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Efficient Evaluation of Spatial-Domain MoM Matrix
Entries in the Analysis of Planar Stratified Geometries

Noyan Kinayman and M. I. Aksun

Abstract—An efficient hybrid method for evaluation of spatial-domain
method-of-moments (MoM) matrix entries is presented in this paper. It
has already been demonstrated that the introduction of the closed-form
Green’s functions into the MoM formulation results in a significant compu-
tational improvement in filling up MoM matrices and, consequently, in the
analysis of planar geometries. To achieve further improvement in the com-
putational efficiency of the MoM matrix entries, a hybrid method is pro-
posed in this paper and, through some examples, it is demonstrated that
it provides significant acceleration in filling up MoM matrices while pre-
serving the accuracy of the results.

Index Terms—Closed-form spatial-domain Green’s functions, method of
moments, printed circuits.

I. INTRODUCTION

The method of moments (MoM) is one of the widely used numer-
ical techniques employed for the solution of mixed potential integral
equations (MPIE’s) [1]–[3] arising in the analysis of planar stratified
geometries. Recently, the computational burden of the spatial-domain
MoM, which is evaluations of the Sommerfeld integrals, has been alle-
viated by introducing an efficient algorithm to approximate these inte-
grals in closed-form expressions, resulting in closed-form spatial-do-
main Green’s functions [4], [5]. Consequently, the central processing
unit (CPU) time required to calculate the MoM matrix entries, also
known as “fill-time,” has been reduced considerably. Following this de-
velopment, it was also shown that the reaction integrals (MoM matrix
entries) resulting from the application of the MoM in conjunction with
the closed-form Green’s functions can also be evaluated analytically,
which further improves the computational efficiency of the spatial-do-
main MoM [6].

In this paper, a new hybrid method based on the use of the technique
outlines in [6], in the vicinity of the source and a simpler approxima-
tion algorithm, elsewhere, is developed and presented. It is also demon-
strated that this hybrid method has significantly accelerated the matrix
fill-in time as compared to the original approach presented in [6]. The
application of the hybrid method is provided for a realistic example,
and possible difficulties together with their remedies are discussed.

II. THE HYBRID METHOD

Evaluation of MoM matrix entries is the one that requires most of
the CPU time of the technique for moderate-size geometries (spanning
a few wavelengths). To give an idea, CPU times for the evaluations
of the Green’s functions, matrix entries, and the solution of the MoM
matrix equation are given in Table I for some typical printed geome-
tries. Note that the geometries referred to in Table I have been analyzed

Manuscript received November 4, 1997.
N. Kinayman is with the Corporate Research and Development Department,

M/A-COM, Lowell, MA 08153 USA.
M. I. Aksun is with the Department of Electrical and Electronics Engineering,

Bilkent University, Ankara 06533, Turkey.
Publisher Item Identifier S 0018-9480(00)00864-4.

with uniform segmentation, which gives rise to block symmetric MoM
impedance matrices. Detailed study of hybrid method for the interdig-
ital capacitor mentioned in Table I will be provided in the following
sections. Due to space limitations, results for the patch antenna and the
bandpass filter could not be provided.

In order to introduce the hybrid method, let us first write down the
spatial-domain MoM matrix entry of a planarly stratified geometry ob-
tained through the MPIE formulation [1], [2]
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whereTxm are the testing functions,Jxn are the basis functions, and
h ; i is the inner product. The spatial-domain Green’s functions em-
ployed in (1) are obtained in closed forms with the use of the two-level
approach described in [7], which have the generic form of
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wherern = �2 � b2n, � = x2 + y2, ki is the wavenumber in
source layer, andbn is the complex constant. It has been demonstrated
in [6] that the MoM matrix entries given in (1) can be calculated an-
alytically without any numerical integration for piecewise-continuous
basis and testing functions, provided the closed-form Green’s functions
are used for the formulation. In that approach, each of the exponentials
in (2) is replaced by its Taylor series approximation as follows:

GA; q �=

N

n=1

an

M

m=0

cmn

(rn � rc)
m

rn
(3)

wherecmn are the Taylor series coefficients andrc is the center of
expansion for the exponential terme�jk r . Alternatively, one could
replace the entire Green’s function in (2) with a suitable approximation
that would enable the reaction integrals to be evaluated analytically. For
instance, one may use the polynomial approximation for the Green’s
function as

