
ELSEVIER Data & Knowledge Engineering 29 (1999) 121-145

I DATA & KNOWLEDGE
ENGINEERING

Incremental materialization of object-oriented views
• . a ~

Reda Alhajj " , Ashraf Elnagar b

"Department of Computer Science, Sultan Qaboos University, P.O. Box 36, Alkhod 123, Muscat, Oman
bDepartment of Computer Science, University of Sharjah, P.O. Box 27272, Sharjah, UAE

Received 27 March 1998; revised 14 July 1998; accepted 2 September 1998

Abstract

We present an approach to handle incremental materialization of object-oriented views. Queries that define views are
implemented as methods that are invoked to compute corresponding views. To avoid computation from scratch each time a
view is accessed, we introduce some deferred update algorithms that reflect for a view only related modifications introduced
into the database while that view was inactive. A view is updated by considering modifications performed within all classes
along the inheritance and class-composition subhierarchies rooted at every class used in deriving that view. To each class, we
add a modification list to keep one modification tuple per view dependent on that class. Such a tuple acts as a reference point
that marks the start of the next update to the corresponding view. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Algorithms; Deferred update; Incremental update; Materialized views; Object-oriented databases

I . I n t r o d u c t i o n

In general, a view is a query that may be temporary or required to be persistent. Temporary views

are generated and used during a query session and cease to exist at the end of that session; they never

become a part of the class hierarchy. Persistent views, however, must be placed in the hierarchy for
subsequent access.

Views have a lot of application areas ranging from integrity constraint maintenance to persistent
queries, among others. Another emerging application area that draws much attention to views is data
warehouses [36] where it is necessary to reduce communication. Views may also be used to enforce

security such that a view for a certain level of users can be defined so as not to include confidential
information contained within the actual database. Consequently, research on views must receive more

attention and researchers in the field must concentrate on adapting view maintenance models to

emerging advanced data models. In this respect, any proposed view model must consider the
possibility of incremental update because recomputing the whole view from scratch may be very

* Corresponding author. E-mail: alhajj@squ.edu.om

0169-023X/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0169-023X(98)00042-1

i22 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

expensive. However, the difficulty and complexity of a view maintenance approach is dependent on
the underlying data model. Although a lot of research effort is concentrating on view maintenance and
materialization within the relational model, e.g. [11,13,15,19,20,31,32], much more effort and
consideration is still required when dealing with view maintenance within the nested relational model
and more important, object-oriented data models. In other words, views have not been studied
thoroughly within the object-oriented context, despite the effort done in this respect, e.g.
I1,4,12,14,18,21,22,23,25,26,29,30,33]; this is due to the still lacking agreement on standardization in
the field.

Complex structures (nesting) commonality between object-oriented and the nested relational models
icad to having an object-oriented view maintenance approach applicable to the nested relational model
,~nd hence to the conventional relational model, However, the inheritance and hence reusability
distinguishing feature of object-oriented models makes view maintenance within the object-oriented
context unique, i.e., no approach developed for the relational model remains applicable to the
,.~bject-oriented level. Adapting a relational view model to an object-oriented counterpart is
unacceptable because such an approach eliminates the functionality and the distinguishing features of
the object-oriented context; it is very similar to having a calculator while continuing to work with
manual calculations. Actually, object-oriented models have features and characteristics that make
views within such models more flexible and natural than their relational counterparts. In other words,
it is necessary to benefit from the class concept and define a view to be a class with the corresponding
query being a method in that class to decide on its objects. This way, closure is maintained within the
model where a view can be smoothly used as an operand. We dealt with stored queries in our query
model described in [5,7,9], and managed to handle the proper placement of a query result in the
hierarchy. For instance, the result of project is a superclass of the class of the operand, the result of
join is a subclass of the classes of both operands, while the result of select is a brother class of the
class of the operand. Other operations are treated the same way.

In this paper, we present a model that facilitates incremental view materialization within object-
oriented databases and is also applicable to the nested and relational models. The model is not
restricted to handle only queries based on a single class (including selection and projection); multiple
classes based queries are also considered. In other words, a view may be derived from one or more
classes and each such class may be either an existing view or a class from the actual database. To
have a view accepted as a first class citizen in the database, we categorize classes into base classes
and virtual classes ~ in common with others [27,28]. The latter correspond to view definitions and
hence hold the virtual part of the database. The former, on the other hand, hold the actual database.
The basic idea in our approach is to distinguish and keep modifications related to a view since its last
derivation (update). Therefore, in any subsequent view update only such modifications are considered
and hence the number of objects to be accessed while updating a view is reduced. However, a base
class is in general the root of two subhierarchies, namely, inheritance and class-composition
subhierarchies. Consequently, while updating a view, it is necessary to consider indirect modifications
performed within any class along both subhierarchies rooted at every class used in deriving that view.
To achieve that, to each base or virtual class we add a modification list to keep track of all
modifications to be reflected on demand to views which depend on that class. A modification list in a
class consists of a sequence of modification tuples, one per view dependent on that class. Each such

In thi~ paper, the two terms "views' and 'virtual c lasses ' are used in terchangeably to refer to the same entity.

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 123

tuple acts as a reference point to help in deciding on the amount of information necessary to update
the corresponding view. A modification tuple holds a view identifier and modification information
related to the corresponding class. In this paper we consider only modification information related to
objects. However, our approach can be easily extended to consider modifications related to behavior
as well as to class variables, if necessary. This could be achieved by merely extending the
modification tuple to include the desired information.

Explicitly, modification information inside tuples of base classes covers insertions, deletions and
updates related to objects in those classes. On the other hand, modification tuples of virtual classes do
not contain update information because updates are solely performed against base classes in our
model. Furthermore, modifications performed on a class are always registered inside the last tuple in
its modification list and a modification list is ordered such that its tail is the tuple holding the identifier
of the most recently accessed view. On accessing a view, it is required to consider the union of
modifications not known to that view because they have been made after its last update. Such
modifications are present in the sequence of tuples starting with the one holding the identifier of the
given view until the end of a modification list because the order of modification tuples inside a
modification list reflects the access order of their corresponding views. The tuple at the head of a
modification list corresponds to the least recently accessed view. Therefore, on accessing that view, it
is necessary to consider all modifications present inside the list, i.e., taking the union of the
modifications in all the tuples within the list. On the other hand, the tail tuple of a modification list
corresponds to the most recently accessed view and only modifications found in that tuple need to be
reflected to that view on update. As a view is updated, the modification sets in the tuple holding the
identifier of that view are merged with the corresponding sets of its immediate predecessor tuple in the
same list. Then, a new tuple holding the same view identifier with empty modification sets is
appended at the tail of that list; to mark the starting point of the forthcoming update to that view.
Finally, different algorithms have been developed to reflect modifications to virtual classes as they are
accessed.

The rest of this paper is organized as follows. Section 2 includes a short description of the work
already done to deal with view maintenance. The model on which our work is based is presented in
Section 3. In Section 4, we elaborate more on the characteristics of the model and introduce the
algorithms that govern and guarantee incremental view maintenance and materialization. Section 5
concludes.

2. Related work

Views have been studied within different contexts. Some researchers handled the problem of
answering queries using materialized views, e.g. [16]. A systematic study of the complexity of the
problem of answering queries using materialized views within the relational model is proposed in [2].
Materialized views have also been studied within the temporal relational model. For instance, the
work described in [34] introduced a framework for maintaining temporal views over non-temporal
information sources in a data warehousing environment. Finally, incremental materialization tech-
niques over semistructured data have received much attention in recent years, e.g. [3]. The
graph-based model OEM and the query language Lorel, developed at Stanford, form the framework
for the work described in [3]. The authors proposed an algorithm that produces a set of queries that

124 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

compute changes to a view based upon changes to the source. Graph structured views and their
incremental maintenance are also investigated in [37].

Many incremental view maintenance algorithms have been developed within the relational model,
e.g. [11,13,15,19,20,31]. Most of them are designed for a traditional centralized database environment,
where it is assumed that view maintenance is performed by a system that has full control and
knowledge of the view definition, the base relations and the updated tuples. These algorithms differ
somewhat in the view definitions they handle. While some algorithms depend on key information to
deal with duplicate tuples [13], others use a counting approach [19]. POSTGRES [32] uses the rule
system to simulate views, where derived tables (views) can be defined by rules and other rules may
define specialized update semantics for such views. Another group who studied materialized views in
distributed systems based their work on timestamping the updated tuples [31], and their algorithms
assume that there is only one base table. In our model, we follow a similar approach by ordering
views from the least recently accessed to the most recently accessed. However, we do not impose the
restriction of a single class.

Some systems within the object-oriented context, such as ORION [24], do not support the use of
views, while others regard views as one more way of querying the database without dealing with
incremental view maintenance and materialization. For instance, views in OQL are known as contexts
[4]. An OQL query contains a context clause, wherein the user specifies a series of class associations
to derive a desired subdatabase. A query is then specified over the newly defined context. Because this
context is actually a new virtual database, the context clause subsumes the need for views. Any time a
view is needed, a context may be specified. On the other hand, in XSQL [23], views may be defined
explicitly. Queries may also be used to define views, because the result of a query is a set of objects,
which is in turn, a view. We follow the same approach of XSQL in preserving the correspondence
between objects in views and objects in database classes and hence allow for easy and consistent
updates where view updates are translated to database updates via object identifiers.

