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A N E W  C O N S T R U C T I O N  OF R E C U R S I O N  O P E R A T O R S  

S Y S T E M S  OF T H E  H Y D R O D Y N A M I C  T Y P E  

A. P. F o r d y  1 a n d  T.  B.  G i i r e l  2 

F O R  

We consider a certain class o f  two-dimensional systems of  the hydrodynamic type that contains all examples 
known to us and can be associated with a class of  linear wave equations possessing an algebra of  ladder 
operators. We use this to give a simple construction of  recursion operators for these sys tems,  not always 
coinciding with those of  Sheftel and Teshukov. 

1. Introduct ion 

We consider systems of the hydrodynamic type in the sense of Dubrovin and Novikov (see [1, 2]). In 
particular, we consider the recursion operators introduced and discuss(,d in [3, 4]. Sheftel showed [5] that 
the general recursion operator  associated with a general two-dimensional diagonal hydrodynamic system 
contains two arbitrary functions of a single variable that  satisfy a differential constraint.  However, when 
the hydrodynamic system belongs to the class considered in this paper, these arbi t rary  functions take the 
specific form of one of three monomials, and there are therefore only three independent reeursion operators 
for a given system. The class we consider is fairly general and contains all examples known to us. 

The systems we consider are associated with a generalized Euler-Poisson-Darboux (EPD) / /nea r  wave 
equat ion  in the sense that  for each such wave equation, we construct a family of commuting hydrodynamic 
systems and the corresponding triple of reeursion operators.  Specific systems correspond to particular 
solutions of this wave equation. It  is easy to construct ladder operators of these wave equations with which 
it is possible to generate hierarchies of connected solutions. The corresponding hydrodynamic  systems are 
then connected through Teshukov-type recursion operators. These can then be used to generate "higher 
symmetries" by acting with them upon some simple symmetries that are not of the hydrodynamic type. 

Most of this paper is concerned with two-dimensional systems for simplicity of exposition, but our 
formulas are easily extended to higher dimensions (see See. 5). 

2. A class of two-d imens iona l  sys tems 

In two dimensions, every system of the hydrodynamic type can b(~ diagonalized. Therefore, without 
loss of generality, we start  with the diagonal system 

q ~ = v  i(q) q;, i = 1 , 2 .  (1) 
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We can use v i to define a diagonal metric with covariant components  gij in the usual way [2]: 

Ojv i 1 
v j  -- v i  -- ~ Oj log gii ,  i r j ,  

where Oj - O/Oq j. 
All the examples known to us satisfy the condition 

02 = 01 

where ~i = ~ai(qi) are each functions of a single variable. This  is equivalent to the condition 

02 (qo i loggi l )  + 01 (~02 log g22) = 0. 

These relations imply the existence of functions V(q 1, q2) and G(q 1 , q2) satisfying 

These functions are related by 

(2) 

(3) 

(4) 

where K(q )  = 2/0102G. (We note tha t  the degenerate case where 0102 G = 0 is excluded because this 
leads to 02v i "- 01v 2 = 0 and Eqs. (1) then decouple.) We thus have / /near  wave equation (7) for V with 
coefficients depending on the three functions qoi(qi) and G(q i ,  q2). For specific coefficients, this equation 
arises in many  places in mathemat ics ,  such as in the theory of  separable Hamil tonian systems [8]. 

To proceed further, we restrict  these functions as follows: 

1. We choose ~i in the form 
1 

~i(qi)  _ ai(qi) '~' a i  E ~.  (8) 

2. We require the form of wave equation (7) to be invar iant  under the t ransformation 

V(ql,q2) = V(ql,q2)(ql)C~2(q2)a~, qi = f i (qi) .  

We immediately find the exact form of K(q )  to be 

K n ( q l , q 2 )  = q l q 2 ( ( q l ) n - 1  __ ( q 2 ) n - 1 ) ,  

where the suffix n r 1 refers to the power of qi in (8). The remaining invariance conditions give, 

f i (qi)  = ct i 1 qi' i = 1,2, 

for n # 1. 
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(9) 

(io) 

(11) 

K ( q ) O I O 2 V + - ~ y O 1 V - - ~ O , 2 V = O ,  (7) 

vX _ 01V v2 _ 02 V 
~ I  ' ~O 2 , (5) 

01G O2G 
l o g g n -  ~a 1 , l o g g 2 2 - -  ~~ 2 . (6) 



These two further restrictions give us the linear wave equation 

LnV ==_qlq2((ql)n-1 _(q2)~-1) 0102Vq_~l(ql)no1v_ ~2(q2)no2v ~-0, (12) 

which can be viewed as a generalisation of the EPD linear wave equation [7] (corresponding to n -- 0 and 
c~1 = a2). Some properties of the EPD wave equation are given in the appendix. 

