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between the branches having the same Arf closure and their 
regularity indices. We give some results and a conjecture, 
which are steps towards the interpretation of Arf closure as a 
specific way of taming the singularity.
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1. Introduction

Canonical closure of a local ring constructed by Cahit Arf solves the problem of de-
termining the characters of a space curve singularity [1]. The characters of a plane curve 
singularity, introduced first by Du Val in 1942, are special integers, which determine the 
multiplicity sequence of the plane curve singularity, [15]. Contrary to the well-known 
plane case, in which the characteristic exponents, the multiplicity sequence, the semi-
group of the singularity and the characters determine each other, it was not known how 
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to obtain the characters in the space case, until Cahit Arf developed his theory [1]. 
In 1946, Arf showed that the characters of a space branch could be obtained from the 
completion of the local ring corresponding to the branch by constructing its canonical 
closure, later known as Arf closure [1]. Since then, many algebraic geometers and alge-
braists have worked on Arf rings and Arf closure, [3,8,9,13,19]. Moreover, Arf semigroups 
and their applications in coding theory have been a recent area of interest [5,6,10,14,20]. 
For a good survey and a quick introduction to Arf theory, see [22].

In spite of all this interest in Arf rings and Arf closure, there is not a fast implementable 
algorithm for the computation of Arf closure in the literature. The construction method 
given by Arf cannot be implemented as an algorithm, without finding a bound, that de-
termines up to which degree a division series should be expanded, and finding an efficient 
bound is not easy at all. The construction of Arf closure by using Hamburger–Noether 
matrices presented by Castellanos does not give an answer to this problem either [12]. 
The only implemented algorithm is given by Arslan [2]. The algorithm uses Arf’s con-
struction method and starts with determining the semigroup of values of the branch and 
its conductor, but determining the semigroup of values and the conductor of a branch 
is a difficult problem, which has been studied by many mathematicians and different 
algorithms have been given [11,18]. Noting that the special case of this problem is the 
famous Fobenius problem (or coin problem) makes it clear, why this problem is difficult, 
and it is unnecessary to mention that there is a vast literature on the Frobenius problem.

Our main objects of interest in this article are space curve singularities. Following 
Castellanos and Castellanos [12] and using their notation, we consider a space curve 
singularity as an algebroid curve C = Spec(R), where (R, m, k) is a local ring, complete 
for the m-adic topology, with Krull dimension 1, and having k as a coefficient field. 
We work with irreducible algebroid curves (or branches), in other words R will always 
be a domain. In this case, it can be shown that R ∼= k�ϕ1(t), ..., ϕn(t)� ⊂ k�t�, where 
ϕ1(t), ..., ϕn(t) are power series in t, see [12] or [18]. Hence, we will be working with 
subrings of k�t�. Here, the set {ϕ1(t), ..., ϕn(t)} is a parametrization of the curve C and 
the minimum possible n is called its embedding dimension. It is denoted by embdim(C)
and is also equal to dimk m/m2. The minimum order of the series of any parametrization 
of the curve C is called its multiplicity, which is also equal to the multiplicity of the local 
ring R.

By using the notation in [22], we denote the semigroup of orders of the local ring 
R = k�ϕ1(t), ..., ϕn(t)� by W (R). For n ∈ N, In = {r ∈ R | ord(r) ≥ n} and In/Sn =
{r · S−1

n | ord(r) ≥ n}, where Sn ∈ R has order n. In general, In/Sn is not a ring. The 
ring generated by In/Sn is denoted by [In]. A ring is called an Arf ring, if In/Sn = [In]
for any n in its semigroup of orders. For a local ring R ⊂ k�t�, the smallest Arf ring 
containing R is called the Arf closure of R. In [1], Arf not only defines the Arf closure, but 
also gives a method for its construction: The Arf closure of R = k�ϕ1(t), ..., ϕn(t)� can 
be presented as R∗ = k+kF0+kF0F1+ ... +kF0...Fl−2+k�t�F0...Fl−1, where R0 = R, Fi

is a smallest ordered element of Ri with ai = ord(Fi) and Ri = [Iai−1 ] for i = 1, ..., l and 
Rl = k�t�. Hence, that W (R∗) = {0, a0, a0 +a1, ..., a0 + ... +al−2, a0 + ... +al−1 +N} and 
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it is shown in [1] that the multiplicity sequence of C is (a0, a1, ..., al−1, 1, 1, ...). In [16], 
an instructive and detailed example is given with a discussion on the geometric aspects 
of the problem.