The view mechanism defined for the O 2 system [1,29] facilitates the access to values in views as if
they are stored in those views. A view has a hierarchy, but no data of its own. Such hierarchy is
intended to be closer to the needs of the user than the original class hierarchy from which it was
extracted. To ensure consistency, an object is defined as being real in only one class, and also real in
only one view. This allows update resolution to be implemented in a consistent way. The CROQUE
approach to the maintenance of materialized views is discussed in [18], where views are treated as
functions of database objects. The algebraic properties of those functions were examined to derive
incremental update plans. The work described in [30] is based on an object functional model that has
been developed as an evolution from and generalization of the nested relational model. Class
predicates distinguish that model from others. Classes may be constrained by predicates that must be
satisfied by all members of the class. Class predicates are also used to handle updates to views. In our
model, we have a method in each class to decide on objects that qualify to be in that class and hence
our approach is more general. Another approach is FUGUE [22] that uses type hierarchies for
information hiding: the user can implement a new type for a view that utilizes some base type(s) and
offers only a restricted functionality or extends the functionality. Also, not all instances of the base
type may be exported. Described in [21] is a view materialization model in which updates are
propagated using change files that represent histories of design sessions. However, objects are
duplicated for virtual classes rather than merely storing references to objects. The work described in
[25] addresses maintaining consistency for a particular type of join class formed along an existing

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 125

path in the aggregation graph. Finally, MultiView [26,27,28] is a view model implemented on top of
GemStone and it incorporates algorithms for object preserving view classes. Furthermore, it focuses
on the specification of a consistent view schema graph rather than an individual view class. Our
approach described in [5,7,8,9] is a step in this direction where we handle the proper placement of a
query result in order to maintain closure and maximize reusability.

As a result, through the use of object identifiers and virtual data, the view mechanism can be
implemented correctly. Views can be entirely comprised of pointers information, i.e., virtual data. Any
update made through a view would be an indirect update, because the real data would be accessed
through the use of pointers. No replication is necessary and hence no inconsistencies emerge due to
the creation or updating of views. However, it is important to decide on the appropriate time to reflect
database modifications to related views. There are three general approaches to the timing of view
maintenance: immediate update that updates the view after each update to the actual database;
deferred update that updates the view only when a query is issued against the view; and periodic
update that updates the view at periodic intervals. Performance studies on these strategies within the
relational context determined that the efficiency of an approach depends heavily on the structure of the
base relations and on update patterns [20]. The immediate update mode has the disadvantage that each
update transaction incurs the overhead of updating the view. The overhead increases with the number
of views and their complexity. Immediate update is not even possible in some applications such as
data warehousing. If a component database does not know what views exist at the warehouse, it
cannot modify transactions updating base classes so that they also refresh materialized views. Even if
the system was a centralized one, it may be necessary to minimize the per-transaction overhead
imposed by view maintenance. In such cases deferred maintenance is most appropriate. Some
applications may be tolerant to out-of-date data, or even require that the view be frozen for analysis
and other functions. In this case the view could be refreshed periodically or just before querying.
Deferred maintenance makes it possible that several updates can be batched together.

We argue that deferred update is more reasonable within the object-oriented context. Explicitly, the
conventional relational model is based on a simple data structure, that is the table, while an
object-oriented model contains complex structures, including directed graphs and trees. Based on that,
modifying a relation does not affect except the relation itself and its dependent views. On the other
hand, modifications done against any node within a tree or a graph do not affect only that node and its
dependent views, but also propagate to affect predecessor nodes and their related views. Here
applying immediate update mode imposes on the system visiting each affected node to tell it and its
dependent views about the performed modification. Doing this, other jobs will be frustrated waiting
while the system is busy spending effort on telling some information not asked about. To avoid such a
situation, we employ deferred update mode and argue that it is the most suitable mode for
object-oriented systems where a node is told about modifications only when it is active willing to have
up-to-date knowledge.

3. The basic model

In this section we introduce our model. An example class hierarchy is shown in Fig. 1 and some
corresponding objects are included in Fig. 2. Both figures will be referenced frequently in the paper
where illustrating examples are necessary. In Section 3.1, we concentrate on the terminology and

i2(', R. Alhajj. A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

~ " - ') C l a s s

I n h e r i t a n c e Conne cltlons

- - - - - . .~ N e s ~ C o n n e c t i o n s

Fig. I. An example class hierarchy.

definitions necessary for understanding the incremental view materialization approach described in
Section 4. Some illustrating examples are given in Section 3.2.

J, 1. Basic terminology and definitions

Any object with old as object identifier qualifies to be considered in the set of objects of class c,
denoted by L~,,,,,,,,~,(c), if and only if object old understands nothing more than the behavior defined
lot objects of class c, i.e., the set of methods/messages of class c. The behavior for class c consists of
two parts, inherited behavior and locally defined behavior. However, enforcing polymorphism and
overriding relaxes the model to allow the re-definition of any method in the local behavior instead of

Oi~ l [ttV i e w s in Databases" ,[O{dT , oiga], 1997,"Computer Science"," M E H Pub"]
o~a2 ["Algorithms", [O,d9], 1996, "Computer Science"," B ET Pub"]
o~,t~ ["EXT In format ion Engineering",[oids, o~a~], 1994,"Computer Science u, Nil ,"Vienna", o~dzo, {oi4~, oidg} ,

o, 25, [oi .~, o~d~ ~]]
oia4 ["I CT Transactions on Object Databases", oiag , {OidT , Oids }," M E H Pub", [oiax2]]
oids ["Multiagent Systems",[oid~o]," Arti ficial Intelligence", {"Agents","Cooperation"}, 10-10-95, 5-12-97,

2-1-98, 23, 4]
o~d 6 ["Feature based retrieval of Similar Shapes",[oldT , Oidg],"Database", {}]
Oid7 ["Mary Folk"," FI']
o~d8 ["Bill Richardson "," M "]
oi~lu If'Rearms SedgewickI'," F"]
oialo ["Susan Johnson"," F"]
°~g1~ [''A Query M••el f •r •bject •riente• Databases''•[•i•s• •i•z•]•''Database''• {''•bject Algebra''• "Closure"}]
Otdt2 ['IA View Management Model",[oiaT, Oidlo],"Database", {"Views", "Query Model"}, 10-10-90, 11-11-91,

12-12-91, 21, 3]
Oi d~3 ["Object Engineering",[oidT , O,dg] , 1996,"Computer Scienee"," B ET Pub","N ew York" , Oidao, {OidT, Oid9 },

o 35,[o~d~,]]
o ~ 4 ["Version based In format ion Management",[O~dr , Oids]," Database", {}]

Fig. 2. Example objects from the classes in Fig. 1.

R. Alhajj, A. Elnagar I Data & Knowledge Engineering 29 (1999) 121-145 127

inheriting it and this leads to a method having different implementations in different classes [8]. Each
method implements a certain function and has a receiver, formal parameters and a result. Further, a
method is invoked via a corresponding message of the general form m(r, p~, Pz Pk), where m is
the method name, r is the receiver and Pl to Pk are the parameters.

= . . . ,]2 be a list of its Definition 3.1 (Class Behavior). Given a class c and let Cp(c) [cpl, Cp2, Cp,
direct superclasses. The whole behavior for class c, denoted by Wbehavior(C), is recursively defined to
include the whole behavior of the classes in Cp(c). Formally,

n
Wbehavior(C) : tbehavior(c) ~" ~Ji=l Wbehavior(Cpi)

where Lbehavior(C) denotes the local behavior for class c.

Returning back to objects of class c, they are not limited to objects in Li,st ~ (C). There are some
other objects, i.e., objects in the extent of class c that, due to inheritance, understand the behavior in
Wbehavior(C). In other words, it is possible to access objects in the subclasses of class c as if they were
defined in Linst (C).

Definition 3.2 (Class Extent). Given a class c and let Cb(C) = {Cb~, Cb2 Cbt }3 be the set of its
direct subclasses. All objects that understand at least the behavior in Wbehavior(C), constitute the extent
of class c, denoted by Wi,s, (C). This set is recursively defined in terms of the extents of the classes
in Cb(C). Formally,

Winstances(C) ~- Linst (c) [.-Ji=l Winst (Cb i)

Of course, by enforcing polymorphism and overriding an object oid that qualifies to be in both
Winstances(Ci) and W~,s, (cj) may respond differently to the same message, depending on whether oid
has been accessed from within W,,s , (ci) or Winst (cj). This is true because, having a message m
in both Wbehavior(Ci) and Wbehavior(Cj) does not restrict the method underlying m to have the same
implementation in both c i and c i. However, for an object to be able to understand and deal with a
certain behavior, it should have some predefined basic knowledge, i.e., possess a certain state. Such a
state is specified by the values of a set of predefined instance variables (attributes). Consequently, a
part of the behavior understandable by an object is devoted to deal with its state. The other part of the
behavior is there to derive new values based on the present state (stored values). The former part
includes two methods corresponding to each particular attribute, with the same message being used to
invoke both methods but with different parameters. The first method, with a single parameter, sets the
value of an attribute to the value specified by the parameter. The second method has no parameter and
simply returns the current stored value of an attribute. For instance, given title as an attribute in Fig. 3,
two messages title() and title(t) are there to retrieve the title of a receiving object and to set the title of
a receiving object to the value t, respectively.