R e m a r k .  Because V = 1 is a trivial solution of (12), we can immediately generate a nontrivial solution 

V =  (ql) - -2  (q2)-al  (13) 

from which we can obtain some vi using Eqs. (5). 

Formula (2) allows us to obtain gij for the whole hierarchy by substituting any part icular  v i (such 
as (13)) or by substituting (5) into (2) with (8) and using (12) to obtain 

2~j(qJ)n-1 
Oi log gjj = qi( (qj)n-1 _ (qi)n-1) ' 

which gives 

(q2)2c~ln/(n-1)71(qt) (ql)2o2~/('~-l)72(q2) 
gll = ((ql)nq2 _ (q2)nql)2al/(n-1)' g22 = ((q2)nql _ (ql)nq2)2~/(n-1)" (14) 

3. Ladder and recursion operators 

We now consider operators tha t  act on a solution of a linear partial differential equation to create 
a new (or possibly the same) solution. This is just an operator  analogue of a symmet ry  but  is called a 
ladder operator in quantum mechanics and special function theory and a recursion operator in the theory 
of integrable equations [9]. In the latter case, we are interested in finding "commuting flows" ("generalized 
symmetries") of a nonlinear equation. Symmetries satisfy the "linearized equation," which yields the 
appropriate linear operator  for this case. In this paper, we use the term "ladder opera tor"  when referring 
to the EPD equation and "recursion operator" for systems of the hydrodynamic type.  We use relation (5) 
between (12) and (1) to construct  recursion operators for the latter from ladder operators  for the former. 

Let L be a linear partial differential operator and R an operator (generally integral-differential) that  
is our ladder or recursion operator,  in which case it must satisfy the condition 

[R,L] = k(ql,q2)L, (15) 

where the brackets denote the commutator  and k(q 1, q2) is a function of qi determined by this relation. 
This condition guarantees tha t  if L f  = O, then L ( R f )  = O. 

3.1. T h e  E P D  ladder operator. We now consider generalized EPD wave equat ion (12) and con- 
s truct  the corresponding ladder operators of the form 

(16) 

where (i = (i(ql ,  q2), i --- 0, 1, 2, satisfying (15) with Ln. 
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L e m m a  1. There arejust  three nontrivialoperators o f f o r m  (16) satisfying (15); these operators are 
given by 

r l  = (ql)2-~ 01 + (q2)2-n 02 + a2(ql)  1-~ + aL(q2) 1-~, 

r 2 = q  1 0 1 + q  2 02,  

r3 =(q l )nOl+(q2)n02  

up to either multiplying by or adding a constant. 

Using this flexibility of multiplication and addition, we can gauge the commutat ion relations of ri to 
those of a standard basis in the algebra sl(2, C): 

1 1 a l + a 2  1 
r + =  r l ,  r o = ~ r 2 +  - - ,  r_ = r3, (17) 

n -  1 n -  1 2 ( n -  1) n -  1 

with n r 1. The operators r+,  ro, and r_ have the commutat ion relations 

It+, ro] = ~+, [to, r - ]  = ~ - ,  [~+, ~-] = 2~o. 

This algebra has the Casimir operator  

Cn = r+r_ + r_r+ -- 2r'~, 

which is explicitly given by (we recall that  n r 1) 

Cn = ( n  - 1 )  2 ( ( q 2 ) 1 - , ~  _ ( q t ) , - , ~ )  L n  - n - 1 + 2 (-n - 1 )  2 .  

3.2.  T h e  h y d r o d y n a m i c  r e c u r s i o n  o p e r a t o r .  We now use relation (5) to construct a recursion 
operator  for (1) corresponding to each of the ladder operators in (17). Our calculation is purely algebraic, 
and it is thus very simple to write these operators. One of the recursion operators is nonlocal but is calcu- 
lated algebraically. Furthermore, ladder operator (16) is scalar, whereas the corresponding hydrodynamic 
recursion operator is matrix. It is obviously much easier to build a matrix object from a known scalar 
object than to calculate the matr ix  object from basic definition (15). 