Recalling that determining the semigroup of values of a branch is a difficult problem, 
the construction of Arf closure by computing Ri’s in each step is not efficient at all. 
In the next section, we give an easily implementable algorithm for constructing the Arf 
closure by avoiding these difficult and time consuming computations.

2. An algorithm for the computation of Arf closure

Let C be the branch with the corresponding local ring R = k�ϕ1(t), ..., ϕn(t)� and 
W (R) = {i0, i1, ..., ih−1, ih + N}, where i0 = 0 and i1 = ord(ϕ1(t)). The ring R can be 
presented as

R = k + kSi1 + kSi2 + ... + kSih−1 + k�T �Sih

where Sij ’s are elements of R of order ij chosen such that ϕ1(t), ..., ϕn(t) are among 
them. Hence, Si1 = ϕ1(t). By using this notation, we have the following obvious lemma:

Lemma 2.1. [Ii1 ] = k�ϕ1, 
ϕ2
ϕ1

, ..., ϕn

ϕ1
�.

Proof.

[Ii1 ] =
∑

k

(
Si2

ϕ1

)α2(Si3

ϕ1

)α3

...

(
Sih−1

ϕ1

)αh−1

+ k�T �
Sih

ϕ1

where the sum is over all α2, α3, ..., αh−1 satisfying

α2(i2 − i1) + α3(i3 − i1) + ... + αh−1(ih−1 − i1) < (ih − i1)

and Sir is an element of R of order ir. It is obvious that k�ϕ1, 
ϕ2
ϕ1

, ..., ϕn

ϕ1
� ⊂ [Ii1 ]. 

To prove that [Ii1 ] ⊂ k�ϕ1, 
ϕ2
ϕ1

, ..., ϕn

ϕ1
�, it is enough to show 

Sij

ϕ1
is contained in 

k�ϕ1, 
ϕ2
ϕ1

, ..., ϕn

ϕ1
� for any ij ∈ W (R). Since Sij is an element of R, it can written as 

Sij =
∑

aα1α2...αn
(ϕα1

1 ...ϕαn
n ) and

Sij

ϕ1
=

∑
aα1α2...αn

(ϕ1)α1+α2+...+αn−1
(
ϕ2

ϕ1

)α2

...

(
ϕn

ϕ1

)αn

Since each summand in the expression of Sij

ϕ1
is an element of the ring k�ϕ1, 

ϕ2
ϕ1

, ..., ϕn

ϕ1
�, 

Sij

ϕ1
is also an element of the same ring for any ij ∈ W (R), showing that [Ii1 ] ⊂

k�ϕ1, 
ϕ2
ϕ1

, ..., ϕn

ϕ1
�, �
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Remark 2.2. Note that [Ii1 ] is the local ring corresponding to the blow up of the branch 
of the curve C at the origin.

As a consequence, the parametrization corresponding to Ri can be obtained from the 
parametrization corresponding to Ri−1 by doing power series divisions, and these pa-
rameterizations can be used to determine Fi’s to construct the Arf closure. The problem 
that should be solved is up to which degree the division series must be expanded so that 
no information is lost. To solve this problem, we first recall the following important the-
orem, showing that every power series parametrization of a branch can be interchanged 
with a polynomial parametrization.

Theorem 2.3. (See [11].) Let C be a branch with the parametrization {ϕ1(t), ϕ2(t), ...,
ϕn(t)}. Let c be the conductor of the semigroup of values of C. Then any parametrization 
{φ1(t), φ2(t), ..., φn(t)} with φi ≡ ϕi (mod tc) for 1 ≤ i ≤ n gives the branch C.