Definition 3.3 (Instance Variables). Given a class c; the set of attributes that determine the state of

z A list notation is used for the superclasses because their order is important for conflict resolution due to polymorphism and
overriding. Conflicts are resolved according to certain predefined rules discussed in [6].
3 Conflict resolution is not applicable here because only objects are concerned, hence the set notation is utilized.

128 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

N e w C l a s s : Book
• Lattrib~tes(Book)={title:String, author:[Researcher], year:Date, subject:String,publisher:String},
• Lbeha~io~ (Book)= {title(), title(t), author(), author(p), year(), year(y), subject(), subject(s), publisher(), publisher(p)},
• Cp(Book)=[] • Cb(Book)={Proceedings}
N e w C l a ~ : Proceedings
• Lattributes(Proceedings) = {location:String, chairperson:Researcher, committee:{Researcher},

AcceptanceRate:Real, contents: [Con f erencePaper] }
• Lbehavior(Proceedings) = {location(), location(l), chairperson(), chairperson(p), committee(), committee(p),
• Cp(Proceedings)=[Book] * Cb(Proceedings)={SpecialIssue)
NewClass : Journal
• Lattributes(Journal) = {title:String, EditorlnChief:Researcher, EditorialBoard:{Researcher),publisher:String,

contents : [J ournal Paper]) ,
• Le~h~wr(Journal) = {title(), title(t), EditorInChiefO , EditorlnChief(e), EditorialBoardO, EditorialBoard(p),

publisher(), publisher(p), contents(), contents(c) },
• Cp(Journal)=[] • Cb(Journal)= {Speciallssue}
NewClams: SpecialIssue
• Lattribut~s(SpecialIssue)= {Volume:Integer, Number:Integer}
• Lbeha~ior(Speciallssue) = {Volume(), Volume(v), Number(), Number(n)}
• Cp(SpecialIssue)=[Proceedings, Journal] • Cb(Speciallssue)={}
N e w O l a s s : ResearchPaper
• Lattributes(ResearchPaper) = {title:String, author:[Researcher}, area:String, KeyWords:{String}},
• Lbehavior(ResearchPaper) = {title(), title(), author(), author(a), area(), area(a), KeyWordsO, KeyWords(k)},
• Cp(ResearchPaper)=[] • Cb(ResearchPaper)={JournalPaper, Confer•he•Paper}
N e w C i a s s : JournalPaper
• Lattributes(JournalPaper) = {DateReceived:Date, DateRevised:Datc, DateAccepted:Date, Volume:Integer,

Number: Integer}
• Lb~h~vio~(JournalPaper) = {DateReceivedO, DateReceived(d), DateRevisedO, DateRevised(d), DateAcceptedO,

DateAccepted(d), Volume(), Volume(v), Number(), Number(n)}
• Cp(JournalPaper)=[ResearchPaper] • Ce (JournalPaper)={)
NewClass : ConferencePaper
• L~tt~b~,t~s(ConferencePaper) = {}
• Lbehavior(ConferencePaper) = {}
• Cp(ConferencePaper)=[ResearchPaper] • Cb(ConferencePaper)={}
N e w C l a ~ : R.esearcher

• Lattributes(Flcsearcher) = {name:String, sex:Character}

• Lbehavior(Researeher) = {Name(), Name(s), Sex(), Sex(s)}
• Cp(Researeher)=[] • Cb(Researcher)={}

Fig. 3. Properties of the example classes shown in Fig. 1.

each object in Lin.,,,nces(C) is denoted by Wattributes(C) and defined recursively in terms of the attributes
defined for objects of the classes in Cp(c). Formally,

Wattributes(C) = Lattributes(C) UT= 1 Wattributes(Cpi),
where Lattributes(C) denotes the additional attributes defined locally in class c.

Each attribute has a domain from which objects draw the values constituting their states. For instance,
the domain of the attribute title is String. A domain may also be a set of objects from an existing class
as it is the case with the attribute author in Fig. 3 that has as its domain a set of objects from
Researcher class.

Based on what has been introduced so far, a class is distinguished by some properties and
constructs (Definition 3.4) that form one part of its definition; the other part will be introduced next in
Definition 3.5.

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 129

Definition 3.4 (Class Properties). Let 6 be a general class; an object in tinst (~) is defined to be a
quadruple (Cp(c), Cb(C), La.rib.,es(C), Lbehavior(C)), where Cp(C), Cb(C), tattributes(C), and Lbehavior(C) are
the properties of a given class c present in the class hierarchy.

It is obvious that, the definition of class 6 itself is an object in class ~ with as values:
• c . (a) = [] ,
• cb() =

• Lan~ibut~(~) = {Cp(c) : [C] , Cb(c):{C }, Lattrlbutes(C):{lv}, Lbeha~io~(C)'{MT} 4,
• tbehavior(~) = {AppendCp(class,position), DropCp(class), AddQ(class), DropQ(class)

AddL ~tmb.tes (attribute,domain), DropL attr~b.,e, (attribute),
AddLbehavior(message,function), DropLbeha~ior(message)}

Definition 3.5 (Class). A class c is formally defined as a pair (Pa(c), Po(c)), such that:
• Pa(c) refers to a set of identifiers drawn from a domain that includes either objects in class 6 or

class identifiers of base and virtual classes. In other words, the value of Pa(c) may be either a
single object from class 6 or a mixture of class identifiers and~or view identifiers.

• The value of Po(c) depends on the value ofPa(c) as follows. For the former case, c is a base class
and Po(c) refers to a pair (Linst (c), Mlist(C)), where Mlist(C) denotes a modification list
consisting of modification tuples. For the latter case, on the other hand, c is a virtual class and
Po(C) refers to its additional properties; it is the view directly derived from classes~views the
identifiers of which are included in Pd(C).

Definition 3.6 (View Dependency). Given a class c and a view Via. We say that view Via depends on
class c if and only if either one of the following is satisfied:

(1) c ~ Pa(Vid),
(2) 3c' ~ Pd(Vid) and c is in the inheritance subhierarchy rooted at class c',
(3) 3c" that satisfies (1) or (2) (by substituting c" for c) and c is in the class composition

subhierarchy rooted at class c".

Definition 3.7 (Modification List). Given a class c and let Via,, Via 2 Via., be all the views that

depend on class c. The modification list of class c, denoted M.st(C), is a sequence of n modification
tuples with one and only one tuple per view dependent on class c such that:

(1) the tuple at the tail of M.s,(c) represents the most recently accessed view,
(2) modifications related to objects of class c are always registered inside the tuple at the tail of

Mlist(C),
(3) each tuple marks the starting point of the forthcoming update to the corresponding view, i.e.,

modifications inside the sequence of tuples starting with the representative tuple of a given
view until the end of M,s,(C) are utilized to update that view.

Definition 3.8 (Modification Tuple). G i v e n a c l a s s c a n d a view Via that depends on class c. A

modification tuple of Via inside M.st(c). denoted M, upte(Viu), is a quadruple (via, Oi ted. Odele,ed'

4 C, I v and M r are the sets of all class names, instance variables and methods, respectively.

130 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

Oupdated) , where 0 i ted' Odeleted and Oupdate d a r e respectively the sets o f objects inserted into, deleted
from, and updated in Wi,,,,~c~s(c) after the last update of view Via and while M,,pl~(Via) was occupying
the tail o f Mrs,(c), i.e., before the update of another view that depends on class c.

Definition 3.9 (Po of Virtual Classes). For every virtual class V~d, Po(V~a) refers to a triplet
(W/in,o~,es(V/,j), Lheh,,vi,,~(V,d), Mli,.t(Vid)), where W/ns,a,,.e.,.(V/d) is the set of oid's for objects qualified to
be in view V~j according to a method, FindObjects(V~a), in Lbehavior(Vid). The method FindObjects(V~d),
implements the (possibly optimized) query expression used in deriving view Via; and hence has
different implementations for different views. In addition to FindObjects(Via), Lbehavior(Via) may
include other methods particular to view Via.

Definition 3.10 (View Construction). A view can be constructed using the following query language:
Define view (view-identifier) as

Objects understand (set-of-messages)
Utilize (class-list)
Such that (predicate)

where the 'Such that' part is optional and
(set-of-messages) is a set o f messages with each message presented as m:d, where d is either the
identifier of one of the classes present in the class hierarchy such that m ~ Wbehavior(d), or d may be
a function that defines a new method with name m;
(class-list) is a set of classes from the class hierarchy;
(predicate) is a predicate expression that acts as a filter while deciding on objects to be included in
a view. For more details on predicate expressions see [5].

