadratic formulation which will be renewed in
detail in the sequel by stating the constraints in the follow-
ing way. Since for x

i
, x

j
3M0, 1N and ∀ (v

i
, v

j
)3EM ,

x
i
#x

j
41, holds i! x

i
) x

j
"0, the constraints in linear

programming can be removed by adding quadratic terms
to the objective function twice. It is well-known that the
linear programming formulation of the maximum clique
problem is not suitable for continuous methods since the
continuous relaxation of the integer variables may lead to
noninteger solutions.

2.2 Quadratic 0}1 programming

As mentioned in the previous part on linear programming
formulation, the constrained linear optimization problem
can be restated as unconstrained quadratic programming.
In Pardalos and Rogers (1992) unconstrained quadratic
0}1 programming formulation is given not only for the
maximum clique problem but also for the maximum inde-
pendent set and minimum cover problems. Here only the
formulation for the maximum clique will be renewed.

Proposition 1 ¹he maximum clique problem for the graph
G is equivalent to solving the following quadratic 0}1 pro-
gram. minimize f

2
(x)"xT[A1 !I]x, such that x3M0, 1Nn.

The following theorem gives the correspondence between
discrete local minima and maximal subgraphs.

Theorem 1 Any x3M0, 1Nn that corresponds to a maximal
subgraph of G is a discrete local minimum of f

2
(x) in formu-

lation given in Proposition 1. Conversely, any discrete local
minimum of the function f

2
(x) corresponds to a maximal

subgraph of G. K

In Pardalos and Rogers (1992), a branch and bound
algorithm which is based on this model is used. Branch
and bound algorithms are set to "nd a global optimum by
searching the entire branch and bound tree. This search is
done by decomposing the given problem into subprob-
lems.

Another quadratic 0}1 programming formulation
(Pekergin et al. 1998), on which the SLDN is based, for the
maximum clique problem is given as follows:

min f
3
(x) :"xTA1 x!eTx, x3M0, 1Nn. (1)

Fact 3 Any x*3M0, 1Nn is a (discrete) global minimum of
f
3
(x) given by the Eq. 1 i! the set S such that xS"x* is

a maximum clique for G.

2.3 Motzkin-Straus formulation

In Pelilo (1995), and Pardalos and Phillips (1990), the
maximum clique problem is formulated as an inde"nite
quadratic optimization problem but this time it is con-
tinuous and linearly constrained. In both of the papers
(Pelilo 1995; Paradalos and Phillips 1990) mentioned, the
methods are based on the Motzkin-Straus theorem given
in Motzkin and Straus (1965). The formulation used in
those papers is restated here:

max f
4
(x)"1

2
xTAx x3i :"Mx3Rn DeTx"1, x

i
50N.

It has to be noted f
4
(x) is inde"nite and the feasible

region is the unit simplex. The following theorem which
relates the maximum clique problem to the above stated
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formulation is reproduced in Pelilo (1995) and Pardalos
and Phillips (1990) from the Motzkin-Straus theorem.

Theorem 2 If a"max f
4
(x) over i then G has a maximum

clique S of size k" 1
1~2a ¹his maximum can be attained by

setting x
i
"1

k
if v

i
3S and x

i
"0 if v

i
NS. K

This theorem gives an approach to "nd the size of the
maximum clique not the clique itself. The theorem given
below is from Pardalos and Phillips (1990) and it presents
a relationship between the set of distinct global maxima of
f
4
(x) over i and the set of distinct maximum cliques of the

graph G.