By using this theorem, and observing that the conductor of Ri is smaller than the 
conductor of Ri−1 where R0 = R, we can immediately propose a bound for expand-
ing the division series: the conductor c of W (R). Unfortunately, as we have mentioned 
above, determining c from the parametrization is a problem on its own. We aim to 
propose a bound without determining the conductor c of W (R). To do this, we first 
construct a blow up schema, which not only summarizes the construction of the Arf 
closure of the ring R = k�ϕ1, ..., ϕn�, but is also essential in the proof of our main 
theorem.

Column 1 Column 2 Column n smallest ordered element
ϕ

(0)
1 (t), ϕ

(0)
2 (t), . . . , ϕ

(0)
n (t), −→ F0 = ta0 + higher degree terms

ϕ
(1)
1 (t), ϕ

(1)
2 (t), . . . , ϕ

(1)
n (t), −→ F1 = ta1 + higher degree terms

...
...

...
...

ϕ
(l)
1 (t), ϕ

(l)
2 (t), . . . , ϕ

(l)
n (t), −→ Fl = t + higher degree terms

(2.1)

Here ϕ(0)
i = ϕi, and

ϕ
(j)
i (t) =

{
ϕ

(j−1)
i (t), if Fj−1 = ϕ

(j−1)
i (t)

ϕ
(j−1)
i (t)
Fj−1

− cij , if Fj−1 	= ϕ
(j−1)
i (t)

(2.2)

cij ∈ k and cij 	= 0 if and only if ord(ϕ(j−1)
i (t)) = ord(Fj−1). Note also that ord(Fl−1) ≥ 2

with a0 ≥ a1 ≥ ... ≥ al−1 ≥ 2. Then Rj = k�ϕ
(j)
1 (t), ϕ(j)

2 (t), ..., ϕ(j)
s (t)� and the Arf clo-

sure of R is:
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R∗ = k + kF0 + kF0F1 + ... + kF0F1...Fl−2 + F0...Fl−1k�t�.

Let c∗ denote the conductor of the semigroup W (R∗) of the Arf closure. As W (R∗) =
{0, a0, a0 + a1, ..., a0 + ... + al−2, a0 + ... + al−1 + N}, c∗ = a0 + ... + al−1, and thus 
R∗ = k+ kF0 + kF0F1 + ... + kF0F1...Fl−2 + tc

∗
k�t�, where Fj = Fj (mod tc

∗). Hence, it 
is enough to find Fj ’s instead of the exact Fj ’s for constructing the Arf closure R∗. We 
can now state our main theorem.

Theorem 2.4. The rings k�ϕ1, ..., ϕn� and k�φ1, ..., φn� have the same Arf closure, where 
φj ≡ ϕj (mod tc

∗+1) for 1 ≤ j ≤ n.

Proof. We have to show that we do not lose any significant data by expanding the 
division series up to degree c∗ + 1, while determining the series ϕ(j)

i (t). We prove our 
claim in two parts by considering the constants ‘cij ’s and by using the blow up schema 
(2.1) and the notation there. Note that, if a column in the blow up schema (2.1) does 
not enter the algorithm, this means that the algorithm is the same without that column. 
Therefore, losing monomials in that column has no effect on the computation of the Arf 
closure. Hence, without loss of generalization, we can assume that all of the columns 
enter the algorithm at least once. Using the schema (2.1) again, this is equivalent to 
saying that for all i, ϕ(j)

i = Fj for at least one j.
We first consider the case with zero constants. In other words, recalling Eq. (2.2), 

cij = 0 for all i, j, so that all the important monomials are the smallest ordered terms 
of ϕ(0)

i ’s.
In this situation, for all i, ord(ϕ(0)

i ) ≥ ord(ϕ(1)
i ) ≥ ... ≥ ord(ϕ(k)

i ) and,

ϕ
(j)
i (t) = ϕ

(k)
i (t)

∏
l∈Iij

Fl where Iij =
{
l : j ≤ l < k and Fl 	= ϕ

(l)
i (t)

