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This paper discusses heterogeneous Network-on-Chip (NoC) design from a Constraint Pro-
gramming (CP) perspective and extends the formulation to solving Voltage-Frequency
Island (VFI) problem. In general, VFI is a superior design alternative in terms of thermal
constraints, power consumption as well as performance considerations. Given a Communi-
cation Task Graph (CTG) and subsequent task assignments for cores, cores are allocated to
the best possible places on the chip in the first stage to minimize the overall communica-
tion cost among cores. We then solve the application scheduling problem to determine the
optimum core types from a list of technological alternatives and to minimize the make-
span. Moreover, an elegant CP model is proposed to solve VFI problem by mapping and
grouping cores at the same time with scheduling the computation tasks as a limited capac-
ity resource allocation model. The paper reports results based on real benchmark datasets
from the literature.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

NoC design paradigm has been proposed to overcome traditional chip design limitations that have become increasingly
eminent under the reality of single chips made of large number of cores. Such technology requires solutions to challenging
general problems as highlighted in [1]: application modeling and optimization; NoC communication architecture and opti-
mization; NoC communication architecture evaluation; and NoC design validation and synthesis. Designing an NoC system
requires handling persistent optimization that often demands finding the best tradeoff between conflicting objectives and
constraints.

Heterogeneous designs may be more desirable for their utility to run various types of computational tasks efficiently by
having cores that can dynamically adjust their voltages (i.e. dynamic voltage-frequency scaling – DVFS) and/or can be set to
run at certain pre-optimized voltage levels (i.e. Voltage-Frequency Island – VFI) to use more efficiently the resources avail-
able such as power, area/surface, bandwidth and other related parameters [1,2]. Core mapping and application scheduling
[3] problems are essential optimization problems for designing NoC systems whether they are homogeneous or heteroge-
neous [4]. In our earlier work [5,6], a Constraint Programming (CP) based approach was proposed successfully to determine
optimum core mapping and application scheduling at transmitted packet level. In these studies, CPNoC was proposed to
carry out the optimization task for the homogeneous NoC systems.
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This paper discusses heterogeneous NoC design from a Constraint Programming (CP) perspective using a two-stage solution
as in [5,6]. Given a Communication Task Graph (CTG) and subsequent task assignments for the cores, CPU cores are allocated to
the best possible places on the chip in order to minimize the overall communication cost among cores. Then, the application
scheduling stage is run to determine the optimum core types from a list of technological alternatives and to minimize the
makespan, i.e. time to complete all computation tasks on CTG. Heterogeneous designs may involve optimization problems that
have conflicting terms in their objective functions. To accommodate solutions for the heterogeneous designs, our formulation
of CPNoC in [5] is extended in this paper to have a multi-objective function, constraints and new decision variables to deter-
mine the best core composition, i.e. percentages of various core types on the chip. The main contribution of this paper built
upon our work in [7] is to propose a CP based solution to VFI problem by simplifying the two-stage approach in our earlier work
[5,6] into a single model which inherits properties from general mapping, scheduling and limited resource allocation problems.

There has been various approaches to reduce power consumption by using voltage islands. These islands are logic and
memory areas supplied through separate, dedicated power feed, which provide the flexibility to selectively run different
parts of the chip at different voltage/frequency levels. Furthermore, it is possible to shut down these regions to save more
energy. Our goal in this paper is to propose a CP model for NoCs which optimally maps and groups cores into voltage islands
while scheduling the computation tasks.

