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Quasi-two-dimensional Feynman bipolarons

R. T. Senger and A. Erc¸elebi
Department of Physics, Bilkent University, 06533 Ankara, Turkey

~Received 15 January 1999!

We study the stability criterion for the formation of two-dimensionally confined large bipolarons. The
electrons are treated as bounded within a parabolic potential well while being coupled to one another via the
Fröhlich interaction Hamiltonian. Within the framework of thebulk-phonon approximationwe adopt the
Feynman-polaron model to derive variational results over a wide range of the Coulomb interaction and phonon
coupling strengths interpolating between the bulk and the two-dimensional confinement limit. It is shown that
the critical values of the electron-phonon coupling constant and the ratio of dielectric constants (h5e` /e0)
exhibit some nontrivial features as the effective dimensionality is tuned from 3 to 2.@S0163-1829~99!08637-3#
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I. INTRODUCTION

Two electrons in a polar or ionic crystal interact with th
lattice vibrations resulting in attractive forces between the
Under certain conditions, the phonon mediated attraction
tween the particles may come out to be strong enough
counterbalance the Coulomb repulsion and consequent
stable bound state can form. Such a state of the system
sisting of the pair of electrons and a common density
virtual phonons is termed a bipolaron.

Among the numerous amount of papers published wit
the context of two-polaron systems, we at first cite the p
neering work of Haken1 who studied the problem of the in
teraction between an electron and a hole via the couplin
the LO branch of the phonon spectrum in polar semicond
tors. Using a variational method he showed that the pola
corrections to the effective interaction at large distances
crease exponentially, reflecting the exponentially decrea
overlap between the clouds of bound charges around the
larons. The same problem was further considered by Mah
and Varma2 and by Sak3 where they included the correction
to the electron-hole potential coming from the dynamic p
larization of the lattice, and showed how deviations from
Coulomb form could occur. The intrinsic effect of electro
~hole! phonon interactions on the nature of forces acting
tween the particles was reconsidered by Kuleshov, Matve
and Smondyrev4 and the same work was revised later.5 Bas-
ing their calculations on Feynman path-integral formalis
they developed a scheme for obtaining expressions for
particle interaction potentials and the ground state energ
both the strong- and weak-coupling approximations. A sim
lar problem in the same area was considered by Bishop
Overhauser6 to investigate the phonon-mediated interacti
between two electrons where they showed that for ionic c
tals the effective electron-electron potential may lead to
attractive deep potential well with a minimum occurring f
particle separations as small as a few tens of Å.

In the bipolaron problem, with the electrons being clos
positioned, the polarization fields centered about the parti
overlap and interfere in a constructive manner to creat
potential well deep enough to compete with the Coulo
repulsion so as to prevent the particles from being projec
apart. Depending on the dielectric properties of the medi
PRB 600163-1829/99/60~14!/10070~10!/$15.00
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provided the effective Coulomb repulsion is not larger tha
critical strength and the phonon coupling constant is
smaller than a critical value, the lattice effects may acco
for a considerable part of the energy of the electron-elect
pair which consists of attracting the particles against th
Coulomb repulsion. Thus, the fundamental condition un
which a bipolaron can exist is that the repulsive Coulom
interaction should not be too strong to dominate over a
hence break up the phonon-mediated binding which ho
the particles together.

In the last two decades, the study of bipolarons has
tracted a revived and extensive interest in the literature.7–26

Of particular relevance to the content of the present art
are the recent solutions of the bipolaron problem in three
strict two dimensions14–16,21where it is observed that a bi
polaronic bound state of two electrons is more easily attai
in two dimensions than in three. The concern of the pres
study is to extend the problem to a broader discourse
explore the stability of quasi-two-dimensional bipolaro
confined in a parabolic quantum well with variable we
width and potential barrier slopes; thus provide an inter
lating insight into the phase diagram, encompassing the b
and the two-dimensional limits. The harmonic-oscillator co
fining potential that we adopt here has already been used
parallel study26 within the framework of the strong-couplin
polaron theory where it has been noted that, in the quasi-t
dimensional~slablike! configuration, the utmost permissibl
Coulomb strength which would allow a bipolaron state
form may turn out to be lower than one would have for t
three- and strict two-dimensional bipolarons. To see whet
this peculiar feature is indeed a characteristic of quasi-tw
dimensionally confined bipolarons, we wish to review t
problem within a similar framework of the three and tw
dimensional bipolaron models set up earlier by Verb
Peeters, and Devreese14 where they reformulate the Feynma
path-integral variational approach27 to tackle the case of two
interacting polarons. Thus, a critical understanding of
foregoing calculations and the outcomes depends heavily
having read Ref. 14 with which we shall make some frequ
correspondence, particularly when the three- and tw
dimensional limits of our model are concerned. We belie
the methodology followed in this work proves to be a po
erful technique intended to yield a satisfactory description
10 070 ©1999 The American Physical Society
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PRB 60 10 071QUASI-TWO-DIMENSIONAL FEYNMAN BIPOLARONS
the problem in the overall ranges of the parameters cha
terizing the system. In the following, we obtain an expli
tracking of the phase stability in terms of the Coulomb a
phonon-coupling strengths as a function of the effective
mensionality tuned from 3 to 2.