We first recall that  a general ladder operator for wave equation (12) has form (16). Using relations (5), 
we can draw the diagram 

qi 
V -~oj 

- ) 

rl 
rV ~o~ > 

which commutes only if T~ is a recursion operator. 
algebraic system of equations 

vjq)x 

n ~ ( v J / )  J 

(18) 

To find the components T~}, we need only solve the 

2 

E ul ( 0Jv = O (rV), i ----- 1, 2. (19) 
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When solving Eqs. (19), we use (12) to eliminate the mixed derivatives of V. We find that the recursion 
operators must be first-order differential and that  they necessarily include a nonlocal term if 0i~ ~ 7~ 0. 

For general r and ~i, we can solve Eqs. (19) to find the following class of recursion operators: 

q~ 1~2 t2~I q l D _ l l  
7"2~ ----~lV z "['-'r "~ ~ t/X--~l 1 t/x n-01~l -~-~0 "-~- 01~0~'] - x (/9 , 

" r qzK~ ~ 
2 ~I el ~2 1 

-~-::i~ 01~~ �9 , qxK~ 
i t2 ~1 c 1 - 2  2 

+ ~ 

~x ny 

q~ - ~ q~ ~o n - o  q~ ,- , -1 2 
1 f202~ 2 1 2 2 1 2 

- - +  + 
~2 qzKn~o c'2r ---y LJ z ~ . 

As shown above (see Sec. 3.1), generalized EPD wave equation (12) admits only three ladder operators, 
r_,  to, and r+, giving rise to three independent functions ~i (for a given n ~ 1), which in turn yield a 
three-parameter family of recursion operators {7~_, 7~0,7~+ }. These operators satisfy (15) with L being the 
matrix linear differential operator defined by the right-hand side of 

= v ~x + L_, qx Oq-- 7 
J 

In this formula, ~i represent the components of the symmetry, 

q~ = ~/i(q, qx , . . .  ), 

which is not necessarily of the hydrodynamic type. The operators 7~_ and 7"r are purely differential, but 
TO+ has a nonzero nonlocal term. Fixing n (and the parameters ai) means fixing a hydrodynamic hierarchy, 
not a single system. We also recall that  the nontrivial solution 

v = (ql)-.2 

generated from the trivial solution V = 1, is independent of n. 

3.3. The  S h e f t e l - T e s h u k o v  r e c u r s i o n  opera tors .  Recursion operators for diagonal systems of 
the hydrodynamic type were previously studied by Sheftel [3, 5] and Teshukov [4], who considered recursion 
operators of the form A1Dx + Ao for functions A~ of q, q~ , . . . .  These recursion operators are all calculated by 
solving the recursion-operator equation directly. Teshukov showed that  an n-dimensional semi-Hamiltonian 
system of the hydrodynamic type admits a recursion operator of the form 

= 6,C. D z + F i j ( q i C J - q ~ C i ) + S i j c J  Z q z k  iFi k --, (21) 
q~' 

where F~j = (1 /2 ) (0 j  loggii)  for i r j are the usual Christoffel connection coefficients of some metric and 
each C i = Ci(q i) is a function of single variable. The constraint to be imposed on R~ can be derived 
by demanding that  (21) satisfy the recursion-operator equation. This is equivalent to requiring that  (21) 
map (1) onto a c o m m u t i n g  hydrodynamic flow. Acting on (1) with operator (21) gives another diagonal 

i hydrodynamic system q~ = w qx with 

= c J ( o #  + 
J 
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The  diagonality follows from the expression of F~j in terms of v i. Two hydrodynamic systems q~ = viq~: 
and q~2 = i i w qz for i = 1, 2 , . . . ,  k are symmetries of each other if and only if 

OjV i OjW i 
v J _ v i  - w J _ w i ,  i Tt j ,  i , j  = l , 2 , . . . , k .  (22) 

For metric (14), this condition (for k = 2) leads to the conditions on C~'(q ~) and 7 / 

(C 1 -t- C2)qlq2( (q l )n-1  _ (q2)n--1) -t- n(C2q  ' -- C lq2) ( (q t )  n-1 + (q2)n-1)+ 