The rest of this paper is organized as follows. Section 2 introduces the related literature on heterogeneous NoC designs
and VFI implementations. In Section 3, the proposed method and underlying CP model are presented. Section 4 gives the
experimental results on real benchmark datasets from [8]. In this section, the results from heterogeneous architecture are
presented. Our experiments encompass both 4� 4 and 8� 8 architectures. The main contribution of this paper which is
an extension to solve VFI problem is introduced in Section 5. We also reported related experimental results in Section 5.
The paper is concluded in Section 6.
2. Related work

A two-stage solution to core mapping and application scheduling problems was also proposed in [4]. The solution is
reached by running iteratively these two consecutive stages (master and sub-problems). In each iteration, a new cut was
introduced to the master problem in order to get closer to the optimal solution and satisfy the feasibility of scheduling.
In [4], the master problem (core mapping) is modeled by integer programming and sub-problem (scheduling) is modeled
by CP. Since there are no task deadlines in our model, it is always feasible to find a solution to the scheduling problem in
our case. On the other hand, our scheduling model is more fine-grained than the one proposed in [4].

Recent years have witnessed several efforts at using heterogeneous designs in NoCs at different levels. A heterogeneous
NoC design was also proposed in [9] by implementing core mapping as a 2D-packing problem and by finding a heuristic solu-
tion to underlying optimization problem. Power usage has also been taken into consideration for the scheduling phase in [9].
Network-bandwidth and latency-sensitive designs can be considered for heterogenous systems [10].

In contrast to DVFS, many implementations aim to solve the static voltage-frequency island problem to optimize design of
heterogeneous NoC systems in order to run special applications [2]. Hu et al. [11] present an algorithm for simultaneous volt-
age island partitioning, voltage level assignment and physical-level floorplanning. Wu et al. [12] present a Voronoi diagram-
based method to generate voltage islands that balance the power versus design cost tradeoff under performance requirement,
according to the placement proximity of the critical cells. Lee et al. [13] propose a voltage assignment technique based on
dynamic programming and perform power-network aware floorplanning for multiple supply voltage design. Li et al. [14] pro-
pose a deterministic algorithm to generate a floorplan using voltage islands. Ma and Young [15] present a core-based voltage
island driven floorplanning. Specifically, for a given candidate floorplan represented by a normalized Polish expression, they
generate the optimal voltage assignment and island partitioning simultaneously. Sengupta and Saleh [16] propose an appli-
cation-specific voltage partitioning and island creation to reduce the overall SoC power, area, and design time.

David et al. [17] propose a real-time power management algorithm for NoCs that dynamically adjusts the level of voltage
islands to reduce power consumption. Along the same lines, in [18], Bogdan et al. implement optimal power management for
voltage island platforms where communication happens via an NoC architecture. Ozturk et al. [19] propose a compiler-based
mapping of applications on voltage islands. Majzoub et al. [20] propose a voltage-island formation approach for the energy
optimization of many-core architectures. They create voltage islands according to intra and inter-island communications and
select the voltages accordingly.

Apart from these voltage island improvements, there are various studies that focus on optimization techniques. Specifi-
cally, in [21], authors present an optimality study for voltage-islands, where the granularity of voltage islands is on the func-
tional-unit level as opposed to the core level. They formulate the problem as a min-cost network flow problem and reduce it
to an integer linear programming (ILP) solution. In [22], authors propose a voltage island aware incremental floorplanning
approach to support incremental voltage requests. They optimize the chip area and the wire length using Mixed-Integer Lin-
ear Programming (MILP) technique. Lee et al. [23] propose a post-floorplanning stage solution to voltage island generation.
Specifically, they implement an ILP formulation to utilize power-network routing resources in the voltage islands.

Our work is different from these studies since our scheme uses constraint programming approach to generate near-
optimal mappings/groupings of cores into voltage islands while scheduling the computation tasks. The major advantage
of using CP is the clarity and understandability of the models.
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3. Proposed optimization model