GA; q �=

L

l=�1


l � �
l (4)

where
l are complex coefficients obtained from a least-squares (LS)
fitting scheme. It is obvious that the analytical integration of the re-
action integrals is considerably simpler for the Green’s function ex-
pressed in (4) than for those expressed in (3). This is because the an-
alytical evaluation of the inner-product integrals using the former rep-
resentation requires extensive complex arithmetic operations, as well
as multiple evaluations of complex logarithms and trigonometric func-
tions. However, the caveat in the polynomial-fitting approach is that the
approximating the Green’s function over the entire range is very diffi-
cult, if not impossible, with a relatively smallL, because of the singular
behavior of the Green’s functions as� ! 0. One approach to resolving
this dilemma is to utilize both of the above representations, but in com-
plementary regions, thereby taking the advantage of the salient features
of both. This can be done by using (3) to represent the Green’s function
for smallρ, where it exhibits a singular behavior, and then by switching
over to (4) asρ becomes larger.

To summarize, a direct application of the rigorous method places an
unnecessary computational burden whenρ, the distance between the
source and testing points, is greater than a predetermined value�ls =
10s=k0, wheres is a constant. To circumvent this problem, one can use
a hybrid approach as given in (5), which uses a judicious combination
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TABLE I
CPU TIMES IN SECONDSREQUIRED FOR THEANALYSIS OF SOME TYPICAL GEOMETRIES ATSINGLE FREQUENCY ON ASUN SPARC ULTRA-2 WORKSTATION.

HYBRID METHOD INCLUDES THEADAPTIVE SELECTION OF� , AS EXPLAINED IN SECTION II

of the two methods, to increase the computational speed with which
the MoM matrix entries are generated as follows:
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For rooftop basis and testing functions,f(u) andg(v) are given as

f(u) =�0 + �1u+ �2u
2 + �3u

3 (6)

g(v) =�0 + �1v (7)

whereα andβ are constants obtained from the correlation operation of
the basis and testing functions [6].

At this point, it is worthwhile to describe the strategy for employing
the hybrid technique. To use a smallL in (4) and simplify the algorithm,
the polynomial-fitting algorithm is performed over a small range ofρ,
which is requires the LS fitting withNls sampling points to be repeated
for each of the inner-product operations. Consequently, to accelerate
the fitting process, the closed-form Green’s function is sampled be-
tween�ls and�max, and the sampled values are stored in a look-up
table before starting to fill up the MoM matrix. These tabulated values
can then be subsequently interpolated to perform the LS fitting rela-
tively fast for each inner product operation. Here, one can use linear or
quadratic interpolation scheme to find required values for the LS ap-
proximation process from the previously sampled values of the Green’s
function whose effects will also be demonstrated.

For a given geometry, either user can specify the value of�ls through
s or it can be determined adaptively by using the rms fitting error in the
LS approximation scheme. The adaptive approach, which is the one
used throughout this paper, starts with an error criterion defined as in
following form:

1

Ne

N

i=0

G
A; q
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A; q
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2

� E (8)

whereGA; q

method #1 corresponds to the Green’s function approximations
obtained from (3),GA; q

method #2 corresponds to the Green’s function ap-
proximations obtained from (4),E is the acceptable rms fitting error,
andNe is the number of samples used in error checking (Ne > Nls).
Then, since the LS approximation in (4) is implemented over a range of
�(�a � � � �b), the lower and upper limits�a and�b, respectively, are
determined adaptively starting with the initial values of minimum cell
width and maximum possibleρ value for the inner product evaluation,
respectively. If the condition specified by (8) is satisfied,�ls is set to

Fig. 1. S andS of the interdigital capacitor given inFig. 2. The dashed
lines represent the results fromememem by Sonnet Software, Inc, Liverpool, NY.

�a and the iteration is terminated, otherwise�a is increased by a small
increment��, and the iteration continues until (8) is satisfied. This ap-
proach makes the hybrid method a very suitable tool for designing an
efficient MoM-based electromagnetic simulator. In the examples given
in Table I, the constantE was selected as 10−5.