II. THEORY

A. Bipolaron model

The model that we use consists of a pair of quasi-tw
dimensional electrons coupled to the LO branch of the b
phonon spectrum. As such, the fundamental approach
lowed in this work is to account for mainly the generic low
dimensional aspect of the dynamical behavior of the e
trons and visualize them as interacting with the medium
with one another through exhange of virtual phonons. Ap
from ignoring the contributions that may come from all oth
kinds of phonon modes, we also omit the screening effe
and further details, such as those due to the nonparabol
corrections to the electron band or the loss of validity of b
the effective-mass approximation and the Fro¨hlich con-
tinuum Hamiltonian in microstructures. Hence, under the
called bulk-phonon approximationand the aforementione
simplifying assumptions, we write the Hamiltonian descr
ing the confined electron-pair system coupled to the LO p
non field as

H5He1(
Q

aQ
† aQ1 (

i 51,2
(
Q

VQ~aQeiQW •rW i1aQ
† e2 iQW •rW i !,

~1!

where

He5 (
i 51,2

S 1

2
pi

21Vconf~zi ! D1
U

urW12rW2u
. ~2!

Here and henceforth we use dimensionless units approp
to a polaron calculation and takem* 5\5vLO51. In Eqs.
~1!, ~2!, aQ andaQ

† denote the phonon annihilation and cr

ation operators, andrW i5(rW i ,zi) ( i 51,2), are the positions
of the electrons in cylindrical coordinates. Similarly,pW i ( i
51,2) denote the respective momenta of the electrons.
Fröhlich interaction amplitude is related to the phonon wa
vectorQW 5(qW ,qz) through

VQ5~2A2pa!1/2uQW u21,

where a is the coupling constant defined, in terms of t
high frequency and static dielectric constants of the medi
by

a5
e2

A2
S 1

e`
2

1

e0
D . ~3!

In the Coulomb term, the unscreened amplitudeU is related
to the ratio of the dielectric constants

h5
e`

e0
,1, ~4!

through
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U5
e2

e`
5

A2

12h
a. ~5!

For the confining potential we use a harmonic oscillator p
file with adjustable barrier slopes, i.e., we set

Vconf~z!5
1

2
V2z2 ~6!

in which the dimensionless frequencyV serves for the mea
sure of the degree of confinement of the electron whi
when tuned from zero to infinity, yields a unifying display o
the phase stability of the bipolaron as a function of the
fective dimensionality ranging from 3 to 2. The rationa
behind imposing quadratic potential profiles is that such
form for the confining barriers greatly facilitates the calcu
tions and leads to tractable analytic expressions. We h
thus refrained ourselves from treating potentials of ot
forms which possibly would lead to complicated and ev
prohibitively difficult expressions and numerical complic
tions and yet yield qualitative features similar to those
parabolic potential shapes. Indeed, calculations pertainin
the cyclotron study of polarons confined to an interface
dicate that the phonon-coupling-induced shift in the reson
energy is sensitive dominantly to the strength of the con
ing potential rather than its shape.28 Moreover, due to the
absence of an abrupt variation in the medium structure
properties, the parabolic confining potential allows us to d
regard any relevance to the interface phonon modes.29 We,
therefore, conveniently use the harmonic-oscillator poten
~6! as a simplifying first approximation compatible with th
framework of the path integral approach where one assu
the two electrons to be coupled to one another and to
corresponding fictitious particles via harmonic springs.

In the Feynman path integral representation of the
laron, the phonon variables can be projected out exactly
yield the partition function of the bipolaron system in th
form

ZBP5ZphZ, ~7!

where

Zph5)
Q

S 1

12e2b\vLO
D 3

~8!

is the phonon part, and

Z5 )
i 51,2

S E drW0E
rW i (0)5rW0

rW i (b)5rW0DrW i~l! D eS[ rW1(l),rW2(l)] ~9!

is the path integral in which the actionS consists of two
parts, one pertaining to the electron part of the Hamilton
and the other to the electron-phonon interaction. In ima
nary time variables (t→2 il), we have respectively, the fol
lowing expressions:

Se52
1

2E0

b

dl (
i 51,2

@rẆ i
2~l!1V2zi

2~l!#1Sc , ~10!

where
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Sc52E
0

b

dl
U

urW1~l!2rW2~l!u
~11!

is the Coulomb term, and

Se-p5
1

2 (
i 51,2

(
j 51,2

(
Q

VQ
2 E

0

b

dlE
0

b

dl8G(vLO51)~l2l8!

3eiQW •[ rW i (l)2rW j (l8)] ~12!

is the part describing the phonon mediated retarded attrac
interaction between the electrons. In the above, the dim
sionless parameterb stands for the inverse temperature, a
the memory function

Gv~u!5
cosh@~b22uuu!v/2#

sinh~bv/2!
~13!

is the Green’s function of a harmonic oscillator with fr
quencyv. In principle, at zero temperature, we haveZBP
5Z, and the bipolaron ground state energy

Eg52 lim
b→`

b21logZ,

can be calculated exactly provided the path integral~9! can
be evaluated. Since this is not possible due to the ana
complexity of the integral expressions in the actionS, Eqs.
~10!–~12!, we choose to proceed with the introduction of
solvable trial actionS0 intended to provide us with a conve
nient variational upper bound to the ground state energy,
by the Jensen-Feynman inequality

Eg<E02 lim
b→`

1

b
^S2S0&S0

, ~14!

where the notation̂ &S0
denotes a path-integral averag

with density functioneS0, and E0 is the trial ground state
energy corresponding toS0. The form of the trial action
should be simple enough to permit analytical calculatio
and yet be detailed enough to cover all the basic feature
the exact actionS.