Theorem 3 Every distinct maximum clique of a graph
G corresponds to a distinct global (hence local) maximum of
the function f

4
(x) over i. ¹he converse is false. K

In Pardalos and Phillips (1990) to determine the vertices
in the maximum clique an algorithm is presented, but it is
reported in Pelilo (1995) and Pardalos and Phillips (1990)
that the computational cost is excessive. Yet another ap-
proach based on the same formulation using Theorem
3 and a local version of it is given in Pelilo (1995). In this
case, the formulation stated above is executed by a relax-
ation labeling network (RLN). Like other (Jagota 1995;
Grossman 1995; S, engoK r et al. 1998) clique "nding neural
network models, the number of computational units used
are as much as the number of vertices in the graph. Since
this approach is suitable for parallel hardware implemen-
tation, the computational cost problem in Pardalos and
Phillips (1990) is reduced. Here, the algorithm is based on
the dynamics of the RLN which performs a gradient
ascent search. If the solution obtained by the RLN has the
particular form of x

i
"1

k
for some i and x

i
"0 for the

others, then this solution corresponds to a maximal
clique. In this sense, the approach does not give rise to
invalid solutions, but spurious solutions which are in the
above particular form may arise. A bene"t of the ap-
proach in Pelilo (1995) over the one in Pardalos and
Phillips (1990), is that there is no need to calculate some
parameters heuristically during the execution.

2.4 Hop"eld network

Among the neural network based approaches used for the
maximum clique problem (Pelilo 1995, Jagota 1995;
Funabihi et al. 1992; Grossman 1995; S, engoK r et al. 1998),
the one using Hop"eld network (Jagota 1995) will be
renewed here. The continuous dynamics and the energy
function of the continuous Hop"eld network are given
below.

x5 "!x#gj(y),

y
i
"I#+

j

w
ij
x
j
, x3[0, 1]n

E"!

1

2
xTWx!ITx#eTg6 ,

g6 :"C
x1
:
0

g~1j (x)dx
x2
:
0

g~1j (x) dx2
xn
:
0

g~1j (x) dxD,
where, x5 stands for the time-derivative of the state-vector
x. I"[1, 1,2, 1]T is the bias vector. W is the weight
matrix de"ned as: w

ii
"0, w

, j
3Mo, 1N for all iOj with

o(0. w
i,j
"w

j,i
"1 i! there is an edge between the nodes

i and j. Note that the weight matrix is not the adjacency
matrix but closely related to it. gj ( ) )"[gj ( ) ),
gj( ) ),2, gj( ) )]T is a separable function, each element
gj( ) ) of which is the sigmoidal function de"ned as:
gj(x)" 1

1`%91~j >x with the gain factor j. In this mentioned
work (Jagota 1995), rather than considering the quadratic
objective function and equating the energy function to this
objective, the well-known Greedy algorithm is mapped
into the dynamics of the CHN to "nd the maximum
clique. In the suggested implementation of the CHN, the
forward Euler method is used for the discretization, the
number of iterations is chosen as the same as the graph at
vertex number n, and furthermore o"!4n, I"DoD

4
. It is

stated in Jagota (1965) that the stable equilibrium points
of the considered CHN are maximal cliques of a graph
G de"ning the weight matrix.

3 Gradient-like systems

A dynamical system of the form

x5 "!+c(x) (2)

is called a gradient system and +c (x) is the gradient vector
of a scalar n-dimensional function c( ) ). The following
well-known property of gradient systems makes them
versatile in optimization problems (Hirsch and Smale
1974).

Theorem 4 ¹he scalar function c( ) ) does not increase along
the trajectories, i.e. cR (x (t))40 along the solutions x(t) of (2).
Moreover, cR (x)"0 i+ x is an equilibrium of (2). K