III. N UMERICAL EXAMPLES

To study the effectiveness and accuracy of the hybrid method pro-
posed in this paper, CPU times for different parameter setting and scat-
tering parameters (S-parameters) of an example printed structure are
obtained using the rigorous and hybrid methods. The example selected
here is an interdigital microwave integrated circuit (MIC) capacitor
whoseS-parameters and geometry are shown in Figs. 1 and 2, respec-
tively. Number of basis functions for the interdigital capacitor is chosen
to be 576. For the sake of fairness, an error term is defined as

error =

N

i=1

S
rigorous
1i � S

hybrid
1i

2

(9)

whereNp is the number of ports in the structure. The matrix fill time for
this geometry could be reduced by changing the auxiliary parameters,
as shown in Fig. 2 (L = 4; Nls = 9). Note that the matrix fill time for
eachs value given in the figure is the accumulative fill time over fre-
quency in the simulation band, whereas the times given in Table I are at
single frequency. To find the average fill time at a single frequency, the
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Fig. 2. Total matrix and percentage of inner-products that fall in the LS
approximation region for the interdigital capacitor (1000 MHz� f � 10 000
MHz, �f = 250 MHz).

Fig. 3. Error inS andS of the interdigital capacitor for different values
of s [error is defined in(9)].

time values read from Fig. 2 should be divided by the number of sim-
ulation points, which in this case is 37. From the figure, it is observed
that the matrix fill time is saturated arounds = �3:0, providing a
considerable amount of reduction in the matrix fill time. However, the
error inS-parameters is relatively high at some frequency points, and
the situation is even worse ats = �5:0, as shown in Fig. 3. This could
be attributed to a poor approximation of the Green’s functions by the
polynomials given in (4). It is also observed that the error inS-param-
eters increases even though the percentage of the inner products eval-
uated through the LS fitting scheme does not increase. This is due to
fact that, although the value of�ls below some point cannot change
the matrix fill time (unless it becomes zero), the algorithm keeps sam-
pling the Green’s functions starting from lower and lowerρ values as
�ls is decreasing. However, such choices of�ls only occur in cases of
manually varying the value ofs; in practice, there is a minimum limit
(usually the minimum cell width) on the value of�ls and it is deter-
mined by the adaptive algorithm that was previously described.

As a next step, the number of sampling points, i.e.,Nls, is increased
from 9 to 12, and the error inS-parameters is calculated again for
s = �5:0, giving the results in Fig. 4. While there is a noticeable im-

Fig. 4. Error inS andS of the interdigital capacitor for different values
of s [error is defined in(9)].

provement in the average error, the error is still not acceptable at higher
frequency points. Thus far, we have only employed linear interpolation
with nine interpolation points, for which the results given in Fig. 3 have
higher error fors = �5:0. Although increasing the interpolation points
from 9 to 12 in the linear LS approximation has improved the results
to a degree, they are still not acceptable (Fig. 4). However, switching
to quadratic interpolation from linear interpolation gives a significant
improvement even for the smaller values ofs, as shown in Fig. 4.

IV. CONCLUSIONS

In this paper, it has been demonstrated that the hybrid method sig-
nificantly improves the efficiency of the evaluation of spatial-domain
MoM matrix entries, on the order of tenfold to twentyfold reduction
in matrix fill time. Therefore, even for moderate-size geometries, the
solution time of the matrix equations becomes the dominating factor
on the overall performance of the spatial-domain MoM. Consequently,
the spatial-domain MoM in conjunction with the closed-form Green’s
functions has become a powerful computer-aided design (CAD) tool
for the analysis of planar structures, provided that the hybrid method
presented in this paper is employed in the evaluation of the matrix en-
tries.
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CAD Models for Asymmetrical, Elliptical, Cylindrical, and
Elliptical Cone Coplanar Strip Lines

Zhengwei Du, Ke Gong, Jeffrey S. Fu, Zhenghe Feng, and Baoxin Gao

Abstract—By the conformal mapping method, we give analytical
closed form expressions for the quasi-TEM parameters for asymmetrical
coplanar strip lines (ACPS’s) with finite boundary substrate. Then, based
on the analysis of ACPS’s, elliptical coplanar strip lines (ECPS’s) and
cylindrical coplanar strip lines (CCPS’s), and elliptical cone coplanar strip
lines (ECCPS’s) are studied. Computer-aided-design oriented analytical
closed-form expressions for the quasi-TEM parameters for ACPS’s,
ECPS’s, CCPS’s, and ECCPS’s are obtained. All of the expressions are
simple and accurate for microwave circuits’ designs and are useful for
transmission-line theory and antenna theory. The reasonableness of the
method and results are verified and various design curves are given.

Index Terms—Asymmetrical coplanar strip lines, CAD modes, con-
formal mapping, cylindrical coplanar strip lines, elliptical cone coplanar
strip lines, elliptical coplanar strip lines.