This way, we differentiate between two categories of classes according to the instantiation of Pa; base
classes and virtual classes. A base class directly points to a class definition in class 8, i.e., its Pa
includes the oid of only one object in class 6. A virtual class, on the other hand, holds a view
definition and indirectly refers to object(s) in class 6, i.e., its Pa includes the identifier(s) of the base
class(es) and/or other view(s) from which it was derived. In other words, virtual classes share class
definitions of base classes and objects of a virtual class V/a are determined depending on its
FindObjects(V~d) method. Actually, views add a new dimension to the class hierarchy which is the
view derivation line. Explicitly, each view is the root of a semi-lattice the leaves of which are base
classes and all other intermediate internal nodes are virtual classes. When a given view is to be
updated, then all virtual classes inside the semi-lattice rooted at that particular view have to be
updated. This is recursively applied, as we will see in the next section, by utilizing representative
modification tuples in the modification lists of related base and virtual classes.

3.2. Illustrating examples

To illustrate what has been introduced so far, included in Fig. 3 are the properties of the base
classes shown in Fig. 1, where [] and {} indicate lists and sets, respectively. For instance,
author:[Researcher], author: {Researcher} and author:Researcher indicate that the attribute author
has its value as a list of objects, a set of objects and a single object from the Researcher class,
respectively. Next to each class in Fig. 3, there are four collections that, respectively, include local

R. Alhajj , A. Elnagar I Data & Knowledge Engineering 29 (1999) 1 2 1 - 1 4 5 131

attributes, local behavior, direct superclasses and direct subclasses. As clear from Fig. 3, Pj of every
class shown in Fig. 1 is defined to be an object in class 6. The Po parts of the definitions of these
classes are shown in Fig. 4. Modification lists of all classes are empty because no virtual classes have
been defined yet. Concerning virtual classes, a user of our database might want to pose a series of
questions about books published by Addison-Wesley. This could be accomplished by first generating a
view of Book, where only books published by Addison-Wesley are included. This new virtual class
would be the subject of further queries, thus making the query processing more efficient. Some other
example virtual classes are enumerated next.

View 1. Find female researchers;
Define view FemaleResearchers as

Objects understand Wb~ha~ior(Researcher)
Utilize Researcher
Such that S e x (p) = " F " 5

FemaleResearchers is a virtual class with Pd(FemaleResearchers)= {Researcher},
and W,.,s , (FemaleResearchers) = {Old7, Oidg, Oidlo }
Notice that, FemaleResearchers and Researcher share the same object in class 6.

View 2. Find database research papers with at least one of the authors being a member in a program
committee for a conference;

Define view PCRP as
Objects understand Wbehavior(ResearchPaper)
Utilize ResearchPaper, Proceedings
Such that A r e a (p) = "da tabase" and 3 p 1 3 p 2 (p l in Author(p) ,

P2 ~ W~,s, (Proceedings) and p, E Committee(P2))
PCRP is a virtual class with Pa = {ResearchPaper, Proceedings}, and

W~,.,~.,.~.~(PCRP) = {O~d6, Oid 12' Oidl4 }

View 3. Find all publications of " M E H P ub" ;

Po(Book):
Po (Proceedings):

Po (Journal) :

Po (Special l s sue) :

Po (ResearchPaper) :

19o (Journal Paper):

• Li,~st (Book) = {o, ax, oid2 },
• Linstances(Proceedings) = {oi~3 },

• Linst (Journal) = {oid,} ,

• L,nst (Special Issue) = {oia,a),

• L~nstanees(ResearchPaper) = {},

• Linst (dournalPaper) -- {oias, olal~ },

• M.s,(Book)=[]
• Ml , s t (Proceed ings)=[]

• M,~s,(Jo~rnal)=[]

• M l i s t (R e s e a r c h P a p e r) = []

• Ml i s t (Journa lPaper)=[]

Po(ConferencePaper): • L~,,st (Con fercncePaper) = {Oid6, oiaa,, Oid,,}, • M t i s t (C o n f e r e n c e P a p e r) = []

Po(Researeher): "L~r, st (Researcher) = {OidT,0~as,O~dg,0~dlo}, • Ml l s t (Researcher)=[]

Fig. 4. The Po parts of the definitions of the example classes shown in Fig. 1.

5 Variable p is a pointer to receiver objects in the target class, here Researcher.

132 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

Define view MehPublications as
Objects understand Wb~h.v~,,r(BOok) 0 Wb~h.,qo~(Journal)
Utilize Book, Journal
Such that Publ isher(p)= " M E H Pub"

MehPublications is a virtual class with Pa = {Book, Journal}, and
Wi~.~,an,.~.~(MehPublications) = {Old ' ,oid 4}
It is the union of the selections from Book and Journal classes based on the specified
predicate.

As is obvious from the examples and detailed more in [7,8,9], virtual classes serve to hold query
results. Their introduction do help in reusability maximization as they share the same class definitions
with certain base classes. More than that, any changes to a base class are dynamically reflected to all
its dependent virtual classes. Also, updates to virtual classes are actually performed against the related
base class(es) as the latter are the only container of the actual database. Such updates are dynamically
reflected to all accessing base and virtual classes. This way, database consistency and integrity are
guaranteed. Beyond that, to update objects in any of the example virtual classes, it is necessary to
execute Algorithm 4.3, given next in Section 4, that filters modified objects in the corresponding base
class(es) against the FindObjects method of the given example class.

4. View maintenance algorithms

In this section, we elaborate more on the basic model introduced in Section 3 and describe the
algorithms that facilitate incremental maintenance and materialization of object-oriented views.

4.1. The mechanism of modification lists

Recall that, any base class is in general the root of two orthogonal subhierarchies, more precisely a
semi-lattice and a subgraph corresponding to the inheritance subhierarchy and the class-composition
subhierarchy, respectively. Based on that and by definition, W~n.,r~,,.~s(c), for any base class c, subsumes
those of classes along the inheritance subhierarchy rooted at class c. Furthermore, every object in
W,. ,,,,,,~s(c) references directly or indirectly via nesting, due to complex structures, objects in classes
along the class-composition subhierarchy rooted at class c. Consequently, it is not sufficient to reflect
into views that depend on class c only local modifications to objects in W~,.,., (C), global
modifications should also be considered.

Definition 4.1 (Local and Global Modifications). Given a class c, an object oid E W~, (c) and
any view V~d. Object oid is said to be locally modified with respect to class c i f and only if."

oid ~ Lin,, t (c) and 3Mruple(Vid) ~ Mlist(C) such that oid E 0 i red ~j Odeleted ~J Oupdated
On the other hand, oid is said to be globally modified with respect to class c i f and only if."

either oid ~ L i e.,.(c') where c' is a class from the inheritance subhierarchy rooted at class c and
3M, up~e(V~d) E M,s,(c') such that oid E O,,ed U Ode~e,~ J t20,pda,e d

or 3oid" E L,n.~r,,,,.es(c") where c" is a class in the class-composition subhierarchy rooted at class c

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 133

and 3M~.pte(Vid) E Mtist(C") such that oid" ~ 0 i ted [-j Odeleted ~'j Oupdated and there is a path from
oid to oid", i.e., oid references oid".

According to Definition 4.1, global modifications against objects in W~n.. (c) are performed from
within a subclass of class c against objects subsumed in W~.,. (c) or else from within another class
against shared objects along the class-composition hierarchy. Locating and controlling global
modifications is as important as local modifications and also it is necessary and required in preserving
database consistency and integrity.

To keep track of global modifications, each addition of a modification tuple to M..,,(c) triggers the
addition of a modification tuple with the same view identifier, say V, d, to the modification list of each
class along both subhierarchies rooted at class c. Such tuples are utilized in locating which objects
from W~,,, (c) to consider in the process of updating view Vial. To illustrate this, shown in Fig. 5 and
Fig. 6 are the modification lists of the base classes in Fig. 1, after the definition of the example virtual
classes introduced in Section 3. Modification lists in Fig. 5 reflect a situation where database contents
have not been modified since the first view FemaleResearchers was defined. On the other hand, in
Fig. 6 we assume that some operations were performed on certain objects after defining each of the
three views in order to show how modifications are reflected into tuples within modification lists.

Explicitly, in Fig. 5, a modification tuple, (FemaleResearchers, &, ¢, &), is added to
Mm,(Researcher) after defining virtual class FemaleResearchers because Researcher is the only class
in Pa(FemaleResearchers) and there is no other class present in the class-composition subhierarchy or
the inheritance subhierarchy rooted at the Researcher class. After virtual class PCRP is defined,
(PCRP, ¢, ¢, ¢) is added to Mm,(ResearchPaper) and M,s,(Proceedings) because the two classes
belong to Pa(PCRP). Also, (PCRP, alp, ¢, ¢) is added to M,s,(JournalPaper), M,s,(ConferencePaper)
and Mm,(Speciallssue) because the latter class belongs to the inheritance subhierarchy rooted at
Proceedings and the other two classes are in the inheritance subhierarchy rooted at ResearchPaper.
The class-composition subhierarchy rooted at Proceedings includes two classes, ConferencePaper and
Researcher. As the former class has already been considered, (PCRP, ¢, ¢, ¢) is added to
Mm.,(Researcher). The process of defining PCRP is terminated by considering the class-composition
subhierarchy rooted at ResearchPaper which contains Researcher that has already been considered.
Finally, the effect of defining virtual class MehPublications is treated the same way.