B. The trial model and its diagonalization

For the trial action we choose the model which was s
cessfully applied to similar polaron or bipolaro
problems14,27,30where the electrons are considered to be
quadratic interaction with the fictitious masses. We writeS0
as a sum of three terms, i.e.,

S05Se1Ss1Sm , ~15!

whereSe is similar to that given by Eq.~10!, except now that
the Coulomb term~11! is reexpressed as

Sc5
1

2
KE

0

b

dl@rW1~l!2rW2~l!2aW #2. ~16!

Ss and Sm refer to the self- and mutual interaction of th
electrons with the fictitious masses, each with its own a
with that of the other electron, respectively. These terms
sume the following path-integral representations
ve
n-

tic

d

s
of

-

n

d
s-

Ss52
cs

2 E0

b

dlE
0

b

dl8Gw~l2l8! (
i 51,2

@rW i~l!2rW i~l8!#2,

~17!

Sm5223
cm

2 E
0

b

dlE
0

b

dl8Gw~l2l8!

3@rW1~l!2rW2~l8!2aW #2. ~18!

In the aboveK, cs, cm and w are variational paramete
introduced within a similar context as in the original pap
by Feynman.27 VectoraW is a further parameter describing th
mean distance between the central positions about which
electrons fluctuate. We should note that the confining pot
tial ~6!, being symmetric in the6z directions, imposes the
mean positions of both electrons to lie in thexy plane. We
therefore readily setaz50. We should also remark that i
the extreme limitsaW 50 and uaW u→`, the model yields re-
spectively a description of either the bipolaronic state of
two electrons or a pair of two independent polarons.14

Since the trial action and the path-integral averages
volved in Eqs.~14!–~18! are all separable in the Cartesia
coordinates, the calculations can be performed all in ident
manners for each spatial direction. Denoting the Cartes
component of thei th electron in any chosen direction byxi
and that of thei th fictitious massM by Xi , the part of the
model Lagrangian relevant to that coordinate

Lmod
(x) 5

1

2 (
i 51,2

~ ẋi
22V2xi

21MẊi
2!1

K

2
~x12x22ax!

2

2
k

2 (
i 51,2

~xi2Xi !
2

2
k8

2
$~x12X22ax!

21~x22X11ax!
2% ~19!

can be related to the following model action:

Smod
(x) 52

1

2E0

b

dl (
i 51,2

@ ẋi
2~l!1V2xi

2~l!1MẊi
2~l!#

1
1

2E0

b

dlH K@x1~l!2x2~l!2ax#
2

2 (
i 51,2

k@xi~l!2Xi~l!#2J
2

k8

2 E
0

b

dl$@x1~l!2X2~l!2ax#
2

1@x2~l!2X1~l!1ax#
2%. ~20!

Here, it should be understood thatV has its original meaning
as in Eq.~10! when one refers to thez direction, but assumes
zero value for the remaining two directions.

Similar to the elimination of the phonon degrees of fre
dom, also eliminating the fictitious mass coordinatesXi , we
obtain the relevant trial action, expressed solely in terms
the electron coordinates, in the form as given in Eqs.~15!–



e
La

ria
E

ve

rm
id
th

a

re-

all
ose

PRB 60 10 073QUASI-TWO-DIMENSIONAL FEYNMAN BIPOLARONS
~18!. The variational parameters of the trial action can th
be identified in terms of the parameters of the model
grangian

w5Ak1k8

M
, cs5

k21k82

4Mw
, cm5

kk8

2Mw
. ~21!

In order to calculate the ground state energy of the va
tional model and the path integral average required in
~14!, one needs to diagonalizeLmod

(x) ~19!. Introducing
xc.m.(Xc.m.) and xrel(Xrel) as the center of mass and relati
coordinates for the electrons~fictitious masses! through

H x1

x2
J 5

1

2
~xc.m.6xrel!6

ax

2
,

H X1

X2
J 5

1

2
~Xc.m.6Xrel!6

ax

2

we rewrite the Lagrangian relevant to the chosen direction

Lmod
(x) 5Lc.m.

(x) 1L rel
(x) ,

where

Lc.m.
(x) 5

1

4
ẋc.m.

2 1
1

4
MẊc.m.

2 2
1

4
~V21k1k8!xc.m.

2

2
1

4
~k1k8!Xc.m.

2 1
1

2
~k1k8!xc.m.Xc.m., ~22!

L rel
(x)5

1

4
ẋrel

2 1
1

4
MẊrel

2 2
1

4
~V212K1k1k8!xrel

2

2
1

4
~k1k8!Xrel

2 1
1

4
~k2k8!xrelXrel . ~23!

We should note that we have excluded a final te
2 1

2 V2axxrel which has had to appear on the right hand s
of Eq. ~23!, since this term always vanishes because, ei
V or ax is zero for all Cartesian directions.

Under appropriate coordinate transformations

xc.m.5h01h1 ,

Xc.m.5
w2

w22j0
2
h01

w2

w22j1
2
h1 , ~24!

xrel5h21h3 ,

Xrel5
k2k8

k1k8

w2

w22j2
2
h21

k2k8

k1k8

w2

w22j3
2
h3 . ~25!