3.1. Basic assumptions and overview

Assuming that a set of cores is organized as a 2-D mesh of dimensions n ¼ m�m, each core can be labeled according to its
position on the mesh (as an x and y coordinate pair) and has the capability of executing several tasks of an application in
tandem. The buffer size is assumed to be unconstrained. Any communication link can only be occupied by a single packet
at any given time without any limit on the bandwidth capacity. The communication links are bi-directional. In other words,
any particular link between two routers can be considered as a separate link (resource) in each direction. Given a CTG,
GðT ; EÞwhere E represents the communication requirements and precedence constraints for the tasks T with corresponding
computation times, core mapping and scheduling problems are tackled in order to assign cores to optimum locations on the
target network topology and then to schedule tasks to minimize the makespan. The first part of the problem solved in Stage I
is an instance of the Quadratic Assignment Problem (QAP) and can be formulated as a CP model as shown in Eq. (1) (see [5]).
minimize
p

Xn

i;j¼1

f ijdpipj

subject to
alldifferentðp1; . . . ;pnÞ;
pi 2 f1; . . . ;ng; i ¼ 1; . . . ;n;

ð1Þ
where f and d are flow and distance matrices (parameters) respectively. In other words, the parameter d is the Manhattan
distance (cost) between all the possible pair combinations of the cores on the mesh and it is the cost of transferring data
among cores which is a function of the routing algorithm. Deterministic routing algorithms can easily be incorporated to
the optimization problem on hand and can help in finding the optimal application task schedule by utilizing d. The transfer
cost based on the XY routing algorithm is proportional to the Manhattan distance which can be calculated between points a
and b on a grid as: TCab ¼ jxa � xbj þ jya � ybj. Parameter f represents the amount of data to be transferred between each core
which is given as part of CTG. Considering all these parameters, the objective function in Eq. (1) can be considered as a rep-
resentation of dynamic power, since the power consumption will be directly proportional to the communication distance. In
Eq. (1), permutation variables pi ¼ j; for i; j ¼ 1; . . . ;n. correspond to the location of cores. alldifferent constraint enforces
unique assignment for each core. In other words, each of the n variables should be assigned a unique value between 1 and n.

3.2. A two-stage model for homogenous case

Stage I of our implementation can be conducted as in our early work [5] by solving Eq. (1). The optimal solution found in
Stage I can be considered as the best floor-planning assignment that does not consider any resource and task precedence
constraints. Resources in this context could be considered as bandwidth, power, surface area as well as temperature. Such
constraints can be introduced to the optimization problem in the second stage that involves task scheduling with routing.

As in [5], a conventional objective function for the second stage can be represented as following: minimizeti2T

maxðEndOfðtiÞÞ, where EndOfðtiÞ represents the completion time of task ti 2 T . Considering the variable types available in
CP related to modeling the scheduling problems, we can incorporate interval and sequence variables in our formulation
of Stage II. Basically, tasks to be scheduled can be represented as interval variables. Therefore, they are defined on timeline
and they are associated with starting and end times which are practically continuous values. The sequence variables, on the
other hand, can be utilized to model (finite) resources (e.g. communication channels that transfer data) and they are coupled
with related tasks (e.g. transferring the data). To complete our model, we need to incorporate precedence constraint with
suitable CP modeling constraints such as endBeforeStart, endBeforeEnd, endAtStart, and endAtEnd. To give an exam-
ple, endBeforeStart constraint requires a task ti to end before the other task tj starts. Thus, task ti has been completed
before task tj is started. In order to model (finite) resources by utilizing sequence variables in CP modeling paradigm, we
need to associate tasks to be scheduled with (finite) resources (i.e. sequence variables). Considering all these CP modeling
tools, we can construct the following CP model to solve the scheduling problem as follows:
minimize
ti2T ;pi2P;‘2L

maxðEndOfðtiÞÞ

subject to
sizeOfðtiÞ ¼ JDðtiÞ; for all ti 2 T
endBeforeStartðti; tjÞ; for all ti � tj 2 T
endBeforeStartðpi;pjÞ; for all pi � pj 2 P

endBeforeStartðti; pjÞ; for all ti � pj 2 T ; P
endBeforeStartðpj; tiÞ; for all pj � ti 2 T ; P
noOverlapðLÞ:

ð2Þ



310 A. Demiriz et al. / Computers and Electrical Engineering 40 (2014) 307–316
where� is the precedence operator that indicates precedence relation. Interval variables ti 2 T and pi 2 P represent respec-
tively computation tasks given in CTG (T depicts the set of all tasks) and data transfer (communication) tasks that are gen-
erated based on the results of core mapping in Stage I and the underlying routing scheme (XY routing with Wormhole
switching in our implementation). sizeOf (length) constraint enforces computation task times to be the same as the job
durations, JD is given to the optimization model as a parameter (i.e. constant) in clock cycles and is determined according
to both CTG and the architecture. In addition to precedence constraints constructed based on CTG for computational tasks,
there need to be constraints for coupling computational and communication tasks. Basically, data transmission to the next
computation node can only start after the current task has been completed. The next computation task can only start after all
the necessary data transfer have been completed. The sequence variables, ‘ 2 L, are used for representing the bi-directional
data channels that can serve only single flit at any given time. All these particular variables should be associated with related
packet transmission tasks in P. noOverlap constraint in Eq. (2) practically enforces an orderly job sequencing (packet trans-
mission) of data channels. Therefore, none of the data transmission tasks at flit level overlaps with any other data transmis-
sion task on the same data channel excluding opposite directional flows.
3.3. Proposed model for heterogeneous case

The problem aforementioned in Eq. (2) is valid for a homogeneous architecture as computation times of tasks at all cores
are considered as same across the chip. One way of modeling heterogeneous architecture is to introduce binary decision vari-
ables for each core and technologically alternative core types (e.g. FPGAs, ASICs and GPUs [9,24,25]). Assuming that there are
nc different core types, we can introduce n� nc binary decision variables into scheduling model given in Eq. (2) to determine
optimum core composition. Notice that any solution would prefer fastest cores by default if the objective function in Eq. (2)
is not changed i.e. the maximum task completion time. Even considering only the budget constraint, it may not be feasible to
choose all of the cores from the fastest available technology. Therefore, we need to introduce a penalty term to the objective
function for the alternative core types as follows.
minimize
ti2T ;pi2P;‘2L;q2Q

maxðEndOfðtiÞÞ
k

þ
Xnc

k¼2

rk

n

Xn

j¼1

qjk

subject to
Xnc

k¼1

qjk ¼ 1; j ¼ 1; . . . ;n

sizeOfðtiÞ ¼
Xnc

k¼1

akqpik
JDðtiÞ; for all ti 2 T

endBeforeStartðti; tjÞ; for all ti � tj 2 T
endBeforeStartðpi;pjÞ; for all pi � pj 2 P

endBeforeStartðti;pjÞ; for all ti � pj 2 T ; P
endBeforeStartðpj; tiÞ; for all pj � ti 2 T ; P
noOverlapðLÞ
qjk 2 f0;1g; j ¼ 1; . . . ; n; k ¼ 1; . . . ; nc;

ð3Þ
where k is a normalization coefficient which can be set to the objective value of a solution to Eq. (2), rks are weighting
coefficients between 0 and 1 that adjust the preference of certain technologies to others. Notice that qjk is a binary decision
variable and takes a value of 1 if kth technological alternative is chosen for the jth core otherwise it is 0. The solutions of
Stage I problem, i.e. permutation variables (p) are passed as parameters into Stage II. The objective function of Eq. (3) is a
weighted combination of makespan and core compositions, i.e. percentages of various types of cores. Since there are nc tech-
nological alternatives, one of them is linearly dependent to the rest. Alternative 1 can be arbitrarily chosen as dependent, for
the sake of argument. Therefore, the index of technological alternatives (k) for decision variable qjk starts at two. This objec-
tive function is a form of multi-objective function. Moreover, this multi-objective function enables optimizing the conflicting
terms by finding the best tradeoff between normalized makespan and the core composition. Note that it may be undesirable
to prefer faster cores in order to reduce the makespan from some design perspectives such as budget, space and power.