As Theorem 4 motivates, if the objective function of the
optimization problem considered can be formulated as
c( ) ) in Eq. 2 which is also called &&energy'' due to the
physical interpretation of Eq. 2 in many problems of
mechanics etc., then the equilibrium points of the gradient
system will coincide with the local minima of the objective
function. As follows from the above discussion, the ap-
plicability of gradient systems in optimization problems is
due to the one to one correspondence of the stable equilib-
ria of the gradient system and the minima of the objective
function. This approach to the optimization can be
extended to the non-gradient but completely stable
dynamical systems since every trajectory of a completely
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stable dynamical system ends in one of the equilibrium
points as in all gradient systems. If it is possible to formu-
late the objective function such that its minima coincides
with the stable equilibrium points of a completely stable
dynamical system, the dynamical system will solve the
optimization problem since the minimum points will be its
steady-state solutions. This is done to some extent in
Chiang and Chu (1996) by generalizing gradient systems
and forming so called quasi-gradient systems, and further-
more, as done here, by considering all gradient-like
systems in the same context. It is shown in Chiang and
Chu (1996), continuous versions of the methods as
steepest descent, Newton. Branin can be implemented as
quasi-gradient systems of the following form by choosing
a suitable positive de"nite R(x) matrix: x5 "!R(x)~1 )+c(x).
In the sequel, it will be shown that SLDN (Pekergin et al.
1998), which is successfully used for solving the discrete
optimization problem of maximum clique, constitutes
an interesting class of gradient-like systems which are
not gradient and also not quasi-gradient. To do that,
a compact form is "rst presented for the SLDN originally
proposed in Pekergin et al. (1998) to minimize a quadratic
cost so its minimums are sought after continuous
relaxation of variables on unit hypercube. From this
compact form, it will be evident that the SLDN has a state
equation form with a discontinuous right-hand side, but
still solutions do exist and are uniquely de"ned as
shown in Pekergin et al. (1998) and Hou and Michel
(1998). An alternative (in a sense more rigorous) way to
the derivation of complete stability of the SLDN in
Pekergin et al. (1998) will be given here using La Salle's
invariance principle (La Salle 1968). Since La Salle's
invariance principle is derived for dynamical systems
with continuous right-hand sides, an extension to
the systems with discontinuous right-hand sides will be
given.

In view of the gradient-like systems as solution methods
for optimization problems, as will be evident by the given
compact form, the most important fact about the SLDN is
that the SLDN is indeed a continuous version of the
well-known gradient projection method of the con-
strained optimization. This means that the SLDN and its
variants (Jagota 1994) can be used not only for the max-
imum clique problem but also for other constrained
optimization problems such as inde"nite quadratic
integer optimization problems and inde"nite quad-
ratic optimization de"ned over a polytope constraint
set, etc.

SLDN is based on the 0}1 quadratic formulation in
Eq. 1. The cost function E (x)"f

3
(x)"xTA1 x!eTx is

taken as &&energy'' hence the gradient-descent dynamics of
the SLDN is obtained as x5 "!1

2
+E (x)"1

2
e!A1 x.

Also, to handle the 0}1 integer constraint within
these continuous dynamics, the x3M0, 1Nn integer con-
straint is relaxed to yield x3[0, 1]n. Then, the solutions
of the SLDN are restricted in the closed unit hypercube
(Pekergin et al. 1998). Following this discussion the dy-
namics of the SLDN are derived in Pekergin et al. (1998)

as follows:

xR
i
"G

0 if x
i
"1 and 1

2
!(A1 x)

i
50

0 if x
i
"0 and 1

2
!(A1 x)

i
40

1
2
!(A1 x)

i
if otherwise

(3)

The above dynamics show that, as long as the solutions
are inside the hypercube, the trajectories follow the pure
gradient descent direction, and that, as the solutions hit
a surface of the hypercube, now the trajectories slide on
the surface following the projected gradient descent direc-
tion. This fact explains that the SLDN behaves like the
classical gradient projection algorithm of optimization
(Motzkin and Straus 1965). So, the compact form intro-
duced here is derived incorporating the following
projection matrix P

Ia
(Luenberger 1973).

P
Ia
"[I!BT

Ia
(B

Ia
BT

Ia
)~1B

Ia
],

where, I
a
(x) is the index set of active constraints which is

the union of I
0

and I
1
, i.e. I

a
:"I

0
XI

1
. The disjoint sets

I
0
, I

1
indexing the active linear inequality constraints are

de"ned as follows:

I
0
(x) :"Mi3N Dx

i
"0 and 1

2
!(A1 x)

i
(0N

I
1
(x) :"Mi3N Dx

i
"1 and 1

2
!(A1 x)

i
'0N.

B
Ia

is an DI
a
D]n dimensional matrix whose j(i)'th row,

(B
Ia
)
j(i)

is de"ned as:

(B
Ia
)
j(i)

"G
bT (i)

!bT (i)

if i3I
1

if i3I
0
.