+ 2C1(q2) '~ - 2C2(ql) n = 0, 

( n - 1 ) ( n C l q 2 - n C 2 q  1 - t - q l q 2 ( C 2 - C  ' + C  1;Y1 _62;~2"~'~ -~ - ~ ] ]  ( (q l )n- -1  _ ( q 2 ) n - 1 )  

+ 2,~C~q~ ((q~)n-~ _ n(q~) . -~)  + 2~C~q~ ((q~),~_~ _ ~(q~)n-~)+  

+ 2 a l ( n -  1)C2(ql)  n + 2a2(n - 1)CI(q2) n = O, 

+ 

(23) 

(24) 

where Ci and x/i are derivatives with respect to the argument of the function. Equation (23) is easy to 
solve. Differentiating (23) n + l  times with respect to either qt or q2 leads to equations that are for only 
one of the two functions Ci(qi). We find that  C 1 and C 2 are the same function, but of their respective 
arguments: 

c ~ = s ( r  s (~ )  = ~ox ~ + ~ + ~ x  2-'~, ~ # 1. (25) 

Substi tuting these forms for C i in (24) leads to equations for the metric functions 7/, which have the 
following solutions: 

1. if C i '-  (qi)n,  then 3 ,i = fli(qi)2al n/(n-1) for i = 1,2, 

2. if C i = (qi )2-n ,  then 7 i = ~i(qi)2(~+(n-1)~J-(~-1)2) / (n-x)  for j r i = 1, 2, and 
3. if C i = q i  then ~/i = fli(qi)(2ai+)~i)/(n-1) for i = 1,2, 

where/3i and ,~ are arbi t rary constants. This result proves that for the {:lass under consideration, there are 
exactly three Sheftel-Teshukov-type recursion operators. Two of these operators are the same (up to an 
additive constant) as constructed via the ladder operators of the EPD equation (with C i = {i and for these 
choices of C i and 7i). The Sheffel-Teshukov operators contain ~,i in the term r~i, whereas ours do not. 
Recursion operators (20) are valid for these same three cases of {i, but  for any ?~. However. this has no 
consequence for the hydrodynamic systems, because these are independent of 7 i. The nonlocal recursion 
opera tor  that we found does not belong to the Sheftel-Teshukov class. 

3.4.  H i e r a r c h i e s  o f  s y m m e t r i e s .  By construction, recursion operators (20) produce diagonal hy- 
drodynamic symmetries when acting on diagonal systems of the hydrodynamic type. The action of 'R. on a 
general system of form (1) is given by 

( E i j j _ _  v~+ q:c, R j v  q z =  ~JoJ v i +  o i ~ i + ~ ~  O. i ainu V i 
j r ] 

(26) 

where V is the solution of (12) corresponding to v i. This just corresponds to going around three sides of 
our commutative diagram. 
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It is also possible to generate higher symmetries by starting with a symmetry of a nonhydrodynamic 
type. For instance, if we choose v i to be a homogeneous function of ql and q2, system (1) admits a scaling 
symmetry, which can be written in the evolutionary form as 

q~ = xq i + atq~ - bq i = xq i + atviqi~ - bq i, (27) 

where the constants a and b are the respective scale weights of t and qi. If the function v i is of the 
homogeneous degree m, its scale weight is rob. For the weights of the two sides of Eq. (1) to balance, we 
must have a = 1 - rob. Acting on (27) with any of our recursion operators yields a second-order symmetry 
of (1). Because the q~ term is of the hydrodynamic type, it is just mapped onto one of the hydrodynamic 
symmetries, which appears additively in the eventual formula. The nonlocal term in T~+ could yield nonlocal 
symmetries, but  this can be avoided by choosing b = 1/ (n  - 1). The resulting higher symmetry  generally 
depends on x explicitly. When ~i has form (8), applying recursion operator  (20) to (27) with b = 1/ (n  - 1) 
gives 

i i i  
qi r ~ i j ~ q q x x  q~ + = 7~Jqts -- --Y772i 2 + 2~i + (Oi~i -t- ~0) 1 -- n (n - 1)(%) 

J 
ai(qi)  n I" i j ~jqjqi  "~ 

[ ~q'q~ + _ _  (~iqj + ~ jq i ) )  + atw i q~z + 
+ ( f - ~ n \  q~ qJ; 

"}- (--n.~! "b Oi~ i "t- ~0 + Oi~~ i aiOi~ ~ ) i 
\ q~ 1 - n + a j (1  - n ) ( q i ) n ( q j ) a - n  xqx, (28) 

where w i is the expression in the square brackets in (26). 
Neither the Sheftel-Teshukov nor our reeursion operators have the heredi tary property, and the algebra 

of symmetries is therefore generally non-Abelian. While the hydrodynamic symmetries mutually commute. 
the higher-order ones generally do not. 