First constraint in Eq. (3) enables the assignment of only one core type to a single place (unit) on chip. Second con-
straint determines the computation time of the task ti based on coefficients aks. Depending on technological properties
of core types (ak), computation times may vary (below or above) from a baseline time (JD(ti)). In other words, duration
of a task depends on which core on the mesh it is going to run on and its technological type (i.e. fast, normal, and slow).
This is inline with the results from [24,25] since the speeds of various alternative technologies can be summarized as a
function of power and area. The remaining constraints are the same as in Eq. (2) except binary value constraints for
the decision variables qjk.



Table 1
Completion times in clock cycles for heterogeneous architectures.

Application k 4� 4 Completion times 8� 8 Completion times

Eq. (3) Eq. (3) w/area Eq. (3) Eq. (3) w/area

R-S32ENC 1800 1452 1452 1466 1466
R-S32DEC 3000 2138 2138 2151 2151
ROBOT 92,000 66,675 66,675 65,082 65,057
FPPPP 60,000 59,853 59,853 59,783 59,773
SPARSE 20,000 14,290 14,259 14,294 14,289
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3.4. Power model

Power consumption in the semiconductor technologies consists of static and dynamic power. Static power consumption
becomes a critical factor in the total power as the transistors become smaller and faster. The leakage current is a significant
factor when the technology is scaled down. On the other hand, dynamic power consumption is produced by the switching
activities in the semiconductor circuits. In CMOS technology, it is caused by the capacitive load charge of the transistor gates
as well as the capacitance and resistance of wires. NoC systems consist of routers and links that connect routers. Flits travel
from to the designated routers until they reach their final destinations. The router logic processes flit header information to
select the corresponding output link for delivering the data to the next router. Therefore, the flit energy can be expressed as
follows: Eflit ¼ H � Erouter þ ðH � 1Þ � Elink where E represents the energy and H represents the number of hops.

The header flit consumes higher energy since it takes extra clock cycles to be evaluated. The packet energy is expressed by
the following equation: Epacket ¼ H � ðEHflit þ t � EBflitÞ þ ðH � 1Þ � Elink where t is the number of data flits. EHflit and EBflit repre-
sent the energy consumption of header and data (body) flits, respectively and furthermore can be expressed as follows:
EHflit ¼ Ebuffer þ Ecrossbar þ Earbiter and EBflit ¼ Ebuffer þ Ecrossbar .

Dynamic power consumption is reduced when the energy of the packet is minimized. This can be achieved by minimizing
communication energy between tasks. Task mapping plays an essential role in determining the path that packets follow. On
the other hand, task scheduling affects the buffer requirements for packets.

Communication requirements of an NoC-based multicore platform affects both performance and energy consumption.
Specifically, the energy consumed by the NoC itself is 28% of the per-tile power in the Intel TeraFlop [26] and 36% of the total
chip power in MIT RAW [27]. Therefore, it is critical to reduce dynamic energy consumption in the NoC channels and routers
through diminished switching activity.

Prior research [28,29] has shown that links are responsible for a considerable amount of overall energy consumption. As
the distance between the routers is increased, the link energy consumption linearly increases. This is due to the fact that long
wires require large driving gates and repeaters, thereby increasing the switching activities and energy consumption. In order
to capture these characteristic, we used Manhattan distance as the energy consumption metric for the NoC links. As indi-
cated in our packet energy consumption, our model assumes (in accordance with the literature [28]) that the energy con-
sumption for the transfer of one flit through an NoC is linearly dependent on the number of hops required. As Ye et al.
[30] have shown, in a switch fabric circuit, the power is dissipated on three components: (1) the internal switches, (2)
the internal buffers, and (3) the interconnect wires that connect node switches. Thus, our energy model captures all the
parameters influencing energy consumption at the low implementation levels through respective constraints and objective
function. These models can therefore be used to estimate the energy consumption of a complete NoC.
4. Application on real benchmark datasets