Here, j (i)3M1, 2,2, DI
a
DN is an index used for renumbering

the active constraints indexed by i. The j'th row of
B
Ia

depends on index i, so the number of rows of B
Ia

is as
much as the number of active constraints. b (i)3Rn is
de"ned as:

(b(i))
k
"G

1

0

if k"i

if kOi.

Now, the formed projection matrix P
Ia

can be given as
follows:

[P
Ia
(x)]

ij
"G

0 iOj

1 i"j3IM
a

0 i"j3I
a
.

It should be noted that, for any active set as I
a
, this

P
Ia

is symmetric and idempotent, i.e. PT
Ia
"P

Ia
"P

Ia
P
Ia
.

Now, the dynamics related to SLDN given in Eq. 3 can be
written as follows:

x5 "!P
Ia
(x)+E(x). (4)
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Even though the right-hand side of Eq. 4 is discontinu-
ous in x, it is known (Pekergin et al. 1998; Hou and Michel
1998) that, for any initial condition x (0)3[0, 1]n, there
exists a unique solution which is continuous, nondi!eren-
tiable but right di!erentiable with respect to time, and also
is kept in the hypercube [0, 1]n. The analysis, which will be
given in the sequel, relies on the right-di!erentiability of
the solutions. In Hou and Michel (1998), a model having
the same dynamics as Eq. (4) is considered, and it
is described with right-di!erentiable solutions. The
concern of Hou and Michel (1998) is on the derivation of
global asymptotical stability results which are useless
for system 4 possessing multiple equilibria completely
stable dynamics. The characteristics of the solutions of
Eq. 4 are the same as those of the model in Hou and
Michel (1998), so they will not be reconsidered here to
avoid repetitions. However, the right-di!erentiability and
uniqueness of the solutions of Eq. 4 lie on the following
facts. 1) In every k-face of the hypercube [0, 1]n with
k3M0, 1, 2,2, nN, the system 4 is equivalent
to a linear state equation system. So, the solutions,
starting at a k-face and staying there over a time interval,
uniquely exist and are continuously di!erentiable in
any degree. 2) The concatenation of these solution compo-
nents yields a continuous solution since the projected
gradients make right angles with the original gradients
which are oriented towards the outside of the hypercube
[0, 1]n necessitating the projection. 3) The solutions
may not be di!erentiable at the concatenation
points. However, they are right-di!erentiable at these
points since any concatenation point is, indeed, the
starting point for another solution component which
is di!erentiable. (See Hou and Michel (1998) for more
details.)

The dynamical system 4 is not in the form of
gradient system. Also, it is not a quasi-gradient system
since P

Ia
(x) is not a positive de"nite matrix. But

still, a discussion similar to the one given above dealing
with the applicability of gradient systems in optimization
problems can hold if it can be shown that the &&energy''
function E (x) is nonincreasing along the trajectories
of Eq. 4 and equilibria concide with the local
minima.

For this purpose, La Salle's invariance principle which
is originally given for systems having a continuous right-
hand side will be extended here to the systems with a
discontinuous right-hand side. Consider "rst Theorem 5
stating La Salle's invariance principle for autonomous
systems as x5 "h(x) with a continuously di!erentiable
right-hand side (Vidyasagar 1978).

Theorem 5 If there exists a continuously di+erentiable
¸yapunov function < ( ) ) : RnPR1 such that 1) the set
)

r
"Mx3Rn D<(x)4rN is bounded for some r'0, 2) <( ) )

is bounded below over such a set )
r
, and 3) <Q 40 ∀x3)

r
,

then any solution x (t, x
0
, 0), starting from x

0
"x (0)3)

r
,

tends to the largest invariant set contained in
S :"Mx3)

r
D<Q (x)"0NL)

r
. K

The largest invariant set mentioned in Theorem 5 consists
of equilibrium points if the conditions of Theorem 6 (Chua
and Wang 1978) are satis"ed.