}

Then, ord(ϕ(0)
i ) =

∑
l∈Ii0

al + ord(ϕ(k)
i (t)). We have observed that ϕ(j)

i (t) = Fj for 
some j. Therefore, 

∑
l∈Ii0

al + ord(Fj)︸ ︷︷ ︸
aj︸︷︷︸

ord(ϕ(j)
i )

≤ c∗. Also, since ord(ϕ(k)
i ) ≤ ord(ϕ(j)

i ) for all 

j < k, we have ord(ϕ(0)
i ) =

∑
l∈Ii0

al + ord(ϕ(k)
i ) ≤ c∗ for all i. So, expanding the 

division series up to the degree (c∗ + 1) is enough to construct the Arf closure.
If cij 	= 0 for some i and j, we do an induction on the number of j’s for which cij 	= 0

for some i.

• n = 1 (cij 	= 0 for only one i and for some j)
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ϕ
(0)
1 (t), . . . ϕ(0)

i (t), . . . ϕ
(0)
s (t), −→ F0

...
...

...
...

ϕ
(j)
1 (t), . . . ϕ(j)

i (t) = ϕ
(j−1)
i (t)
Fj−1

− cij , . . . ϕ
(j)
s (t), −→ Fj

...
...

...
...

ϕ
(k)
1 (t), . . . ϕ(k)

j (t), . . . ϕ
(k)
s (t), −→ Fk = t + ...

Let

ϕ
(j)
i (t) = b1t

α1 + b2t
α2 + . . . = ϕ

(j−1)
i (t)
Fj−1

− cij (α1 < α2). (2.3)

It’s enough to show that, we don’t lose the term tα1 in the steps 0, 1, ..., j−1 by expanding 
the division series up to the degree (c∗+1). The reason is that after the j-th step, there are 
no nonzero cij ’s and from the previous part, we know that α1 < aj +aj+1 + . . .+ak < c∗. 
(Note that, without loss of generalization, we can assume that the ith column enters the 
algorithm at least once after the j-th step.)

Hence, by Eq. (2.3),

ϕ
(j−1)
i (t) =

(
cij + b1t

α1 + b2t
α2 + . . .

)
Fj−1

and

ϕ
(0)
i (t) =

(
cij + b1t

α1 + b2t
α2 + . . .

) ∏
l∈Λi,0

Fl

where Λi,0 = {l : 0 ≤ l ≤ j − 1 and Fl 	= ϕ
(l)
i (t)}. As α1 ≤ aj + . . . + ak−1 and 

c∗ = a0 + ... + aj−1 + aj + ... + ak−1, we can say that ϕ(0)
i (t) mod tc

∗+1 contains the 
term, which gives tα1 in the j-th step. This shows that expanding the division series up 
to the degree c∗ +1 in steps 0, 1, ..., j− 1 guarantees that the term tα1 is obtained in the 
j-th step.

• Assume the claim is true for a branch having cij 	= 0 for n − 1 different j’s. We take 
any branch having cij 	= 0 for n different j’s.

Let the first constant appears at the i0-th column, j0-th step. Then,

ϕ
(0)
1 (t), . . . ϕ

(0)
i (t), . . . ϕ

(0)
s (t), −→ F0

...
...

...
...

ϕ
(j0)
1 (t), . . . ϕ(j0)

i0
(t) = ϕ

(j0−1)
i0

(t)
Fj0−1

− ci0j0 , . . . ϕ
(j0)
s (t), −→ Fj0

...
...

...
...

ϕ
(k)(t), . . . ϕ

(k)(t), . . . ϕ
(k)(t), −→ F = t + ...
1 j s k
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From the induction assumption, for the steps starting with j0-th one, it is sufficient to 
expand the division series up to degree aj0 +aj0+1+ ... +ak−1, since that is the conductor 
of the Arf closure of the ring k�ϕ

(j0)
1 , ϕ(j0)

2 , ..., ϕ(j0)
s �. In other words, all the significant 

monomials that determine the Arf closure have orders less than or equal to aj0 +... +ak−1
at j0-th step. Then, as in the first part of the induction hypothesis, since

ϕ
(j0)
i0

(t) = b1t
α1 + b2t

α2 + . . . =
ϕ

(j0−1)
i0

(t)
Fj0−1

− ci0j0 (α1 < α2), (2.4)

we can write ϕ(0)
i0

as:

ϕ
(0)
i0

(t) =
(
cij + b1t

α1 + b2t
α2 + . . .