As far as Fig. 6 is concerned, assume that after FemaleResearchers is defined, object Oid 7 is deleted
from and object O~a 9 is updated in the Researcher class; this is reflected into the modification lists
shown in Fig. 6a. Second, as shown in Fig. 6b, following the definition of PCRP, object O~d,, is deleted

Ml~t(Researcher)=[(FemaleResearchers, ¢, ¢, ¢), (PCRP, ¢, ¢, ¢),
(MehPublications, ¢, ¢, ¢)]

Mt~,t(Sook)=[(MehPublications, d~, ~, ¢)]
Ml~st(Proceedings)=[(PCRP, ¢, ~, ~), (MehPublications, ¢, ¢, ~b)]
Mtist(Journal)=[(MehPublications, ¢, ¢, ¢)]
Ml~t(Speciallssue)=[(PCRP, ¢, ~, ~)), (MehPublications, ~, ¢, ¢)]
Mt~st(ResearchPaper)=[(PCRP, ~, ~, ¢)]
Ml~st(gournalPaper)=[(PCaP, ¢, ¢, ¢), (MehPublications, q~, q~, ¢)]
Ml~st(ConferencePaper)=[(PCRP, ¢, ¢, ¢), (MehPublications, ¢, ¢, ¢)]

Fig. 5. Modification lists of the base classes in Fig. 1 with the assumption that database contents are not modified.

134 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

Mt.~t(Researcher)=[(FemaleResearchers, ¢, {o~ar}, {O.d. })]
Mt,.t(Book)=~
Ma~t (Proceedings)-~[]
Mt~st (Journal)=~
Mt,,t (Special lssue) = 0
Mu,t (ResearchPaper)= []
Mu,t (Journal Paper)= fl
Ma~t (Con f erencePaper)=[]

(a) After the addition of FemaleResearchers view

Ma.t(Researcher)=[(FemaleResearchers, 4), {o, dr}, {o~d.}), (PCRP, ¢, {o~ao}, ¢)]
M.sdSook)=~
ML~st(Proceedings)=[(PCRP, ¢, ¢, ¢)]
Ml,~t (Journal)= ~
Mti~t(Speciallssue)=[(PCRP, ¢, ¢, 4>)]
Mtist(ResearchPaper)=[(PCRP, q~, ¢, ¢)]
Mt~st(JournalPaper)=[(PCRP, ¢, 0, ¢)]
M~t(eonferencePaper)=[(PCRP, ¢, ¢, {o~ . })]

(b) After the addition of PCRP view

Mr,st (Researcher)=[(FemaleResearchers, ¢, {oid7 }, {o~ag }), (PCRP, ¢, {oid~ }, ¢),
(MehPublications, ¢, ¢, ¢)]

Mt~st(Book)=[(MehPublications, ¢, { O~da }, ¢)]
Mast(Proceedings)=[(PCRP, ¢, ¢, ¢), (MehPublications, ¢, ¢, ¢)]
Ma~t(Journal)=[(MehPublications, ¢, ¢, ¢)]
Mast(Speciallssue)=[(PCRP, ¢, ¢, ¢), (MehPublications, ¢, ¢, ¢)]
Mast(ResearchPaper)=[(PCRP, ¢, ¢, ¢)]
Ma.t(JournalPaper)=[(PCRP, ¢, ¢, ¢), (MehPublications. ¢, ¢, {o~a~})]
Mast(ConferencePaper)=[(PCRP, ¢, ¢, {Oid,, }), (MehPublications, ¢, ¢, q~)]

(v) After the addition of MehPublicatwns view

Fig. 6. Modification lists of the base classes in Fig. I with the assumption that some modifications are performed on database contents after

defining each of the three virtual classes.

from the Researcher class and object o~d,~ is updated in the ConferencePaper class. Finally, it is
shown in Fig, 6c that after view MehPublications is defined, object o~d ' is deleted from class Book
and object o,~ is updated in the JournatPaper class. Although we concentrate on deletion and
updating of objects in Fig. 6, additions are treated the same way by including the oid of an added
object in the first modification set inside the modification tuple at the tail of the modification list of the
class to which the object is added. So, as it is obvious from Fig. 5 and Fig. 6, the creation of a virtual
class V~ results in the addition of a modification tuple to the modification list of every class in P~(V, fl
as well as to classes in the inheritance and class-composition subhierarchies rooted at class c. To
update a view, it is necessary to locate and utilize all relevant modification information.

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 135

4.2. Locating global modifications

Modifications related to class c along the inheritance hierarchy are located by recursively tracing
the Cb'S of classes found in the inheritance subhierarchy rooted at class c. On the other hand, to
successfully reflect modifications along the class-composition subhierarchy rooted at class c, it is
necessary to find modified objects in each particular class along that subhierarchy and to backtrack
(mostly by utilizing an index) to locate in W~,~ (c) objects referencing such modified objects. We
accomplish this by introducing two general base classes into the class hierarchy, namely NEsting o f
Classes (NEC) and Complex Objects References (COP), to keep track of the relationships between
classes and objects, respectively. The definitions in class 6 for both NEC and COR classes are given
next.

• Ce(NEC) = [],
• C~(NEC)= alp,
• L.,,~b.,es(NEC) = {LeftClass:C, RightClass:C},
• L~eh~.io~(NEC) = {FindClassCompositionHierarchy()},
• C. (COR) = [],
• C~(COR)= ¢,
• L~tma.,e~(COR) = {LeftObject:Ow, RightObject:Ow} 6
• L~eh..io,.(COR) = {FindReferenceingObjects(TargetClass)}
Actually, NEC and COR classes were introduced as a pan of the Object-Oriented Database

Management System developed at Bilkent University [5,6,7,8,9,10,17,35]. Explicitly, NEC holds all
class-to-class relationships along the class-composition hierarchy, i.e., a relationship between two
classes c~ and ~ is included in NEC to show that class c~ has an attribute the value of which is drawn
from W,,, (C j) . When a relationship between two classes c~ and ci is registered in NEC, the
relationship between their corresponding objects is reflected into COR to show that object o~,~ from

i
class ci is contained in the state of object oga ' from class c~. To illustrate this, shown in Fig. 7 are the
objects contained in NEC and COR classes, as the example classes in Fig. 1 and the corresponding
objects in Fig. 2 are concerned.

N E C
O~d~5 [Book, Researcher] oid~6 [Journal, Researcher] Oidlr [ResearchPaper, Researcher]
oials [Proceedings, Researcher] o,al~ [Journal, JournalPaper] o~d2o [Proceedings, ConferencePaper]

C O R

°,~2~ [o~0, o ~ l o~d~, [o~ r, o ~] o~d,~ [o~., o ~] o ~ . [o~d,,, o~1 o~0 [o,~., o~d,]
o~d~, [o,d,, o ,d,] o,d~,[o,~, o,~,] o~3~Io~,~, o,4,1 o~,[o,d,o, o~d~] o,d~[o~,, o,~o]

o~a46 [o~ds, oid~4]

Fig. 7. Objects in NEC and COP classes.

O~o is the set of all object identifiers.

136 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

It is worth mentioning that each of the methods underlying the behavior of both NEC and COR is
implemented as a recursive query [10]. This is achieved because in our query model described in [5,9]
we allow the specification of the result of a recursive query to be a subset of the transitive closure.
This way, the method underlying FindClassCompositionHierarchy(c) determines all the classes along
the class-composition subhierarchy rooted at the receiver class c. While doing that, classes in Cr(c) are
considered because attributes with complex domains in Wa,~b,,e~(C) may be either locally defined or
inherited. For instance, FindClassCompositionHierarchy(Proceedings) returns the list [Researcher,
ConferencePaper]. On the other hand, the method underlying FindReferencingObjects(ObjectlD,
TargetClass) determines all objects within W~,,,o,,,,,(TargetClass) and referencing the receiver object.
However, this method imposes the restriction that the class of the receiver object must be in the
class-composition subhierarchy rooted at the parameter TargetClass. For instance,
FindReferencingObjects(o~j,o, Journal) returns {o,a,3 }. Finally, objects in the two classes NEC and
COR are utilized by the algorithms given in the next section to facilitate the creation and incremental
update of any virtual class V,j.

4.3. The algorithms

The target of incrementally updating a given view Via is broken down into finding all relevant
modifications and employ such modifications in the update process. Modifications of concern are
contained in all classes found in the class-composition and inheritance subhierarchies rooted at each
class in Pal(V/a). Algorithm 4.3 achieves the targeted update process by breaking the latter task down
further into finding modifications related to each class c in Pa(V~a) by utilizing Algorithm 4.2. Then,
all such modifications are accumulated and used as input to the FindObjects(Vga) method in
Lh~h~.~,,r(V~a). The latter method performs the actual update by reflecting located modifications to
W,., (Via). Algorithm 4.2 takes itself the responsibility of finding modifications along the class-
composition subhierarchy rooted at class c and asks for the help of Algorithm 4.1 which is specialized
in finding modifications along the inheritance subhierarchy rooted at a given class. The three
algorithms are given next.

Algorithm 4.1 (Inheritance Modifications).
Input. A view Via and a class c.
Output. Coi a(c), Co~.,e,ed(c), and Co.pao,~u(c), that are the sets o f oid's o f modified objects in

W,,,.on.dC).