I. INTRODUCTION

Coplanar transmission lines are used extensively in monolithic mi-
crowave integrated circuits (MMIC’s) and integrated optical applica-
tions [1], [2]. An asymmetrical coplanar transmission line consists of a
narrow metal strip and a conductive plane grounded, which are placed
on one side of the dielectric substrate and mutually separated by a
narrow slot. The advantage is the possibility of combination with other
types of transmission lines such as a slot line, coplanar waveguide, and
microstrip when used in filters, impedance matching networks, and di-
rectional couplers. In the earlier years, coplanar strip lines (CPS’s) were
analyzed by assuming that the substrate is infinite [3], [4]. In recent
years, people obtained the expressions for the quasi-TEM parameters
for CPS’s on a substrate [5], [6] and multilayer substrates [7]–[10] of
finite thickness. The problem of a CPS with a substrate of finite thick-
ness and finite width has not been solved up to now.

Elliptical coplanar strip lines (ECPS’s), cylindrical coplanar strip
lines (CCPS’s), and elliptical cone coplanar strip lines (ECCPS’s) can
be used as adapters and slot lines as well as antennas. Although ellip-
tical [11] and elliptical cone [12], [13] striplines and microstrip lines
have been analyzed, the analyzes of ECPS’s and ECCPS’s have not
been reported to our knowledge. In [14] and [15] closed form expres-
sions for quasi-TEM parameters for CCPS’s were given. Both [14] and
[15] treated the width of the substrate as infinite when the CCPS was
mapped into the ACPS, while the width should be2�. In addition, there
is an error in [15] as pointed out in this paper.

The objective of this paper is to solve the problems mentioned above.
Assuming that the ACPS with a finite-boundary dielectric substrate of
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finite thickness and width, ECPS, CCPS, and ECCPS are operating in
the quasi-TEM mode, the conformal mapping method is used for the
analysis. The assumption is valid when the length of a line is much
longer than the wavelength of the guided wave and the operating fre-
quency of the guided wave is not high. This method can give fast and
accurate results in the microwave frequency range since the quasi-TEM
parameters for coplanar lines are only slightly sensitive to changes in
the frequency [15]. As the substratum, we study the quasi-TEM param-
eters for the ACPS with finite boundary substrates at first. In Sections
III and IV, ECPS’s, CCPS’s, and ECCPS’s are analyzed. In Section V,
the reasonableness of the method and results are verified, and numer-
ical results for the characteristic impedance for the ACPS with finite
boundary substrate, ECPS, CCPS, and ECCPS are given.

II. ACPS WITH FINITE BOUNDARY SUBSTRATE

The analyzed ACPS on a finite-boundary substrate is shown in
Fig. 1(a). The widths of the infinitely long strips arew1 andw2 and
the gap between them is2s. The two strips are mounted on a substrate
having a thickness ofh, a width of 2w, and a relative dielectric
constant of"r . In this case, the ACPS capacitanceC isC = C0 +C1,
whereC0 is the ACPS capacitance in free space when the dielectric
is replaced by air, andC1 is the ACPS capacitance obtained when
assuming that the electric field is concentrated in a dielectric of
thicknessh, width 2w, and relative dielectric constant of"r � 1. This
assumption has shown an excellent accuracy in the cases of the CPS
and ACPS with a finite thickness and infinite width substrate [5]–[8].

The free-space capacitanceC0 is given by [9]

C0 = "0
K(k0

0)

K(k0)
(1)

wherek0 is shown in (2) at the bottom of the following page. In
order to obtain the capacitanceC1, the dielectric region in Fig. 1(a)
is mapped into the lower half region, as shown in Fig. 1(b), by the
Jacobian elliptic function transformationt = sn((K(k)=w)z; k),
where K(k) is the complete elliptic integral of the first kind of
modulusk, K(k)=K(k0) = w=h, andk0 =

p
1� k2. For simplified

calculation, the excellent approximate expressions ofk are given by
[16]

k =
exp (�w=h)� 2

exp (�w=h) + 2

2

; for 1 � w

h
<1 (3a)

k = 1� exp (�h=w)� 2

exp (�h=w) + 2

4

; for 0 <
w

h
< 1: (3b)

The widthss, w1, andw2 are mappedst, w1t, andw2t, which can be
expressed as follows:

st = t1 = sn
K(k)

w
s; k (4a)

w1t = t2 � t1 = sn
K(k)

w
(s+ w1); k � sn

K(k)

w
s; k

(4b)

w2t = t3 � t1 = sn
K(k)

w
(s+ w2); k � sn

K(k)

w
s; k :

(4c)
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