) ∏
l∈Λi0,0

Fl,

where Λi0,0 = {l : 0 ≤ l ≤ j0 − 1 and Fl 	= ϕ
(l)
i0

(t)}. Then all the important monomials 
in the first steps have order less than or equal to ord(

∏
l∈Λi0,0

Fl) = a0 + a1 + ... + aj0−1
plus aj0 +aj0+1 + ... +ak−1, which is equal to c∗. Hence, by truncating the division series 
in mod tc

∗+1, all the significant terms to construct the Arf closure are preserved. �
Remark 2.5. We should note that Theorem 2.4 does not say that the parameterizations 
{ϕ(0)

1 (t), ϕ(0)
2 (t), ..., ϕ(0)

s (t)} and {φ(0)
1 (t), φ(0)

2 (t), ..., φ(0)
s (t)} (where φ(0)

j is the truncation 

of the series ϕ(0)
j in mod tc

∗+1) provide the same curve. Expanding the division series 
up to degree c∗ + 1 in each blow up does not guarantee to obtain the blow up ring 
Rj = k�ϕ

(j)
1 (t), ϕ(j)

2 (t), ..., ϕ(j)
s (t)� exactly, but it guarantees to construct the Arf closure 

correctly.

Example 2.6. Let us compute the Arf closure of the ring k�t4, t6 + t9, t14� with c∗ = 10

R0 : t4 t6 + t9 t14 −→ F0 = t4

R1 : t4 t2 + t5 t10 −→ F1 = t2 + t5

R2 : t2 − t5 + t8 − t11 t2 + t5 t8 − t11 −→ F2 = t2 + t5

R3 : −2t3 + 3t6 − 4t9 t2 + t5 t6 − 2t9 −→ F3 = t2 + t5

R4 : −2t + 5t4 − 9t7 + 14t10 t2 + t5 t4 + ... −→ F4 = −2t + 5t4 − 9t7 + 14t10

The Arf Closure is, R = k+kt4 +k(t6 + t9) +kt8 +k�t�t10, and the multiplicity sequence 
of the corresponding branch is: (4, 2, 2, 2, 1, 1)

We now have a bound for expanding the division series to determine the Arf closure. It 
is obvious that c∗ +1 is a much better bound than c, since c∗ +1 is much smaller than c. 
(Recall that R ⊂ R∗ and W (R) ⊂ W (R∗). Thus, c∗ ≤ c.) But, it looks like as if we are in 
a vicious circle: We want to determine the Arf closure and the multiplicity sequence, but 
we need the conductor of the Arf closure for this. Hence, we ask the following question: 
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‘Is there a way to find the conductor of the Arf closure or to give a bound for it without 
knowing the Arf closure?’ To answer that question, we first focus on plane branches, but 
before that we give the following general remark for all branches.

Remark 2.7. Let C be a branch given with the parametrization {ϕ1(t), ..., ϕn(t)} and 
the multiplicity sequence a0, a1, ..., ak−1, 1, 1.... Then the conductor c∗ of the Arf closure 
of the ring R = k�ϕ1(t), ..., ϕn(t)� is equal to the sum a0 + a1 + ... + ak−1.

3. A bound for c∗

Let C be a plane algebroid curve with primitive parametrization {x(t), y(t)} with 
x(t), y(t) ∈ k�t�, where k is algebraically closed of characteristic 0. With a coordinate 
change and interchanging x and y if necessary, we can assume that

x(t) = tn and y(t) =
∑

ait
i

with ord(y(t)) > n and ai ∈ k. If β0 := n; β1 := smallest power appearing in y(t), that 
is not divisible by n; e1 := gcd(β0, β1); continuing inductively, βi := smallest power for 
which gcd(β0, β1, ..., βi) < gcd(β0, β1, ..., βi−1); ei = gcd(β0, β1, ..., βi) and eq = 1, the 
set {β0, β1, ..., βq} is called the characteristic exponents of C [4]. M(n, m) denoting the 
sequence of divisors in the Euclidean algorithm of n and m, the multiplicity sequence of 
C is

M(β0, β1),M(e1, β2 − β1),M(e2, β3 − β2), . . . ,M(eq−1, βq − βq−1), 1, 1, ... (3.1)

We first give the conductor of the Arf closure of a plane branch in terms of its char-
acteristic exponents.