Steps:
Let Co,,~ ,(c) = Coa~e,e~(c) = Co.,~,,,Jc) = fb

Let Cinheri tanc e : [C]

/* Ci,,t, eri,anc e is a list to include all classes found along the inheritance subhierarchy rooted at class
c . * /

Let i = 1
While not end o f C i n h e r i t do

Let c' = Cinheri tam.e[i]

Cinher i 'e = Cinheri t "~- C b (c t)

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 137

L e t Mtuple(Vid) be at position j within M.st(c') and let k =j.
While not end of Mli~t(c') do

/* The tuple at position k in Mli~t(c') includes three sets, namely 0 i ted[k], Odeleted[k] and

Oupdated[k]. *]

Col d (c) = Col d (c) ~J Oi ted[k]
CO deleted(C) = CO deleted(C) ['-J O deleted[k]

COupdate(C) = COupdated(C) ["J Oupdated[k]
k = k + l

EndWhile
I f there exists an immediate predecessor of Mt.pte(Vid) in M...(c') then

• Merge the modification information inside Mtuple(Vid) w i t h that
of its immediate predecessor tuple by setting:

Oi ted[J -- 1] = 0 i ted[J -- 1] LJ 0 i ted[J]'
Odeleted[j -- 1] = Odeleted[j -- 1] [..J Odeleted[J] and
Oupdated[j -- 1] = Oupdated[j -- 1] [..J Oupdated[J]

Endlf
Delete Mtupze(Vid) from M.s,(c')

/* To mark the starting point for the next update o f view Vid" */
Append (vid, dp, dp, dp) at the tail of M.~t(c')

EndWhile
EndAlgorithm

Algorithm 4.2 (OperandRelatedModifications).
Input. View Vid and a class c from Pd(vid)
Output. Sets of objects Woi d(C), WOdeleted(C), WOupdated(C) to be utilized in Algorithm 4.3 for
incremental update to view Via"

Steps:
Let Wo, ~(c) = WOdeleted(C) : WOupdated(C) = ~b
Co, h = FindClassCompositionHierarchy(c)

/* C . h is a list to include classes within the class-composition subhierarchy rooted at class c. */
Find - Mtuple(Vid) within M.s,(c).
I f Mt.pte(Vid) is not found then

/* View Via is a new view and should be derived from scratch. */

Woi d (c) = winst (C)

WOdeleted(C) = WOupdated(C) = ~)
For every class c' in [c] + Ccc h do

Let Cinheri t = [c'] and let i = 1
While not end of Cinheri t do

Let c "= Cinheri t [i]

Cinherit ~-- Cinherit "~- Cb (fIt)
-C ttX Append (V~d, dp, dp, dp) at the tail of Mtgst~)

i = i + 1

138 R. Alhajj, A. EInagar / Data & Knowledge Engineering 29 (1999) 121-145

EndWhile
EndFor

Else
Perform InheritanceModifications(V~d, c)
W,,,(c) = Co,.., ,(c)

Wo.,,,e..,,(c) = Co.~.,.,,,(c)
Wo,.,,.,,,.,,fc) = Co,,...(c)
Let G = &

/* G is a set to include all modified objects along the class-composition subhierarchy rooted at class
c. Here we are interested only in deleted and updated objects because existing object references are
affected only by indirect deletions and updates• Objects added along the class-composition hierarchy
affect the update process only when they are referenced by some other objects that are marked as
updated objects and hence are already included in G. */

For ever), class c i in C.. h do
Perform lnheritanceModifications(V~d),

G = G ~J COdeh, ted(Ci) U Co,,,,dated(Ci)
EndFor
For ever), object oid E G do

• Wo,,...,..(c) = Wo....,,~.(c) + FindReferencingObjects(oid, c)

EndFor
W.,,,.,,,..(c) = wo,°.,.,.(c) - Wo.~,..,e.,(c)
WOupdated(C) = WOupdated(C) -- Woi d (c)
Wo~.,,°,..(c) = Wo~..°.,.(c) - Wo.~,...(c)

Endlf
EndAlgorithm

Algorithm 4.3 (View Update):
Input: A virtual class Via and Pd(Via)
Output: The updated version of Via

Steps:
Let Wo, jV, .d) = Wo~t~,~.(V~d) = &
For every, class c ¢ Pa(Vgd) do

If c is an object in class 6 then /* c is a base class */
Perform OperandRelatedModifications(Vid, c)

/* When an object in class c is updated, virtual class V~a must recognize that change. This is achieved
by forcing V~a to recognize an updated object as a new object. */

wo,..,,.,.,,(c) = wo...,.~.(c) u Wo~,,.o,~.(c)
w o , . , , (c) = Wo,(c) u Wou..°,e.(c)
For ever), object oid E Wod:me.(C) do

Wo .:::,,." (V~.) = WOd~m~,:(V m) U FindReferencingObjectsOid, Vid)
EndFor

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 139

Else /* c is a virtual class */

Let Wo~ d(c) = WOdeleted(C) = ~)
Perform ViewUpdate(c, Pd(C))
If M, upte(Vid) doesnot exist in Mlist(c) then

Wo~ ~(c) = W,o,, (c)

WO deleted(C) =
Else

L e t Mtuple(Vid) be at position j within Mti~t(c).
While not end of Mtist(c) do

/* The tuple at position j in Mti~t(c) includes two sets, namely Oi ted[J] and Odeleted[J]. */
Woi d (c) = Woi d (c) ~'J O i ted[J]
Wode,etea(C) = WOdeleted ~J O deleted[J]
j = j + l

EndWhile
If there exists an immediate predecessor of Mtuple(Vid) in Mlist(C) then

• Merge modification information inside Mtuple(Vid) with that
of its immediate predecessor tuple in Mtist(C)

Endif
Delete Mtuple(Vid) f r o m Mlist(C)

Endif
/* To mark the starting point for the next update of view Via */

Append (Via, dp, dp) at the tail of Midst(c)
Endlf

EndFor
Determine Wo~ d(Vid) by executing FindObjects(Vid) against Win" (c)
and Wo, ~(c) of every class c in Pd(Vid)
If Mti~t(Vid) is not empty then

/*To be able to reflect the already done update to dependent views. */
Let the tuple at the tail of M~i,(V/d) be at position k

• Oi ted[k] = Oi ted[k] LJ Woi d (Vid)

• Odeleted[k] = Odeleted[k] U WOdetetea(Vid)
Endlf

Winst (Vid) ~ Winst (Vid) - - WOdeleted(Vid) ~-J W o i d (Vid)
EndAlgorithm

Informally, given a class c and a view Via, Algorithm 4.1 determines, related to objects in the extent
of class c, modifications that are to be used in updating view V, d. This is achieved by considering a
group of modification lists including that of class c itself and all classes along the inheritance
subhierarchy rooted at class c. In each such list, the contents of Mtuple(V~d) are examined together with
the contents of its successor tuples until the tail of that modification list. Then the modification sets
inside Mtup~e(V~d) are merged with those of its immediate predecessor tuple within the same list
because such contents are still necessary to views corresponding to its predecessor tuples until the
head of the modification list. Further, to indicate that only subsequent modifications are necessary in

140 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

the forthcoming update of view ~d, a modification tuple (V~d, ¢, ¢, ¢) is appended at the tail of each
accessed list to mark the starting point for the next update to view Via. Subsequently, Algorithm 4.1 is
utilized in Algorithm 4.2 that determines all the modifications within W~n~tan,.es(C), where c is one of
the classes in P~(V,d). While the inheritance subhierarchy is considered in Algorithm 4.1, the
class-composition subhierarchy rooted at class c is considered in Algorithm 4.2 that checks first
whether Vial is a new or an existing view. For the former case, all objects in W~n~,. , (c) are considered
in deriving W,,s,a,,es(V,d) because Via does not possess any prior knowledge about database contents.
For the latter case, on the other hand, all related classes are visited to determine relevant modifications
done on the database since the last update of view V/d. In both cases, a modification tuple is appended
at the tail of visited modification lists to mark the starting point for the next update of view Via.
Finally, located modifications are necessary for Algorithm 4.3 that employs recursion because any
view is the root of a semi-lattice in which internal nodes are virtual classes and leaves are base
classes. Consequently, it is necessary to update all views constituting internal nodes before updating
the actual target view at the root. Recursion guarantees the gradual update of internal views starting
with those solely dependent on base classes until the target view is updated. Finally, Algorithm 4.3
executes the appropriate implementation of FindObjects(V~d) that has different implementations for
different virtual classes.

To illustrate the already introduced algorithms, assume that it is required to access FemaleResear-
chers view. Because we employ deferred update, objects in a virtual class are updated only when that
class is accessed. Consequently, Algorithm 4.3 is executed and calls Algorithm 4.2 which, in its turn,
utilizes Algorithm 4.1. So, on executing ViewUpdate(FemaleResearchers), the related modification
lists shown in Fig. 6c are traced by Algorithms 4.2 and 4.1 to locate modified objects in
Winst (Researcher) because Researcher is the only class in Pa(FemaleResearchers). The only
processed modification list is M,.,(Researcher) and the following three sets are returned by
Algorithms 4.2:

Woi ~(Researcher) = ¢,

Woae,~tJResearcher) = {Oid7, Oid9},

Wo,pao,~a (Researcher) = &.
Algorithm 4.3 utilizes these three sets to return W~,,,,c~.~(FemaleResearchers) = {O~d,o }. TO guarantee
the correctness of the next incremental update to the virtual class FemaleResearchers, its modification
tuple is eliminated from M,~t(Researcher) for being the first tuple in that list; otherwise, contents of
that tuple should have been merged with its predecessor tuple before being eliminated. A new tuple
holding the identifier of FemaleResearchers with empty sets is appended at the end of
M,,(Researcher), as shown in Fig. 8.