Lc.m.
(x) and L rel

(x) can be diagonalized in the respective norm
coordinates$h0 ,h1% and $h2 ,h3%, yielding the canonical
forms

Lc.m.
(x) 5

1

2 (
i 50,1

mi~ ḣ i
22j i

2h i
2!,
n
-

-
q.

as

e
er

l

L rel
(x)5

1

2 (
i 52,3

mi~ ḣ i
22j i

2h i
2!, ~26!

where

m05
1

2

j1
22j0

2

w22j0
2

, m15
1

2

j1
22j0

2

j1
22w2

, ~27!

m25
1

2

j2
22j3

2

j2
22w2

, m35
1

2

j2
22j3

2

w22j3
2

~28!

are the relevant mass values andj i(V) ( i 50,1,2,3) refer to
the eigenfrequencies, given by

H j0

j1
J 5

1

A2
$V21v1

27A~V21v1
2!224V2w2%1/2, ~29!

H j2

j3
J 5

1

A2
$V21v2

21v3
2

6A~V21v2
21v3

2!224~V2w21v2
2v3

2!%1/2.

~30!

We note that, in the limitV→0, the eigenfrequenciesj i
reduce to

j0~0!50 and j i~0!5v i ~ i 51,2,3! ~31!

in which v i are the normal mode frequencies calculated p
viously by Verbist, Peeters, and Devreese14 for the bulk case,
expressed as

v15H M11

M
~k1k8!J 1/2

,

H v2

v3
J 5

1

A2
H M11

M
~k1k8!22K

6AFM21

M
~k1k8!22KG2

1
4

M
~k2k8!2J 1/2

.

~32!

Here we shall adopt the conventional HO~harmonic oscilla-
tor! operator representation which allows us to calculate
the required path integral averages easily. On this purp
we introduce the lowering and raising operatorsci and ci

† ,
( i 50,1,2,3), defined by

h i5l i~ci
†1ci !, @ci ,ci

†#51 ~33!

in which

l i5~2mij i !
21/2. ~34!

The corresponding Hamiltonian relevant toLmod
(x) can be ex-

pressed in the HO form

Hmod
(x) 5(

i 50

3

j i~V!S ci
†ci1

1

2D ,
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where the summation indexi takes values 0 and 1 for th
center of mass coordinates, and values 2 and 3 for the
tive coordinates. Hence, the part of the ground-state en
contributed by the particular coordinate relevant toS 0

(x) is
obtained simply as

E0
(x)52w1

1

2 (
i 50

3

j i~V!, ~35!

wherein the additional termw comes about under eliminatin
the fictitious mass coordinates to obtain the trial actionS0
from the model action.

Noting that the confining parameterV is relevant only to
the z axis, and that it has to be accounted for having va
zero in the remaining two directions, the expression forE0

(x)

can be extended to account for each of the Cartesian co
nates all at once, yielding

E0523w1(
i 50

3 Fj i~0!1
1

2
j i~V!G . ~36!

C. Path-integral averages

In order to reach the upper bound to the bipolaro
ground state energy, one has to evaluate the path inte
average involved in Eq.~14!, where

^S2S0&S0
52

K

2E0

b

dl^@rW1~l!2rW2~l!2aW #2&S0

2UE
0

b

dl(
Q

4p

Q2
^eiQW •[ rW1(l)2rW2(l)]&S0

1
1

2E0

b

dlE
0

b

dl8Gw~l2l8!

3H cs (
i 51,2

^[ rW i(l2rW i(l8)] 2&S0

12cm^@rW1~l!2rW2~l8!2aW #2&S0J
1

1

2 (
Q

VQ
2 E

0

b

dlE
0

b

dl8GvLO
~l2l8!

3 (
i , j 51,2

^eiQW •[ rW i (l)2rW j (l8)]&S0
, ~37!

in which, for computational convenience, the Coulomb p
tential has been written in its Fourier expanded form.

Using the well established identity for a harmonic osc
lator with frequencyv and the relevant annihilation and cr
ation operatorsc andc†

K expH E
0

b

dl@ f * ~l!c†1 f ~l!c#J L
v

5expH 1

2E0

b

dlE
0

b

dl8Gv~l2l8! f ~l! f * ~l8!J ,

~38!
la-
gy

e

di-

c
ral

-

we readily write

lim
b→`

^eiQW •[ rW1(l)2rW1(l8)]&S0
5e2q2D1,1(l2l8,0)e2qz

2D1,1(l2l8,V),

~39!

lim
b→`

^eiQW •[ rW1(l)2rW2(l8)2aW ]&S0

5e2q2D1,2(l2l8,0)e2qz
2D1,2(l2l8,V), ~40!

where

D1,1~t,V!5
1

4 (
i 50

3

l i
2~V!~12e2j i (V)utu!, ~41!

D1,2~t,V!5
1

4 (
i 50,1

l i
2~V!~12e2j i (V)utu!

1
1

4 (
i 52,3

l i
2~V!~11e2j i (V)utu!. ~42!