Theorem 3.1. Let C be a plane algebroid curve with characteristic exponents {β0, β1, ...,
βq}. Then

c∗ = β0 + βq − 1.

To prove this theorem, we need two lemmas.

Lemma 3.2. Let a1, a2, . . . , ak be natural numbers s.t. gcd(a1, . . . , ak) = 1. Define b1 = a1, 
bi = gcd(bi−1, ai) = gcd(a1, . . . , ai) (1 < i ≤ k) inductively. Then,

gcd(bi−1, ai − ai−1) = bi

Proof. Since bi = gcd(bi−1, ai) and bi−1 = gcd(bi−2, ai−1), we have bi−1 = bih, ai =
bir, ai−1 = bi−1p and bi−2 = bi−1q, where gcd(h, r) = 1 and gcd(p, q) = 1. Then 
gcd(bi−1, ai − ai−1) = gcd(bih, bi(r − hp)) = bi as gcd(h, r) = 1. �
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The second lemma is the following, and an equivalent is given in [7].

Lemma 3.3. (See [7].) Let n and m be two natural numbers, e = gcd(n, m) and also let 
di be the divisors obtained by applying the Euclidean algorithm to n and m. In this case ∑

i di = n + m − e.

Proof of Theorem 3.1. Recalling Remark 2.7 and Eq. (3.1), it is enough to show that 
the sum M(β0, β1) +M(e1, β2 −β1) +M(e2, β3 −β2) + . . .+M(eq−1, βq −βq−1) is equal 
to β0 + β1 − 1. By Lemma 3.3, the sum of the multiplicities is β0 + β1 − gcd(β0, β1) +
gcd(β0, β1) + β2 − β1 + gcd(gcd(β0, β1), β2 − β1) + ... + gcd(β1, ..., βq−1) + βq − βq−1 − 1
and by Lemma 3.2, this is equal to β0 + βq − 1, which completes the proof. �

Having determined c∗ in the plane case, we can give a bound for c∗ in the space case 
by using Theorem 3.1.

Let C be an algebroid curve with embdim(C) > 2 and with local ring R =
k�ϕ1(t), ϕ2(t), ..., ϕs(t)�, where

ϕ1(t) = tm11

ϕ2(t) = a21t
m21 + a22t

m22 + ... + a2r2t
m2r2

...
ϕs(t) = as1t

ms1 + as2t
ms2 + ... + asrst

msrs .

m11 ≤ m21 ≤ .... ≤ ms1 and gcd(m11, m21, m22, ..., m2r2 , ..., ms1, ms2, ..., msrs) = 1
Then, we can always determine constants b2, ..., bs such that in the sum ϕ(t) = b2ϕ2(t) +
b3ϕ3(t) + ... + bsϕs(t), none of the mij’s vanish and the greatest common divisor of the 
powers of the terms of ϕ(t) and ϕ1(t) is equal to gcd(m11, ..., ms1, ms2, ..., msrs) = 1. If 
we consider the plane curve branch C̃ with the local ring R̃ = k�ϕ1(t), ϕ(t)�,

R̃ ⊂ R ⇒ R̃∗ ⊂ R∗ ⇒ W
(
R̃∗) ⊂ W

(
R∗) ⇒ c̃∗ ≥ c∗.

That is, c∗ is always greater than or equal to the smallest characteristic exponent of 
C̃ plus greatest characteristic exponent of C̃ minus 1. As the smallest characteristic 
exponent is equal to m11 and the greatest characteristic exponent of C̃ is less than or 
equal to msrs , c∗ ≤ m11 +msrs − 1, and we can state the following theorem, which gives 
the bound to determine the Arf closure correctly.