Ml~t(Researcher)=[(PCRP, ¢, {o~dg}, ¢), (MehPublications, ¢, ¢, ¢),
(FemaleResearchers, ¢, ¢, ¢)]

Ml~st(Book)=[(MehPublications, ¢, {oial }, ¢)]
Mt~t(Proceedings)=[(PCRP, ¢, ¢, ¢), (MehPublications, ~b, ¢, ¢)]
Ml~t(gournal)=[(MehPublications, ¢, ¢, ¢)]
Mt~st(Speciallssue)=[(PCRP, ¢, ¢, ¢), (MehPublications, ¢, ¢, ¢)]
Mt~t(ResearchPaper)=[(PCRP, ¢, ¢, ¢)]
Ml~t(JournaIPaper)=[(PCRP, ~b, ¢, ¢), (MehPublications, ¢, ¢b, {O,d5 })]
Ml,~t(ConferencePaper)=[(PCRP, ¢, ¢, {o,d~,}), (MehPublications, ~b, ¢, ¢)]

Fig. 8. Modification lists of the classes in Fig. 1 after the update of the FemaleResearchers view.

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 141

Mt~st (Researcher)=[(F emaleResear chers, 4), { Oid~ , oidg }, { O~d~ }),
(MehPublications, 4), 4), 4)), (PCRP, 4), 4), 4))]

Ml,st (Book)--[(MehPublications, 4), { Oidl }, 4))]
Mtist(Proceedings)=[(MehPublications, 4), 4), 4)), (PCRP, 4), 4), 4))]
Mlist(Journal)=[(MehPublications, 4), 4), 4))]
Mtist(Speciallssue)=[(MehPublications, ¢, 4), 4)), (PCRP, 4), ¢, ¢)]
Mti~t(ResearchPaper)=[(PCRP, 4), 4), 4))]
Mt~t(gournaIPaper)=[(MehPublications, 4), 4), {Oids}), (PCRP, 4), 4), 4))]
Ml~t(ConferencePaper)=[(MehPublications, ¢, 4), ¢), (FCRP, 4), 4), 4))]

(a) Before the update of FemaleResearchers view

Mtist(Researcher)=[(MehPublications, ¢, 4), 4)), (FemaleResearchers, 4), 4), 4)),
(PCRP, 4), 4), 4))]

Mt~st(Book)=[(MehPublications, 4), {Oid, }, 4))]
Ma,t(Proceedings)=[(MehPublications, 4), 4), 4)), (PCRP, ¢, 4), 4))]
Mti,t(Journal)=[(MehPublications, 4), 4), 4))]
Ma,t(Speciallssue)=[(MehPublications, ¢, 4), 4)), (PCRP, 4), 4), 4))]
M~,,t(ResearchPaper)=[(PCRP, 4), 4), 4))]
Ml~,t(JournalPaper)=[(MehPublieations, 4), ¢, {O~ds}), (PCRP, 4), ¢, ¢)]
Ml,~t(Con f erencePaper)=[(MehPublication8, 4), ¢, 4)), (PC RP, 4), 4), 4))]

(b) After the update of FemaleResearchers view

Fig. 9. Modification lists of the classes in Fig. 1 after the update of view PCRP.

Here, it worth elaborating more on the advantage of employing deferred update. From Fig. 6c, it is
obvious that object Old 9 w a s updated before being deleted. However, only the deletion is reflected into
the virtual class FemaleResearchers during the above mentioned update process. It is not necessary
and even time consuming to inform the virtual class FemaleResearchers about the update of object
Old 9 because that class has never become active during the validity of the update of object Old 9. TO
realize the change in the modification lists more explicitly, consider two executions of View-
Update(PCRP); one by utilizing the lists in Fig. 6c and another by utilizing Fig. 8, i.e., before and
after executing ViewUpdate(FemaleResearchers), respectively. Modification lists of the base classes
after such executions are shown in Fig. 9a and Fig. 9b, respectively. The merging of modification
tuples is illustrated in the first execution of ViewUpdate(PCRP) where object oia 9 moved from the set
of deleted objects inside Mtuple(eCRP), the second tuple within Mtis,(Researcher) in Fig. 6c, into the
set of deleted objects inside M, ue~e(FemaleResearchers), the first tuple within M,.,(Researcher) in Fig.
9a.

5. Conc lus ions

In this paper, we presented a model that facilitates incremental materialization of views where a
view may be derived from a number of existing views and/or classes. We argue that our model is a
step forward in filling the existing gap about the requirements of object-oriented views. To have a

142 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

homogeneous system where closure is maintained, we defined a view to be a class. This way, a view
possesses the characteristics of a class and hence qualifies to be an operand in any applicable query.
To achieve deferred incremental update, to each class we added a modification list to include class
related modifications ordered such that the most recent modifications are at the tail. Also, a view has a
reference point in each related modification list to mark the start of its next update. In addition, we
introduced some algorithms that utilize such modifications to help in avoiding view computation from
scratch each time a view is accessed. Instead, the algorithms locate and reflect to a view only related
modifications introduced into the database while that view was inactive. Such a method proved to be
vital, especially in distributed environments including data warehouses where it is necessary to reduce
network communication. Furthermore, deferred update proved to be more practical than immediate
update especially when object-oriented databases are considered.

In general, database contents undergo a sequence of changes and a view is interested only in values
valid at the time it is accessed without being interested in modification stages that led to those values.
In addition, inheritance and nesting are missing in the conventional relational model and hence the
cost of immediate update in that model is very low compared to nested relational and object-oriented
models. However, due to inheritance and nesting, indirect modifications are more frequent in
object-oriented databases and immediate reflection of indirect modifications to all related views
negatively affects the performance of the system. This is illustrated in Fig. 8 where object Oid 9 was
updated then deleted and virtual class FemaleResearchers could not recognize the update because it
was inactive during the validity of that update. One can say that applying immediate reflection is
similar to asking the system to pay for some sandwiches that views will never eat. On the other hand,
paid for sandwiches will always be eaten when deferred update is applied.

The presented model has been implemented as a part of an object-oriented database management
system prototype under development at Bilkent University. Our first experience with the discussed
model is that it gives very good results for databases that are not frequently modified. It includes the
overhead of maintaining and processing the modification lists. To be more specific, consider a view Via
that may be either derived from scratch or incrementally maintained. Concerning the from scratch
case, it is required to access each object in W~,,~,,nce,(C) for every class c in Pd(Vid). On the other hand,
only objects inserted or updated since the last materialization of view V~d need to be accessed for the
deferred update case. The overhead with from scratch computation is processing untouched objects
each time a view is accessed. Concerning the deferred update case, the number of modification lists to
be processed is limited by the number of classes along both subhierarchies rooted at classes in Pd(V~d).
As the number of objects in a database is very large compared to the number of classes, deferred
update performs better than from scratch computation for small numbers of modified objects. From
scratch computation gives better results for small numbers of untouched objects. Explicitly, the lower
and upper bounds on the number of modified objects are, respectively, zero and ET= 1 W~,s, (ci),
where n is the number of classes in Pd(V~d). From scratch computation performs better as the number
tends to E I' ~ W~n.,.,~,,,,.,(ci), and deferred update performs better as the number goes to zero. In general,
only few objects in the database are inserted or modified between different sessions and most of the
objects remain untouched. Therefore, as the number of objects in the database increase, deferred
update performs better than from scratch computation.

Although our algorithms are designed for object-oriented view maintenance, they are still
applicable to the nested and conventional relational models. In other words, we considered the
inheritance and complex structures features of the object-oriented context in those algorithms, and

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 143

hence served more than the requirements of the relational model. However, it is necessary to include
in a view the primary key of every operand because a primary key will act like an object identifier.
Explicitly, as the inheritance concept is missing in both the nesting and conventional relational
models, Algorithm 4.1 that concentrates on locating modifications along the inheritance hierarchy is
not requested when dealing with views in such models. For the nested relational model, it is required
to utilize both Algorithms 4.2 and 4.3. Concerning the conventional relational model, on the other
hand, Algorithm 4.3 is enough to deal with views in that model because the conventional model does
not cover nesting which is the responsibility of Algorithm 4.2. Finally, in addition to feeding the
algorithms with the modifications required for view updates, modification lists serve some other
purposes. More specifically, the information kept inside modification lists facilitate answering
questions like the following:

• Total number of views directly dependent on a given class.
• Total number of views indirectly dependent on a given class.
• Classes with no dependent views.
• The order according to which views were defined, accessed or updated.
• The most recently accessed view among those directly dependent on a given class.
• The least recently accessed view among those dependent on a given class.
• Modifications perfomed on a given class since the last update of a certain view.
• The modification history of the database.