We have employed real application benchmark datasets to evaluate the mapping and the scheduling algorithm in this
section. Multi-Constraint System-Level (MCSL) benchmark suite [8] provides a set of real applications where each applica-
tion composes multiple tasks and traffic data patterns between these tasks. MCSL benchmark records the data traffic for dif-
ferent mesh network sizes and measures the execution time for each task in the application. Most of the architectural
settings are borrowed from [5], exceptions are specified as needed. Results from heterogeneous architectures are presented
in this section. The CP models are implemented by using IBM ILOG OPL Studio, which is available free of charge to the aca-
demicians at IBM Academic Initiative web site.1

Some characteristics of MCSL benchmark can be found in Table 1 of [7]. For each different application in MCSL Bench-
mark, we generated 10 different random sets2 of the execution times and the traffic patterns according to distributional
parameters provided in the benchmark data specifically the files with ‘STP’ extension [8]. Two different sizes of the mesh archi-
tecture were utilized in our experiments: 4 � 4 and 8 � 8. The packet size was set to eight for all the applications except H.264
which was set to 64 due to the computational complexity caused by the small packet size.
1 http://tinyurl.com/cu5txlg.
2 all the model and data files are available at http://tinyurl.com/orbzny2.
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Fig. 1. Composition of core assignment on 4� 4 architecture.
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A new set of experiments has been conducted to test the applicability of Eq. (3). All the benchmark applications in MCSL
(including H.264) have been used this time. Compared to Eqs. (2), (3) has additional parameters such as k, r and a.

k is used for normalizing the objective term related to makespan, i.e. the completion time of all tasks on CTG. The param-
eter r is used for penalizing composition of the cores. Assuming that one of the core types is more preferable than the rest,
we can practically penalize the usage of the remaining core types in the composition of the chip. Notice that rk for
k ¼ 2; . . . ; nc should be specified for each technological alternative in our formulation. By using a rk closer to 1, we can prac-
tically penalize the usage of that particular core type within the composition of chip more. In our experiments, three differ-
ent technological alternatives have been used. Hypothetically, we can think of these core types as slow, regular, and fast. In
our experiments, r2 and r3 were set to 0.25 and 0.5 respectively. Technically, budgetary constraints can be easily used for
determining the r parameter. Parameter a is used for assessing the job duration times of technological alternatives.
a ¼ ½1:4;1;0:7� is chosen for our experiments. More specifically, it takes 1.4 times more execution time for running compu-
tation tasks on a slow core type than the regular core type and it takes 30% less time to run tasks on fast core type than the
regular core type. Alternatively Job Duration times (JD) could have been picked differently for each task on different core
types, but the a parameter is used for simplicity.

Figs. 1 and 3 report composition of cores yielded by experiments to solve Eq. (3) for 4� 4 and 8� 8 architectures respec-
tively. These figures practically show percentage of each core type in CPU core composition. Basically, fast cores are preferred
for the 4� 4 architecture in almost all datasets except R-S32ENC. This indicates that bandwidth is responsive and level of
parallelization responds positively in increasing speed of the cores. On the other hand, slow cores are preferred for the
8� 8 architecture. This underlines that there is no need to utilize faster cores as the level of parallelization is very high
and these cores can wait for the data transmissions to be completed in most cases. We can conclude that this particular
architecture is network-bandwidth sensitive [10].