Theorem 3.4. Let R = k�ϕ1(t), ϕ2(t), ..., ϕs(t)� be a branch, where

ϕ1(t) = tm11

ϕ2(t) = a21t
m21 + a22t

m22 + ... + a2r2t
m2r2

...
ϕ (t) = a tms1 + a tms2 + ... + a tmsrs
s s1 s2 srs
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m11 ≤ m21 ≤ .... ≤ ms1 ≤ ... ≤ msrs and gcd(m11, m21, ..., m2r2 , ..., ms1, ..., msrs) = 1. 
Using the bound m11 + msrs for the truncation of the division series in each blow up is 
sufficient to construct the Arf Closure correctly.

Example 3.5. Recall Example 2.6. To compute the Arf closure of the ring k�t4, t6+t9, t14�, 
we can now use the bound 4 + 14 = 18 while expanding the division series and we get:

R0 : t4 t6 + t9 t14

R1 : t4 t2 + t5 t10

R2 : t2 − t5 + t8 − t11 + t14 − t17 t2 + t5 t8 − t11 + t14 − t17

R3 : −2t3 + 3t6 − 4t9 + 5t12 − 6t15 + 6t18 t2 + t5 t6 − 2t9 + 8t12 − 4t15 + 4t18
R4 : −2t + 5t4 − 9t7 + 14t10 − 20t13 + 26t16 t2 + t5 t4 + ...

As F0 = t4, F1 = F2 = F3 = t2 + t5 and F4 = −2t +5t4 − 9t7 +14t10 − 20t13 +26t16, the 
Arf Closure is R = k + kt4 + k(t6 + t9) + kt8 + k�t�t10, and the multiplicity sequence of 
the corresponding branch is: (4, 2, 2, 2, 1, 1). Hence, the results are the same with what 
we have found in Example 2.6.

4. Hilbert functions of local rings having the same Arf closure

In this section, we present a conjecture of Arslan and Sertöz and give examples 
supporting this conjecture obtained by using the algorithm given above. First, we char-
acterize the Hilbert function of an Arf ring.

Recall that the Hilbert function HR(n) of the local ring R with the maximal ideal m is 
defined to be the Hilbert function of the associated graded ring grm(R) =

⊕∞
i=0 m

i/mi+1. 
In other words,

HR(n) = Hgrm(R)(n) = dimR/m

(
mn/mn+1), n ≥ 0.

The Hilbert series of R is defined to be

HSR(t) =
∑
n∈N

HR(n)tn.

It has been proved by Hilbert and Serre that, HSR(t) = h(t)
(1−t)d , where h(t) is a polynomial 

with coefficients from Z, h(1) is the multiplicity of R and d is the Krull dimension of R. 
It is also known that there is a polynomial PR(n) ∈ Q[n] called the Hilbert polynomial of 
R such that HR(n) = PR(n) for all n ≥ n0, for some n0 ∈ N. The smallest n0 satisfying 
this condition is the regularity index of the Hilbert function of R. We first show that the 
regularity index of the Hilbert function of an Arf ring is 1.

Theorem 4.1. (See [21, Theorems 1 and 2].) Let R be a local Cohen–Macaulay ring of 
dimension d and multiplicity e. Then
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embdim(R) ≤ e− d + 1,

and if there is equality (R has maximal embedding dimension), then the associated graded 
ring of R is Cohen–Macaulay.

Theorem 4.2. (See [19, Theorem 2.2].) An Arf ring has maximal embedding dimension.

Corollary 4.3. The associated graded rings of Arf rings are Cohen Macaulay.