Theorem 6 ¹he autonomous system x5 "h(x) is completely
stable, namely the invariant set which the trajectories tend to
is made up of the equilibrium points if 1) the solutions of the
system are bounded 2) there exists a continuously di+eren-
tiable ¸yapunov function <( ) ) such that <Q 40 ∀x3Rn

except for the equilibrium points where it vanishes. K

The system given in Eq. 4 has only bounded solutions,
thus the "rst condition of Theorem 6 is satis"ed. However,
Theorem 6 can not be used to show the complete stability
of Eq. 4 due to the discontinuous right-hand side of Eq. 4.

The key point in the proofs of Theorems 5}6 is the
exploitation of the condition <Q (x)"[+< (x)]Th (x)40.
This condition together with the other technical assump-
tions implies that the function <(x) is decreasing along
trajectories until it reaches an equilibrium point where it
takes a constant value. For the system in Eq. 4, x is not
a di!erentiable function of time t, special care has to be
paid in using the time derivative of<( ) ) and the chain rule
<Q (x)"[+<(x)]Tx5 . In the sequel, the right-derivative and
the corresponding chain rule will be used to handle this
problem. To handle another pathological case, in which
the considered state equation system has a continuous
right-hand side de"ned in an open set and the solutions
are nondi!erentiable even nonunique, La Salle's paper (La
Salle 1968) used a lower right-derivative for the Lyapunov
function whose calculation, in general, requires the solu-
tions to be known. Although the results of La Salle (1968)
are given for a quite general class of systems, they can not
be applied directly to the Eq. 4 since Eq. 4 has a discon-
tinuous right-hand side de"ned over the closed (and also
bounded) set [0, 1]n. In the sequel, an invariance result for
the discontinuous system 4 is given following a similar
way to La Salle (1968). But, for system 4, it is known
(Pekergin et al. 1998; Hou and Michel 1998) that the
solutions are unique and the Lyapunov function candi-
date E (x), which will be used, is continuously
di!erentiable function. So, to use the lower right-deriva-
tive is restrictive. Instead, since the right limit of the
solutions of Eq. 4 exists for all t, the right-derivative given
below will be used, and then the right-derivative of the
Lyapunov function along the trajectories will be cal-
culated in terms of its gradient with respect to x and the
right-derivative of the solutions.

De5nition Right-Derivative: ¹he right-derivative of a func-
tion x ( ) ) : RPRn is de,ned as dx (t)

dt`
:"lim*?0`

x(t`*)~x(t)*
where *P0` means that * approaches zero through posit-
ive values only.

So in Lemma 1, a chain rule will be derived in the sense
of right-di!erentiability.

Lemma 1 Consider the functions t ( ) ) :DtL[0, R)P
D

g
LRn and g ( ) ) : D

g
PR. ¸et t3Int(Dt) with Int stands
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for the set of interior points. Assume that g( ) ) is continuous-
ly di+erentiable at t (t), and t ( ) ) is right-di+erentiable
at t. ¹hen, g

3
t is right-di+erentiable at t and

d (g 3t)(t)
dt`

"[+tg(t)]Tdt(t)
dt`

.

Proof t3Int (Dt) implies t (t)3Int (D
g
). t ( ) ) is right con-

tinuous due to the right-di!erentiability. Hence, by the
de"nition of the right-derivative,

d(g
3
t)(t)

dt`
:" lim

*?0`

g (t(t#*))!g (t(t))

*
.

As g( ) ) is di!erentiable at t(t), by mean value theorem,

g(t (t#*))!g(t(t))"[+g(t(m))]T[t(t#*)!t (t)]

for some m3[t, t#*]. Then,

lim
*?0`

g (t (t#*))!g (t(t))

*

" lim
*?0`

[+g(t (m))]T
[t (t#*)!t (t)]

*
.

Since g (t ( ) )) is di!erentiable, it can be written:

lim
m?t`

+g(t(m))"+g(t (t)).

By the assumption of right-di!erentiability of t ( ) ),

lim
*?0`

( (t#*)!t (t)

*
"

dt(t)

dt`
.