Table 1 reports completion times in clock cycles for all applications in MCSL benchmark. The results are averaged on 10
realizations of the datasets (applications). The values of parameter k used in the experiments are also listed in Table 1. Notice
that parameter k is chosen by considering the results of homogeneous design given in Tables 2 and 3 of our earlier work [6]
except for application FPPPP. As a bandwidth parameter, 64 bit packet size is used for FPPPP to reduce the number of deci-
sion variables and constraints for the CP model to solve Eq. (3) – instead of 8 bit used for rest of the applications (see [5] for
architectural parameters). It can be observed from Table 1 that completion times are shortened significantly in most cases for
both 4� 4 and 8� 8 architectures. Even if most of the cores are formed by slow ones, the remaining fast cores on the chip
can speed up the computational tasks significantly. According to results from [24,25], the functional relationship between
cores’ speed and area usage can be constructed easily. However, we can introduce a parametric constraint to represent sur-
face/area usage on the chip for simplicity. In most of the design problems, surface/area usage is an important factor and Eq.
(4) defines a constraint to consider the area limitation. By picking xk for k ¼ 1; . . . ;nc and X appropriately, we can define a
form-factor for various core types. x ¼ ½0:9;0:8;0:65� and X ¼ 0:8 were chosen in our experiments. Experiments by solving
Eq. (3) with area constraint (i.e. Eq. (4)) were also conducted on MSCL benchmark datasets. Results are reported in Figs. 2 and
4 and Table 1. When compositions of the chips within each architecture are compared, there is almost no change for 4� 4
architecture (see Figs. 1 and 2). This means that solutions to Eq. (3) already satisfy the area constraint for the 4� 4 architec-
ture. However, introducing area constraint changes the solutions for 8� 8 architecture.
Xnc

k¼1

xk

n

Xn

j¼1

qjk 6 X ð4Þ
5. A practical CP based VFI model

Although the two-stage model introduced in Section 3 for heterogeneous designs has some preferable aspects such as
ability of modeling scheduling problem at packet transmission level, separating mapping and scheduling problems into
two different sub-problems raises some issues such as optimality of task scheduling. To alleviate this concern, we can run
each step consecutively as in expectation maximization (EM) algorithm [31] until the convergence of the results. However,
one can easily be tempted by the challenging nature of solving mapping and scheduling problems by a single optimization



Fig. 2. Composition of core assignment on 4� 4 architecture with area constraint.

Fig. 3. Composition of core assignment on 8� 8 architecture.

Table 2
MCSL VFI average completion times.

Application VFI composition

3-3 3-4 3-5 4-3 4-4 5-3

ROBOT 73,923 67,368 65,872 73,714 71,006 73,279
RS32DEC 2321 2219 2232 2298 2296 2328
RS32ENC 1561 1471 1486 1558 1632 1598
SPARSE 17,510 15,669 14,907 16,544 16,283 16,482
FPPP 65,240 62,418 61,439 65,307 63,300 65,342
H264 13,644,522 13,642,991 13,640,795 13,643,616 13,643,792 13,642,571

Table 3
MCSL VFI minimum (best case) completion times.

Application VFI Composition

3-3 3-4 3-5 4-3 4-4 5-3

ROBOT 70,141 63,574 63,702 70,398 66,748 69,952
RS32DEC 2112 2048 2101 2167 2140 2162
RS32ENC 1433 1301 1303 1,350 1400 1428
SPARSE 16,561 14,724 14,065 15,287 14,995 15,199
FPPP 57,931 56,101 55,044 57,801 56,633 57,843
H264 13,112,993 13,112,042 13,111,049 13,111,835 13,111,810 13,112,407

Fig. 4. Composition of core assignment on 8� 8 architecture with area constraint.
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Fig. 5. A sample VFI layout.
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model. Thus, we propose an efficient and practical CP model in this section to solve VFI problem by simplifying some of the
constraints in our two-stage solution for the heterogeneous NoC designs.

In order to build a practical optimization model to solve the problems of mapping and grouping cores and then scheduling
the tasks, we need to simplify the second stage of the optimization model defined in Eq. (3) and combine this with the first
stage. Instead of scheduling data transmission at the packet level, we can simply model the data transmission between com-
putation tasks as a whole by adding appropriate delays between tasks. By taking this approach, we no longer consider the
data channels as resources and remove them from our model. Of course, another implication of relaxing the optimization
model in Eq. (3) is that the data transfer capacity between cores becomes unbounded.