4. Examples  in two dimensions 

We consider some examples of hydrodynamic systems in our class. The simplest cases have n = 0 and 
a l  = c~2 = a.  There  are many well-known examples even in this subclass. We do not explicitly construct 
the recursion operators,  because these look complicated but are easily obtained by substituting in (20). 

4.1.  T h e  case  n = 0. With a l  = a2 = a, Eq. (12) is the usual EPD linear wave equation, 

(q2 _ qa)OlO2Y + a(O1V - 02V)  = 0. (29) 

It is known that  Eq. (29) has infinitely many homogeneous polynomial solutions [1] (also see the appendix). 
For a fixed a ,  each solution corresponds to a particular member of the hydrodynamic hierarchy, with each 
being a symmetry  of the others (satisfying condition (22)). 

This observation guarantees tha t  for constructing the recursion operators,  it suffices to find the solutions 
that  generate the simplest hydrodynamic systems. We let VN(a)  = VN(q~,q2;a)  denote the Nth-order 
homogeneous polynomial solution(s) of (29). Some of these are 

V~ (a) = ql + q2, (30) 

2a 1 2 
V2(a) = (ql)2 + ~ _ . ~ q  q + (q2)2, a 7k - 1 ,  (31) 

qlq2, a = - 1 ,  

/ (ql)3 + "~'~@2((q,)2q2 + q l ( q 2 ) 2 ) +  (q2):~ 
V3(a) ( (ql)2q2 + qi(q2)2, 

a r  -2, 
(32) 

O/ w~ - - 2 .  
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Solution Vl(a)  does not generate a nontr ivial  hydrodynamic system, because the corresponding v i are 
constants and  sys tem (1) then decouples. In  contrast,  V2(ct) generates an infinite family containing some 
well-known examples.  Using relations (5), we can find v / for V2 (a)  (removing an inessential constant factor): 

(9/ 2 OZ 1 v l ( a ) = O 1 V 2 ( a ) = q l  + - ~ - ~ q  , v 2 ( a ) = O 2 V 2 ( a ) = q 2  + ~ _ _ s  , a T e - l ,  
(33) 

v l  = q2 ,  v 2 _= q l  O~ = - 1 .  

The hydrodynamic  system corresponding to  (33) is in the class of the so-called linearly degenerate systems 
and is very well studied [9, 10]. To demons t r a t e  the symmet ry  properties, we consider 1/3(-1) and write 
the corresponding w / (using (5)), 

W 1 ~--- (ql)2 _ 2qlq2 _ (q2)2, W 2 = (q2)2 _ 2qiq2 _ ( q l ) 2 .  

Because v i and w i satisfy identity (22), the  corresponding hydrodynamic systems commute.  Other known 

examples in this class consist of the cases where  a = i l / 2 .  If  a = 1/2, we obtain the sys tem 

2 1 2 q~ = ( 3 q  l + q  )q~, at = (3q2+ql)q:;,, 

which describes shallow water waves (a special case of the quasi-classical limit of coupled Korteweg-de Vries 
equations studied in [11]). If  a = - 1 / 2 ,  we obta in  the system 

ql (ql 2 1 = _ ql ' = (q2 )q;, 

which is s imply related to the dispersionless Toda  hierarchy discussed in [12]. 

4.2. T h e  case  n = 2. This case is a bi t  more complicated than that where n = 0, par t ly  because we 
do not have a general polynomial solution form. But  it is still possible to generate examples of hydrodynamic 
systems. For instance, setting a l  = a2 = - 1 ,  we obtain the generalized EPD wave equation 

q lq2 (q l  _ q 2 ) O l O 2 V  _ ( q l ) 2 0 1 V  "4- ( q 2 ) 2 0 2 1 "  = 0. (34) 

A nontrivial solution of this equation produced from the trivial solution V = 1 is V = qlq2; this then leads 
to 

v 1 = (ql)201V = (ql)2q2, v 2 = (q2)202 v = ql(q2)2 

which belong to the Temple class [9]. Act ing with r_ (or with 7~_) giw~s 

w 1 = (ql)2q2(2ql + q2), w 2 = ql(q'2)2(qi + 2q2). 