The limits of two sequences exist and the limit of the
product sequence also exists, then this limit is equal to the
product of the individual limits. This fact implies that g

3
t

is right-di!erentiable:

d(g
3
t)(t)

dt`
"[+tg(t)]T

dt(t)

dt`
. K

So, Lemma 1 provides the needed chain rule as used in
Lemma 2.

Lemma 2 Consider system 4 and the corresponding 00en-
ergy11 function E (x)"xTA1 x!eTx. ¹hen, d(E3x)(t)

dt`
40

∀x3[0, 1]n and moreover it is equal to zero i+ x is an
equilibrium point.

Proof The quadratic energy function E(x) is continuously
di!erentiable with respect to x and the solution x(t) of Eq.
4 are unique and right-di!erentiable. So, due to Lemma 1,
d(E3x(t))

dt`
"[+E (x)]Td(x(t))

dt`
"![+E(x)]TP

Ia
(x)+E(x). Since

P
Ia
(x) is idempotent and symmetric, d(E3x(t))

dt`
"

!E+[E(x)]TP
Ia
(x)E2 in terms of the Euclidean norm.

Now, d(E3x(t))
dt`

is equal to zero i! the vector P
Ia
(x)+E(x) is

equal to zero. This speci"es the equilibrium points of
system 4. K

Lemmas 1 and 2 provide an extension of Theorem 6 to
the considered discontinuous right-hand sided di!erential
Eq. 4.

Theorem 7 (Invariance Principle) Consider the autonomous
system 4 where the scalar function E(x)"xTA1 x!eTx.
¹hen, every trajectory that starts in [0, 1]n ends in one of the
equilibria, i.e. the system is completely stable. K

Proof For x
0
:"x (0)3[0, 1]n, let x (t, x

0
, 0) be the solu-

tion starting from x
0
. Due to the de"nition of the gradient

projection operator, any such solution of Eq. 4 is bounded
and is kept in the closed hypercube [0, 1]n. Since the
function E (x) is a continuous function, then it is bounded
below over [0, 1]n. It is known from Lemma 2 that
dE(x(t))
dt`

40 ∀x3[0, 1]n. By the de"nition of the right-deriv-
ative, dE (x(t))

dt`
40 ∀x3[0, 1]n implies E (x(t, x

0
, 0)) is

nonincreasing for all x3[0, 1]n. This property together
with the fact that E(x) is bounded below over [0, 1]n
yields: E (x (t, x

0
, 0)) converges to a limit E*, i.e.

lim
t?=

E(x (t, x
0
, 0))"E*.

Due to the continuity of E (x), and E (x (t, x
0
, 0)) goes to

E*, x (t, x
0
, 0) goes to the set Mx*DE(x*)"E*N. Such x*'s

are, in fact, in the positive limit set ¸
`

of the trajectory
x(t, x

0
, 0). Since all sequences ME(x(t

n
, x

0
, 0))N=

n/1
have the

same limit E*, then E (x6 )"E* for all x6 3¸
`

. As known
(Vidyasagar 1978), the positive limit set ¸

`
is an invariant

set, i.e. x (t, x6 , 0)3¸
`

for all x6 3¸
`
. Hence, E(x) becomes

constant along any trajectory starting at a point in ¸
`

:

dE(x(t, x6 , 0))

dt`
"0 ∀x6 3¸

`
.

Now, by Lemma 2, the positive limit set, ¸
`

of the
trajectory x (t, x

0
, 0) must consist of equilibrium points.

By the de"nition of the equilibrium point and the unique-
ness of the solutions, ¸

`
for any trajectory contains the

unique equilibrium point only. K

Theorem 7 shows that the system 4 has completely
stable dynamics meaning that it does not possess oscilla-
tory, chaotic or other exotic behaviours, so any trajectory
of it converges to one of the equilibrium points. Due to the
inde"niteness of the quadratic energy function E (x), three
di!erent kinds of equilibrium points may coexist; namely
stable, asymptotically stable, source or saddle type nonst-
able. Considering the relation between the gradient
projection dynamics of Eq. 4 and the analyzed optimiza-
tion problem, these equilibrium points correspond to,
respectively, nonisolated local minima, isolated local min-
ima, maxima or saddle points of E (x) over the constraint
set [0, 1]n (Pekergin et al. 1998). So, any locally
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Table 2 Averages over bests
among 5 runs and bests among
10 runs for 100- and 500-graphs
with density of 0.25, 0.50 and
0.75.