Using the integral transform

E
0

b

dlE
0

b

dl8F~ ul2l8u!52bE
0

b/2

dt F~t!, ~43!

valid for F(b2t)5F(t), we can express the variational up
per bound to the ground state energy of the ‘‘two-electron1
phonon’’ complex in the following convenient form

Eg523w1 (
n51,2

1

n (
i 50

3

j i~Vn!1K (
n51,2

2

n
D1,2~0,Vn!

1U(
Q

4p

Q2
eiQW •aWe2q2D1,2(0,V1)e2qz

2D1,2(0,V2)

24E
0

`

dt e2wt (
n51,2

2

n
$csD1,1~t,Vn!1cmD1,2~t,Vn!%

22(
Q

VQ
2 E

0

`

dt e2t$e2q2D1,1(t,V1)e2qz
2D1,1(t,V2)

1eiQW •aWe2q2D1,2(t,V1)e2qz
2D1,2(t,V2)%. ~44!

Here, for notational convenience, we have introduced

Vn5H 0 for n51,

V for n52.
~45!

Using Eqs.~21! and ~32!, the variational parametersK, cs
andcm can be expressed in terms ofw andv i( i 51,2,3),

K5
1

2
~v1

22v2
22v3

2!,

H cs

cm
J 5

1

8w
$w2~v1

22w2!6~v2
22w2!~w22v3

2!%. ~46!

Consequently, one can treatw and$v i% as an alternative se
of variational parameters satisfying the intrinsic relation

0<v3<w<v2<v1 . ~47!
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When the two electrons are set a large distance apart, i.e
the limit uaW u→`, the energy expression~44! should conform
exactly to that of a single polaron multiplied by a factor of
Indeed, a careful examination reveals that in this extre
v3→0, v1→v2, and consequently, the present results
duce to those reported previously by Senger and Erc¸elebi30

for the one-polaron problem with an identical framewo
consisting of the same parabolic confining potential~see Ap-
pendix A!. We should further emphasize that energetica
the most favorable bipolaronic state has been found14 to take
over for aW 50. Therefore, in the foregoing numerical calc
lations and discussions, we shall presume a vanishing m
separation between the electrons.

With the corresponding values ofK, cs andcm , Eq. ~46!,
substituted in Eq.~44! and having projected out theQW sum-
mations, the variational bipolaron energy can be written a
function of w andv i ( i 51,2,3), given by

Eg523w1 (
n51,2

1

n (
i 50

3

j i~Vn!

1
U

ApD1,2~0,V2!
FS D1,2~0,V1!

D1,2~0,V2! D
2 (

n51,2

1

2n H v1
22w2

j0~Vn!1j1~Vn!
1

v2
21v3

22w2

j2~Vn!1j3~Vn!

1
v2

2v3
2

j2~Vn!j3~Vn!@j2~Vn!1j3~Vn!#J
2aA2

pE0

`

dt e2tH 1

AD1,1~t,V2!
FS D1,1~t,V1!

D1,1~t,V2! D
1

1

AD1,2~t,V2!
FS D1,2~t,V1!

D1,2~t,V2! D J , ~48!

whereV1 and V2 have to be accounted for having valu
zero andV, respectively, and

F~x!5
arctan~Ax21!

Ax21
. ~49!

D. Integer-dimensional-space limits

Before we present our results at large, we find it usefu
investigate the conformity with the extreme limits of the bu
and strict two-dimensional cases which have already b
studied extensively in the literature. WhenV is set equal to
zero, the present model readily conforms to that tackled
previous paper by Verbist, Peeters, and Devreese,14 and du-
plicates the same results presented therein for the bulk b
laron. In this limit the parametersVn Eq. ~45!, become both
zero leading to the simplification: F(x)51. Using further Eq.
~31! in Eq. ~48!, the 3D ground state energy can be written
the simple form, given by
in

.
e,
-

y

an

a

o

n

a

o-

Eg
(3D)52Nw1

N

2
~v11v21v3!1C1

U

AD1,2~0,0!

2
N

4 H v1
22w2

v1
1

v2
21v2v31v3

22w2

v21v3
J

2aC2E
0

`

dt e2tH 1

AD1,1~t,0!
1

1

AD1,2~t,0!
J
~50!

in which N53, C15p21/2, andC25(2/p)1/2.
Going over to the strict 2D characterization of the p

larons, and recalling thatV2 stands forV, whereasV150,
we have the set of eigenfrequencies~29!, ~30!, relevant to the
z axis, to simplify as

lim
V2→`

j i~V2!5H w for i 50 and 3,

` for i 51 and 2.
~51!

Moreover, using Eqs.~27!, ~28!, and ~34!, we further have
the correspondingl i( i 50,1,2,3), all to vanish. It thus fol-
lows that the functionsD1,1(t,V2) and D1,2(t,V2), Eqs.
~41!, ~42!, both reduce to zero. Hence, evaluating

1

AD1,i~t,V2!
FS D1,i~t,V1!

D1,i~t,V2! D→ p

2AD1,i~t,V1!
, ~52!

we obtain the corresponding ground state energy in two
mensions to have exactly the same form~50! as for the bulk
case, except that we now haveN52, C15Ap/2, and C2
5(p/2)1/2.

III. RESULTS AND CONCLUSION

Since analytic minimization ofEg ~48! is not possible, the
determination of the optimal fits to the variational paramet
w and $v i%( i 51,2,3) requires numerical treatment. In o
computations we shall trace the domain of stability$h
,hc ,a.ac% of the bipolaron as a function of the confinin
parameterV.