5. N - c o m p o n e n t  systems 

It  is easy to extend the results obta ined to a hydrodynamic system in N dimensions: 

q~ i i = v  (q)qx, i = l , 2 , . . . , N .  

In N dimensions, known examples still satisfy equations analogous to (4), 

Oj(vi~ i) = Oi(vJ~J), i r j, (35) 

which gives the metric constraint 
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Relation (35) entails the existence of a function V(q),  which gives 

v i _  OiV V i =  I , 2 , . . . , N .  

Using (2), we find the multicomponent generalized EPD equations for V, 

ojv 
KiJOiOj V +  ~i  ~ j  - 0  V i # j ,  

where K ij (q) = 2/ (~i0j  log gi~) and 

We note tha t  there exist ( 1 / 2 ) N ( N  - 1) such equations. Definition (8) remains the same, but invariance 
condition (9) becomes 

N 
~ (q )  = V(q) H ( q k )  ak, qi = fi(qi), 

k-----1 

where C~k = 1-Ijck c~j. Under this invariance condition, we obtain the ( 1 / 2 ) N ( N  - 1) equations, 

1 
L ~  V - - -  q iq j ( (q i )n -1  -- ( q j ) n - 1 ) O i O j y  + ~ i (q i )nOiV  _ c ~ j ( q j ) n o j v  = O, 

o~ij 

where a i j  = l-Ikr ~k .  For each equation in this system, we can find the ladder operators 

ij �9 " r 1 = (q i )2-nO i + (qJ)2-nOj  + c~j(q') 1-~ + c~i(qJ) l - n ,  

r~ j = (q i )no  i + ( q j ) n o j  

up to multiplying by or adding a constant. 
As before, we can construct a commutative diagram and solve the algebraic equations for the compo- 

nents of the recursion operator  T~, and it is simple to extend our previous examples to the N-dimensional 
case. 

6.  C o n c l u s i o n s  

We have shown how recursion operators for systems of the hydrodynamic type can be related to the 

ladder operators of a generalized EPD equation, which is used to generate the functions v i in (I) by 

formula (5). This reflects the existence of a rich family of symmetries in the context of semi-Hamiltonian 

systems of the hydrodynamic type. This is to be contrasted with the usual "soliton equations," such as the 

K0rteweg-de Vries equation, where the hierarchy of symmetries is usually discrete. 

Recently, there has been much interest in nonhomogeneous systems of the hydrodynamic type, such as 

the Gibbons-Tsarev equation [13] 

1 1 qtl 2 1 ~ = q qx + ql _ q2'  q2 t = qlq~ + q2 _ ql " 

This equation appears to have only a t~nite number of symmetries and is therefore not expected to have a 
recursion operator. Because the Tsarev theorem [2] on conservation laws, symmetries,  and the generalized 
hodograph transformation does not hold in this case, such equations are indeed very interesting for future 
investigations. 

37 



A c k n o w l e d g m e n t s .  One of the authors (T.B.G.)  thanks TUBITAK for the grant  tha t  enabled him 
to visit Leeds for the academic year 1997-1998 and also thanks  the University of Leeds and the Integrable 
Systems Group in part icular  for their hospitality. The  authors thank M. B. Sheftel for the copies of his 
papers and S. P. Tsarev  for the discussions and for reading an early version of this paper .  

A p p e n d i x :  T h e  E u l e r - P o i s s o n - D a r b o u x  e q u a t i o n  

We give some useful propert ies  of the EPD linear wave equation, 

Lou :~ (x - y)u~y + ~uy - ~uz = O. /36) 

For the simpler case c~ =/~,  this equation can be derived from 

m 
l l r r  -~ - -  U r  - -  "l~tt -~ 0 

r 

by the simple coordinate t ransformation x = t + r, y = t - r with m = 2a [7]. 
The general formula for the Nth-order  homogeneous polynomial solution of (36) is given by u(x,  y) = 

. ~ N ( X ,  y) with 

i-~j=N i!j! x~YJ' (37) 

where (~)i = c ~ ( ( ~ + l ) - - . ( c ~ + i - 1 )  f o r i  > 1 and (C~)o = 1 w i t h i , j  E Z + U { 0 } .  This  fo rmula i s  g~ven 
in [7] for the (~ = fl reduction. 
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