Av. over Bests among 5 Runs Av. over Bests among 10 Runs

D<D Density SLDN CHN CNN SLDN CHN CNN

100 0.25 5.21 4.58 4.48 5.30 4.62 5.14
0.50 8.47 7.59 8.07 8.60 7.66 8.32
0.75 15.63 14.24 14.69 15.76 14.40 15.18

500 0.25 6.476 6.169 6.285 6.80 6.38 6.551
0.50 11.34 10.26 10.74 11.83 10.41 11.18
0.75 22.437 20.593 21.67 23.00 20.875 22.20

Table 1 Average Cliques Sizes found for 100- and 500-graphs with
density of 0.25, 0.50 and 0.75

D<D Density Overall Average

SLDN CHN CNN RLN

100 0.25 4.83 4.48 4.176 5.16
0.50 8.07 7.38 7.096 8.48
0.75 15.05 13.87 13.562 16.31

500 0.25 5.8 5.617 5.155 6.02
0.50 10.387 9.605 9.186 10.28
0.75 21.022 19.443 19.318 }

asymptotically stable equilibrium point to which all tra-
jectories starting at points in its vicinity constrained in
[0, 1]n converge, corresponds to a continuous isolated
local minimum point of E (x). It is proved in Pekergin et al.
(1998) for E (x) with the considered A that: 1) Any stable
equilibrium point is also asymptotically stable, equiva-
lently any local minimum point must be isolated. 2) The
asymptotical equilibria necessarily occur on vertices of the
hypercube [0, 1]n. 3) The continuous local minima co-
incide with the discrete local minima of E (x) under the
hypercube constraint [0, 1]n. 4) Any converged vertex is
actually a maximal clique. 5) For almost all initial states in
the hypercube, any trajectory goes to one of the vertices
corresponding to maximal clique. In other words, only the
trajectories starting exactly on nonstable equilibria, which
is known to be a zero measure, do not give a maximal
clique. Therefore, calculating the steady-state solutions
of the di!erential equation system 4 with E (x)"
xTA1 x!eTx is equivalent to "nding maximal cliques of
a graph given with the adjacency matrix A.

4 Simulation results

Performance of di!erent clique "nding methods are com-
pared in Table 1 for random graphs of di!erent vertex size
and densities for SLDN, CHN, CNN, RLN. Average
maximum cliques where the averages are taken over the
test graphs generated with the same characteristics, i.e. the

vertex size and densities, are considered as a primary
performance measure. Another performance measure is
also considered, in which the averages are computed for
the same test set but taking into account only the best
results obtained on each graph is 5 and 10 independent
runs with random initial conditions. This measure shows
the ability of the methods to "nd di!erent search direc-
tions when it is started from a di!erent initial point. The
results are summarized in Table 2. Since the RLN always
starts with the same initial states, results for this method
are not included.

5 Conclusion

The maximum clique problem which is an NP-hard dis-
crete optimization problem is reviewed here. Some basic
formulations and methods used in solving this problem
have been summarized, especially with emphasize on con-
tinuous methods. The main contribution of this work is
given in Sect. 3. In this section, gradient and quasi-gradi-
ent systems were discussed, and it is shown that, even
a system which has discontinuous right-hand side and
hence can not be classi"ed as both of these, a discussion
similar to the above mentioned systems' optimizing dy-
namics can still be made. This discussion is carried on for
a recently proposed dynamic optimizer, namely the
saturated linear dynamical network, and to show gradient
like (more precisely, completely stable) dynamics of such
systems. La Salle's invariance principle is extended to the
systems with a discontinuous right-hand side. Simulation
results for continuous methods, namely the SLDN, CHN,
CNN and RLN are given. It is concluded that gradient-
like dynamical systems as continuous solution methods
can be applied to the quadratic formulation of the max-
imum clique problem, o!ering good approximations.
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