Proof. This is a direct consequence of Theorems 4.1 and 4.2, as d = 1 for Arf rings. �
We have dim(R) = dim gr(R) and embdim(R) = embdim(gr(R)). For a graded ring 

G and a nonzero divisor x ∈ G of degree 1, we have embdim(G/x) = embdim(G) − 1, 
e(G/x) = e(G), and dimG/x = dimG −1. Hence, G has maximal embedding dimension 
if and only if G/x has maximal embedding dimension. Furthermore, HSG(t) = HSG/x(t)

1−t . 
(Also, note that to guarantee the existence of a nonzero divisor of degree 1, the field has 
to be infinite, and there is standard trick for extending the field.) A 0-dimensional graded 
ring of maximal embedding dimension and multiplicity e has Hilbert series 1 +(e −1)t, so 
a 1-dimensional graded ring of maximal embedding dimension has Hilbert series 1+(e−1)t

(1−t) .
As a consequence, we can state the next theorem.

Theorem 4.4. Let R be a local ring and R∗ its Arf Closure. Then the Hilbert series of R∗

is:

PR∗(t) = 1 + (e− 1)t
1 − t

.

We have shown that the regularity index of the Hilbert function of an Arf ring is 1. 
This shows that, although an Arf ring is not generally regular, it is very close to being 
regular, so we have the following question: Can we interpret the Arf closure as a specific 
way of taming the singularity? With this question in mind and recalling that the Arf 
closure of a ring is obtained by enlarging the ring with the addition of new elements in a 
certain manner, we can try to understand the effect of adding an element on the regularity 
index of the Hilbert function. The following conjecture due to Arslan and Sertöz says 
that, while constructing the Arf closure, the addition of a new element results with a 
ring having a Hilbert function with a smaller or an equal regularity index:

Conjecture 4.5. If R1 and R2 are two local rings having the same Arf closure with R1 ⊂
R2 and PR1(t) =

h1(t)
1−t , PR2(t) =

h2(t)
1−t , then we have

degree(h1) ≥ degree(h2).

Note that the regularity indices of R1 and R2 are degree(h1) and degree(h2). Moreover, 
the claim of the conjecture is not true for two arbitrary local rings, one of which contains 
the other:
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Example 4.6. Consider the rings R1 = k�t10, t15, t17, t18� and R2 = k�t10, t11, t15, 
t17, t18�, which do not have the same Arf closure. Although R1 ⊂ R2, we have 
PR1(t) = 1+3t+4t2+2t3

1−t and PR2(t) = 1+4t+4t2+t4

1−t .

Lastly, we give some examples supporting the conjecture. The next table presents 
rings having the Arf closure

k�t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34, t35�

and their Hilbert series. Observe that while getting closer to the Arf closure, the degrees 
of the h(t)’s, and so the regularity indices never increase.

Rings Hilbert Series
k�t12, t18, t25, t26� 1 + 3t + 4t2 + 3t3 + t4

k�t12, t18, t25, t26, t27� 1 + 4t + 5t2 + 2t3
k�t12, t18, t25, t26, t27, t28� 1 + 5t + 5t2 + t3

k�t12, t18, t25, t26, t27, t28, t29� 1 + 6t + 5t2
k�t12, t18, t25, t26, t27, t28, t29, t31� 1 + 7t + 4t2
k�t12, t18, t25, t26, t27, t28, t29, t31, t32� 1 + 8t + 3t2
k�t12, t18, t25, t26, t27, t28, t29, t31, t32, t33� 1 + 9t + 2t2
k�t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34� 1 + 10t + t2

k�t12, t18, t25, t26, t27, t28, t29, t31, t32, t33, t34, t35� 1 + 11t

The next table presents rings having the Arf closure

k�t12, t16 + t30, t20, t31, t33, t34, t35, t37, t38, t39, t41, t42�.

Rings Hilbert Series
k�t12, t16 + t30, t31� 1 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + t6

k�t12, t16 + t30, t20, t31� 1 + 3t + 5t2 + 3t3
k�t12, t16 + t30, t20, t31, t33� 1 + 4t + 7t2
k�t12, t16 + t30, t20, t31, t33, t34, t35� 1 + 6t + 5t2
k�t12, t16 + t30, t20, t31, t33, t34, t35, t37, t38, t39, t41, t42� 1 + 11t

(Here, the Arf closure computations are done by using the SINGULAR [17] library 
“ArfClosure.lib”, which you can find in [23]. The library uses the Arf construction algo-
rithm given above.)
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