Currently, we are exploring the parallelization of the algorithms introduced in this paper to improve
the performance of the system benefiting from the nature of the searched information. In other words,
the searched for information is in the classes from which a view is derived and hence each such class
may be searched independent of other classes. The independent results are then accumulated to update
the target view. Furthermore, each class is the root of two subhierarchies that may be investigated
independently. Another area that we are investigating is to extend the model to have a multi-agent
system suitable for data warehousing applications where data models may be heterogeneous with an
object-oriented model being the common language understandable by all agents. The agents must
coordinate and negotiate together to have a given view updated. Finally, we are also looking into
testing the efficiency of our approach for distributed object-oriented databases.

References

[1] S. Abiteboul, A. Bonner, Objects and views, Proc. ACM-S1GMOD Int. Conf. on Management of Data, (1991) pp.
238-247.

[2] S. Abiteboul, O.M. Duschka, Complexity of answering queries using materialized views, Proc. ACM PODS Int. Conf.
on Principles of Database Systems, (1998) pp. 254-263.

[3] S. Abiteboul et.al., Incremental maintenance for materialized views over semistructured data, Proc. 24th Int. Conf. on
Very Large Databases (August 1998).

[4] A. Alashqur, S.Y. Su, H. Lam, OQL: A query language for manipulating object-oriented databases, Proc. 15th Int.
Conf. on Very Large Databases, Amsterdam (August 1989) pp. 433-442.

[5] R. Alhajj, M.E. Arkun, A query model for object-oriented database systems, Proc. 9th IEEE Int. Conf. on Data
Engineering, Vienna (April 1993) pp. 163-172.

[6] R. Alhajj, F. Polat, Reusability and schema evolution in an object-oriented query model, Proc. European Conf. on
Systems Design and Applications, France (July 1996) pp. 21-29.

144 R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145

[7] R. Alhajj, F. Polat, Proper handling of query results towards maximizing reusability in object-oriented databases,
Information Sciences: An International Journal, 107(1-4) (June 1998) 247-272.

[8] R. Albajj, F. Polat, An object-oriented query model enforcing closure and reusability, Proc. lOth Int. Conf. on
Mathematical and Computer Modelling and Scientific Computing, Boston, MA (July 1995), An extended version
appeared in: Journal of Mathematical Modeling and Computing 6 (1996).

[9] R. Alhajj, F. Polat, Closure maintenance in an object-oriented query model, Proc. ACM Int. Conf. on Information and
Knowledge Management, (November 1994) pp. 72-79.

[10] R. Albajj, M.E. Arkun, Recursion in object-oriented databases, Proc. European Conf. on Systems Design and
Applications, England (July 1994).

[11] L. Baekgaard, L. Mark, Incremental computation of set difference views, 1EEE Trans. on Knowledge and Data
Engineering 9(2) (1997) 251-261.

[12] E. Bertino, A view mechanism for object-oriented databases, Proc. 3rd Int. Conf. on Extending Database Technology,
Vienna (March 1992) pp. 136-151.

[13] S. Ceri, J. Widom, Deriving production rules for incremental view maintenance, Proc. 17th Int. Conf. on Very Large
Databases, Barcelona (September 1991) pp. 577-589.

[14] U. Dayal, Queries and views in an object-oriented data model, Proc. 2nd Int. Workshop on Database Programming
Languages (June 1989) pp. 80-102.

[15] U. Dayal, H. Hwang, View definition and generalization for database integration in a multidatabase system, IEEE
Trans. on Software Engineering (November 1984) pp. 628-645.

[16] O.M. Duschka, M.R. Geneseretb, Answering recursive queries using views, Proc. ACM PODS Int. Conf. on Principles
of Database Systems (June 1997) pp. 109-116.

[17] G. Eray et al., Storage and indexing facilities of an object-oriented database management system, Proc. DECSYM, Side
(March 1992).

[18] D. Gluche et al., Incremental update for materialized OQL views, Proc. 5th Int. Conf. on Deductive and Object-
Oriented Databases, (December 1997) pp. 52-66.

[19] A. Gupta, I. Mumick, V. Subrahmanian, Maintaining views incrementally, Proc. ACM-SIGMOD Int. Conf. on
Management of Data, Washington DC (1993) pp. 157-166.

[20] E.N. Hanson, A performance analysis of view materialization strategies, Proc. ACM-S1GMOD Int. Conf. on
Management of Data (1987) pp. 440-453.

[21] M. Hardwick, B.R. Downie, On object-oriented databases, materialized views, and concurrent engineering, In: A.
Saxena (Ed.), Proc. Database Symp. of the American Society of Mechanical Engineers (August 1991).

[22] S. Heiler, S.B. Zdonik, Object views: Extending the vision, Proc. 6th IEEE Int. Conf. on Data Engineering, Los
Angeles (February 1990) pp. 86-93.

[23] M. Kifer, W. Kim, Y. Sagiv, Querying object-oriented databases, Proc. ACM-SIGMOD Int. Conf. on Management of
Data, San Diego, CA (June 1992) pp. 393-402.

[24] W. Kim, A model of queries for object-oriented databases, Proc. 15th Int. Conf. on Very Large Databases, Amsterdam
(1989) pp. 423-432.

[25] S. Konomi, T. Furukawa, Y. Kambayashi, Super-key class for updating materialized derived classes in object bases,
Proc. 3rd Int. Conf. on Deductive and Object-Oriented Databases (December 1993).

[26] H.A. Kuno, E.A. Rundensteiner, Using object-oriented principles to optimize update propagation to materialized views,
Proc. 12th IEEE Int. Conf. on Data Engineering (1996) pp. 310-317.

[27] E.A. Rundensteiner, A classification algorithm for supporting object-oriented views, Proc. ACM Int. Conf. on
Information and Knowledge Management, Maryland (November 1994) pp. 18-25.

[28] E.A. Rundensteiner, A methodology for supporting multiple views in object-oriented databases, Proc. 18th Int. Conf.
on Very Large Databases, Vancouver, BC (August 1992) pp. 187-195.

[29] C.S. Santos, Design and implementation of object-oriented views, Proc. 6th Int. Conf. on Database and Expert Systems
Applications, London (September 1995) pp. 91-102.

[30] M.H. Scholl, C. Laasch, M. Tresch, Updateable views in object-oriented databases, Proc. 2nd Int. Conf. on Deductive
and Object-Oriented Databases, Munich (December 1991) pp. 189-207.

[31] A. Segev, W. Fang, Optimal update policies for distributed materialized views, Management Science 37(7) (July 1991)
pp. 851-870.

R. Alhajj, A. Elnagar / Data & Knowledge Engineering 29 (1999) 121-145 145

[32] M. Stonebraker et. al., On rules, procedures, caching and views in database Systems, Proc. ACM-SIGMOD Int. Conf.
on Management of Data, Atlantic City (May 1990) pp. 281-290.

[33] G. Wiederhold, Views, objects and databases, IEEE Computer 19(12) (December 1986) 37-44.
[34] J. Yang, J. Widom, Maintaining temporal views over non-temporal information sources for data warehousing, Proc. Int.

Conf. on Extending Database Technology (March 1998) pp. 389-403.
[35] F. Yazar et al., The Development of an object-oriented database management system, Proc. 7th Int. Symp. on

Computers and Information Sciences, Kemer-Antalya (November 1992).
[36] Y. Zhuge et al., View maintenance in data warehousing environments, Proc. ACM-SIGMOD Int. Conf. on Management

of Data, San Jose (May 1995) pp. 316-327.
[37] Y. Zhuge, H. Garcia-Molina, Graph structured views and their incremental maintenance, Proc. 14th IEEE Int. Conf. on

Data Engineering (1998) pp. 116-125

Reda Alhajj received his B.Sc. degree in Computer Engineering in 1988 from the Middle East Technical
University, Ankara, Turkey. Later, he obtained his M.Sc. degree and Ph.D. in Computer Engineering and
Information Sciences from Bilkent University, Ankara in 1990 and 1993, respectively. Dr. Alhajj was prompted to
Associate Professor in 1995 by the Turkish Institute for Higher Education. He served as an Assistant Professor in
the Information Systems Department at King Sand University, Saudi Arabia in 1993-1996. After that, he spent a
year at Bilkent University. Currently he is with the Sultan Qaboos University in Oman. He published more than 30
papers in refereed international journals and conferences. Reda Alhajj's primary work and research interests are in
the areas of query languages and query processing, view maintenance, data models, and index structures in
object-oriented databases, multi-agent based query processing, multimedia databases, re-engineering of legacy
systems, temporal databases and pattern recognition.

Ashraf Elnagar received B.S. and M.S. degrees from Kuwait University in 1986 and 1988, respectively, and a
Ph.D. from the University of Alberta, Canada, in 1993. All degrees were earned in Computer Science. Dr. Elnagar
served as a faculty member of the Department of Computed Science at PAHET, Kuwait, from 1988 to 1990. He
also spent one academic year (1993/1994) at the University of Alberta, Canada, before joining the Department of
Computer Science at EQU (Sultan Qaboos University), Oman, in January 1995 as a faculty member, until August
1998. Since September 1998, he has been with the Department of Computer Science at the University of Sharjah.
His research interests include robot motion planning, pattern recognition, object-oriented views, and data
re-engineering. Dr. Elnagar was the recipient of one of the NSERC post-doctoral fellowship awards in 1994.