The criterion for which a stable bipolaron state tak
place will be derived by demanding that the ground st
energy of the pair of composite polarons making up the
polaron be lower than twice the energy of one single polar
To provide a consistent comparison of the variational ene
minima of the bipolaron system with those of the single p
laron case, one needs further to compute the correspon
one-polaron energy valuesEg

(1) derived within an identical
framework of the present model and formalism, and un
the same numerical precision. On this purpose, one may
ther carry out a parallel variational computation of Eq.~44!
in the limit a→` ~see Appendix A!, or alternatively, refer
directly to the series of equations~13!, ~22!, ~25!–~30! given
in a preceding paper30 pertaining to the study of the Feynma
one-polaron problem consisting of the same quadratic c
finement potential.

In exploiting the variational bipolaron energy one faces
entangled admixture of a series of competitive aspects in
duced by the parametersa,h, andV which characterize the
system. It should be evident that these parameters do
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enter the problem in an independent way but all together t
part in the binding in connected and somewhat involv
manners, opposing the effect of one against the other.
tinguished from the case of a three- or two-dimensional
polaron, the extra parameterV adds more to the complexit
in the delicate balance between the Coulomb and pho
counterparts of the problem and their percentual invol
ments in the binding. Clearly, in a confined volume whereV
is tuned from zero to large values, i.e., when the particles
squeezed to get closer, one expects their kinetic energ
increase and the Coulomb repulsion between them to
come stronger. In the meantime, due to the rapid charge
sity fluctuations of the pair of electrons, the phonon-coupl
becomes pseudoenhanced leading to a more effective
deeper ‘‘phonon-mediated’’ interaction between the partic
to oppose and counterbalance the kinetic and Coulomb
pulsions. Thus, the overall role of the confinement on
phonon-coupling induced localization of the electro
electron pair and the withstanding repulsion is to make th
competing counter aspects stronger. What is more peculi
the present context is that during whenV is varied, the
phonon-coupling and the Coulomb strengths may not in g
eral grow or decrease monotonically in concert at the sa
rate and consequently, the relative dominating strength
either the Coulomb potential or the electron-phonon inter
tion over the other may become altered as a function of
degree of confinement. Yet, a further aspect of the prob
intruded by the confining potential is that, in the Q2D geo
etry, the electrons are confined along only one spatial co
dinate, but are free to expand and relax themselves in
transverse directions normal to the confining barriers; th
in the overall, resulting in a comparatively increased int
particle separation and a relatively weakened repulsive in
action against the lattice polarization field which holds t
particles together. It is therefore the mutual competition
tween such aforementioned aspects of the problem and
interrelated roles which the parametersU, a, andV play all
together that lead to the formation~or dissociation! of a bi-
polaron.

The common theoretical prediction led by the releva
works in the literature is that bipolaron formation is mo
favorable in 2D than it is in bulk. For instance, with param
eterh set equal to zero, i.e., when the Coulomb repulsion
thought of as tuned down to its hypothetical minimu
strength (U5A2a), the critical value of the coupling con
stant over which the bipolaron state can form is found
be ac

(3D)uh5056.85 andac
(2D)uh5052.90 in three and two

dimensions, respectively.14 For actual material parameters
interest whereh.0, the corresponding critical coupling con
stants scale inevitably to larger values so as to compete
the stronger Coulomb repulsion, and yet, regardless oh,
one always hasac

(2D) to lie considerably deviated below
ac

(3D) due to that the electrons interact more effectively w
the phonons in two dimensions, and consequently, a p
doenhanced effective electron-phonon interaction leads
relatively smaller numerical value of the coupling consta
Such a conspicuous feature met in switching the dimens
ality from three to two should naturally lead one to aw
that, in the quasi-two-dimensional~Q2D! configuration
where V is tuned from zero to large values, an increas
degree of confinement should play a constructive role in
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vor of bipolaronic stability; hence, the larger the value ofV
is, the less is the need for stronga. A clear description of
this trait is provided by the phase diagrams in Fig. 1 wh
we plot the Coulomb coefficientU againsta. In the phase
picture the space lying below the dashed line correspond
h,0, and is therefore unphysical. The upper space boun
from below by the solid lines plotted for three distinctiv
degrees of confinement (V50, V510, and V→`) gives
the unstable region where the polarons choose to rem
separated. Thus, it is only the narrow triangular area boun
by the dashed and either of the solid lines in which the
larons can be found in a bound state forming a stable b
laron. The vertex of each triangular region at which t
dashed and solid lines join defines an infimum for the c
pling constant in the 3D, Q2D (V510), and 2D configura-
tions. Coupling constants larger than these critical vertex v
ues serve for supporting the bipolaron to conserve
stability at correspondingly stronger Coulomb repulsio
The relevant numerical data ofac for a few sample values o
V is tabulated in the upper left inset of the figure. A mo
tractable display ofac is given in the lower right inset where
we plot its variation continuously as a function ofV encom-
passing the bulk and the 2D limits. The overall conclusi
led by the content of Fig. 1 is that the criticala below which
a bipolaron state is unfavorable gets shifted to smaller va
as the degree of confinement is increased. Also, for a gi
fixed value ofa, the lower the dimensionality is, the mor
favorably the bipolaron state can be sustained. In numer
terms, settinga58 for instance, we evaluate the critical up
per bound for the Coulomb coefficient beyond which t
bipolaron dissociates into two individual polarons asUc
511.59, 11.79, and 12.17, respectively, for the 3D, Q
(V510), and 2D cases. In the next paragraph we review
content of Fig. 1 from an alternative viewpoint where w
give an explicit and broader picture ofUc againstV over a

FIG. 1. The phase diagram for bipolaron formation in the sp
of the Coulomb coefficient and the electron-phonon coupling c
stant. The narrow triangular-like region bounded from below by
dashed line and from above by the top~bottom! solid line is the
phase domain for a stable bipolaron in the two-~three-! dimensional
limit as generated by Verbist, Peeters, and Devreese~Refs. 11,14!.
The middle solid line is for the quasi-two-dimensional (V510)
configuration. The arrows refer to the corresponding critical val
of a. The insets display the variation ofac as a function of the
confining parameter.
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succession of distinctivea values extended towards th
strong-coupling limit.

Settinga fixed at any desired value, Eq.~5! allows us to
trace the critical condition on the Coulomb strength as
function of the degree of confinement, displayed equi
lently in terms of the alternative related parameterh. In Fig.
2 we plot a series of curves describing the effect of confi
ment on the critical value ofh for different coupling con-
stants ranging in between 4 and 30. In the same figure,
the purpose of comparison, we also include a supplemen
layout of hc versusV derived within the framework of the
strong-coupling adiabatic polaron theory~see Appendix B!.
Over the scale of the abscissa we choose to expressV in
units a2, mainly for two reasons; one is that the ratioV/a2

~rather than bareV) proves to be a more sensible measure
the degree of confinement, and the other stems from tha
the strong coupling expansion to leading order ina, the
ground state energy is seen to be proportional to the sq
of the coupling constant, i.e.,Eg52ca2, where the corre-
sponding coefficient of proportionality bears a functional
lation solely toV/a2 for both the single-polaron and two
polaron systems.26 We should note that the polarons can fe
the boundary potential and enter a regime of reduced dim
sionality only when the effective well width (;1/AV) is
smaller than, or at least comparable with the mean~bi!po-
laron size (;1/a), and consequently, even a largeV would
not mean anything, but bulk medium, unlessa,AV. It is
therefore due to this reasoning that we are tempted to ac
the ratioV/a2 as a convenient measure of confinement.
the other hand, a careful examination of Eqs.~1! and ~2!
reveals that, if the energies are scaled bya2 and lengths by
a, the only modification in the Hamiltonian would be t
replace the confining parameterV by V/a2 and the Cou-
lomb coefficientU by U/a(51/@12h#). Thus, at ‘‘strong
coupling,’’ if hc is plotted againstV/a2, rather thanV, we
find that one can display the phase boundary on one uni
sal curve with no loss in generality for all largea.

A plain implication led by the plots in Fig. 2 is that, th
stronger the phonon coupling, or the larger the degree

FIG. 2. The critical ratiohc as a function of degree of confine
ment for a succession of differenta values. The dashed curves fro
bottom to top give the path-integral results obtained fora
54,5,6,7,8,10,15,20,30. The topmost solid curve is universal fo
largea and has been obtained within the framework of the stro
coupling polaron theory.
a
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confinement is, the more easily the bipolaron state can fo
and be supported against the repulsive Coulomb poten
We should remark that any plot ofhc pertaining to a
,6.85 intersects the abscissa at a nonzero value ofV; hence,
for not strong enougha, a bipolaron can form only beyond
critical degree of confinement, and the larger the coupl
constant is, the smaller is the corresponding criticalV.
Clearly, for a>6.85 one hasVc50, where in this case bi-
polaron formation is favorable even in bulk, and the so
effect of the confinement is to take over in favor of enhan
ing the already established stability of the bipolaron.

A careful look at the series of curves from bottom to t
reveals that asa is made indefinitely large, a peculiar featu
starts to build up, and contrary to our anticipations, we o
serve that the criticalh does no more display a steady in
creasing behavior interpolating between the 3D and 2D l
its, but instead attains its corresponding 2D value a
having gone through a minimum located at some place ab
V/a2.1. We feel that this salient characteristic is an im
plicit consequence of the dominating effect of either t
Coulomb repulsion or the phonon mediated attraction o
the other, and the cross overing of the competition betw
these counter aspects as the confining parameter is varie
regard with the strong-coupling limit, we should add the no
that, asa is adjusted to larger and larger values, the seque
of dashed~path-integral! curves converge towards the top
most solid curve which we have obtained independen
adopting the adiabatic approximation, the details of wh
we summarize in Appendix B. In the extreme stron
coupling limit we obtainhc50.079 in both three and two
dimensions, as reported earlier in Ref. 16.

Before we close our discussions we would like to sh
some insight into polaron-polaron versus bipolaron bou
state energies and display the profiles of the correspon
variational parametersw and$v i% against the degree of con
finement. To provide an explicit track of the evolution of th
‘‘polaron-polaron’’ complex as a function of the effectiv
dimensionality, we refer back to the simple case for wh
we artificially seth50, and choosea55 as a sample value
being somewhat smaller than the corresponding bulk crit
minimum,ac

(3D)uh5056.85. In Fig. 3~a! we plot the possible
bipolaronic binding energy

Eb5V2Eg

accompanied by twice the binding energy of the correspo
ing single polaron over the range 0<V<10. To give a
complementary understanding of the polaron-polaron~PP!
and bipolaron~BP! phases and the transition from one pha
to the other, we also display the variational parameters a
function of V @see Fig. 3~b!#. We at first note that forV
.7.21, i.e., in the region ‘‘BP~PP!,’’ the bipolaronic phase is
energetically more likely to show up compared to the
phase of two individual polarons, and yet, increasing
degree of confinement enhances the stability of the
phase. ForV,7.21, however, the state of two individua
polarons is favored. In the region ‘‘PP~BP!,’’ (4.53,V
,7.21) the bipolaronic phase is seen to persist rather re
sively where, with decreasingV, the corresponding loca
minimum in its ground state energy starts to lose its de
and eventually diminishes forV54.53. WhenV is made

ll
-
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even smaller, i.e., as the bulk limit is approached, o
achieves solely the PP phase with whatsoever no relev
to any possible bipolaronic characterization of the tw
polaron system. In Fig. 3~b! the variational parameters pe
taining to the energetically favorable phase are plotted
boldface curves and those which correspond to the m
stable state of either phase are given in dashed line
should be noted that if the bipolaronic phase should ind
be realized either as a metastable state or otherwise, the
responding variational parameters all achieve nonzero
distinctive values. The phase of two independent polaro
however, is characterized by thatv1 and v2 coalesce into
one single curve, andv350 regardless ofV. Consequently,
one hasw and n(5v15v2) to be recognized as the we
established Feynman variational parameters of the usual
polaron problem.27,30
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APPENDIX A: ONE-POLARON LIMIT

When the electrons are thought of as infinitely separa
the part of the trial action relevant to the Coulomb and m
tual interactions must fall off to zero, and from Eqs.~16! and
~18! it is not very difficult to guess that the variational coe
ficients K and cm should both tend to zero. From Eq.~46!,
we find that the only way this can happen is to havev3
→0 andv12v2→0. Hence, settingn5v15v2, we further
have the self-energy coefficient to simplify to

cs5
1

4
w~n22w2! ~A1!

which we identify exactly as the coefficient in the ener
term given by Eq.~27! in a previous paper on the confine

FIG. 3. ~a! Bipolaron and two single-polaron binding energi
and ~b! the variational parameters, as functions of the degree
confinement.
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one-polaron problem by Senger and Erc¸elebi,30 which here-
after will be referred to as SE.

A further simplification is that the eigenfrequenciesj i(V)
~29!, ~30! now read as

j0~V!5j3~V!→j1
(SE)~V!,

j1~V!5j2~V!→j2
(SE)~V!, ~A2!

wherej1
(SE)(V) andj2

(SE)(V) are the eigenfrequencies give
by Eq. ~19! in SE. We should also remark that in the lim
a→`, the rapidly oscillating termeiQW •aW involved in Eq.~44!
yields zero mean value.

In view of all the above simplifications, we rewrite th
energy expression~44! as

lim
a→`

Eg5 (
n51,2

2

n
@j0~Vn!1j1~Vn!2w#

24csE
0

`

dt e2wt@2D1,1~t,V1!1D1,1~t,V2!#

22(
Q

VQ
2 E

0

`

dt e2t exp$2q2D1,1~t,V1!

2qz
2D1,1~t,V2!% ~A3!

which indeed is a replica of twice the expression for t
one-polaron ground state energy given through the serie
equations~13!, ~22!, ~25!–~30! in SE. The correspondenc
with the notation of SE can be established through

D1,1~t,V i !5
t

2s i~t!
, ~A4!

wheres i(t) is defined by SE Eq.~28!.

APPENDIX B: STRONG-COUPLING APPROXIMATION

In the a@1 limit, an alternative approach is the conve
tional Pekar adiabatic theory31 which imposes a product An
satz separable in the particle and phonon coordinates, i.

C5F~RW ,rW !3exp(
Q

sQ~aQ2aQ
† !u0&. ~B1!

In the above, the exponential operator acting on the pho
vacuum is the displaced oscillator transformation wheresQ is
a variational parameter determined from the requirem
]^CuHuC&/]sQ50 to yield

sQ5VQ (
j 51,2

^Fue6 iQW •rW j uF&. ~B2!

For the particle part of the trial state, we assume variatio
oscillator-type wave functions separable in the center
mass,RW 5(rW11rW2)/2 and the relativerW5rW12rW2 coordinates,
i.e.,

f
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F~RW ,rW !5N expH 2
1

2
l1

2~Rr
21m1

2Rz
2!J

3expH 2
1

2
l2

2~r r
21m2

2r z
2!J ~B3!

in which RW r andRz stand for the lateral andz components of
the center of mass position vector, and the componentrWr
.

u

.

s

r

andr z have similar meanings for the relative position vect
N is the normalization constant.

The bipolaron ground state energy can then be obtai
through a numerical minimization ofEg5^CuHuC& with re-
spect to the set of four variational parameters$l i ,m i% ( i
51,2). In computing the critical phase boundary we ha
made correspondence with the results provided in a pre
ing paper32 pertaining to the strong-coupling study of th
one-polaron problem consisting of the same quadratic c
finement potential.
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