VFI problem requires clustering (grouping) cores into some regions that each region consists of cores running at the same
voltage and frequency levels. Forming these regions is generally not arbitrary but it requires some assumptions regarding the
shapes of these regions. VFIs are usually formed as rectangular or square blocks (regions) [2,11,15,16,23]. The size and the
number of such blocks may depend on particular design constraints. We can assume that clustering the cores may be con-
sidered as placing some number of smaller blocks on a mesh. To further simplify the problem, one can assume that sizes and
number of these blocks are set ahead of the optimization. For the sake of our argument, recall that there are nc core types in
our heterogeneous design and let’s assume that we set the number of blocks (islands) as nc � 1. Considering that one par-
ticular core type is the default type across the mesh, we can place one block for each of the remaining nc � 1 core (CPU) types.
Fig. 5 depicts such a VFI layout. In Fig. 5, three core types are depicted as in our experimental setup in the previous section.
Dotted lines represent the borders of the VFI regions.

Once the number of blocks and their sizes are fixed, problem of placing them to appropriate positions becomes equivalent
to limited resource allocation problem. Assume that a 2-D mesh, like the one in Fig. 5, is represented by x and y axes. Since
there are limited capacities along both x and y axes, we can model the area usage along each axis by interval decision vari-
ables (borrowed from CP scheduling representation) that have a dimension equal to the number of blocks. In other words, we
need to define two interval decision variables for each block, i.e. one for each axis. These decision variables can represent the
positions of where each block starts and ends along the x and y axes. Considering the south-west corner of Fig. 5 corresponds
to origin (1, 1), the smaller block has starting and ending points of 1 and 3 respectively along the x axis and has starting and
ending points of 5 and 7 respectively along the y axis. We can determine the north-west and south-east corners of each block
and then force the cores that fall into this area to be a particular type in our optimization model.

A practical and efficient CP based model of VFI problem can be given as in Eq. (5). Notice that permutation variables are
also used in Eq. (5) by borrowing the idea from Eq. (1). This eliminates the Stage I in our previous optimization model. Flow
and distance matrices (f and d) in Eq. (1) are incorporated into VFI model in the form of delay time (/) between individual
tasks where Ł is the set of all links in CTG. Same as in Eq. (3), we can utilize the decision variables, q, to determine the core
types from a pool of nc types. A new constraint type, "alwaysIn", is used to ensure that blocks (VFI regions) are placed
within boundaries of the mesh along each axis. Although not shown here for clarity, two more logical constraints are also
used in our formulation to prevent overlapping of the blocks and to assign the proper core type within each block.3 As in
Eq. (3), the objective of our VFI model is to minimize completion time of all tasks. A practical CP model is proposed in
Eq. (5) to concurrently solve three different problems: (1) mapping cores, (2) grouping cores, and (3) scheduling the tasks.
3 A working model and a sample data file are provided at http://bit.ly/MeBkRI.

http://bit.ly/MeBkRI


Table 4
MCSL VFI maximum (worst case) completion times.

Application VFI composition

3-3 3-4 3-5 4-3 4-4 5-3

ROBOT 78,073 73,898 68,592 76,255 73,863 76,198
RS32DEC 2463 2383 2384 2478 2429 2499
RS32ENC 1659 1632 1639 1713 1803 1765
SPARSE 18,935 16,625 15,941 17,776 17,085 18,067
FPPP 69,917 66,877 67,537 71,172 67,506 72,427
H264 14,535,231 14,532,841 14,532,645 14,533,715 14,533,528 14,533,888
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minimize
ti2T ;q2Q ;p2P;/2U;x;y

maxðEndOfðtiÞÞ

subject to

alldifferentðp1; . . . ;pnÞ;
Xnc

k¼1

qjk ¼ 1; j ¼ 1; . . . ;n;

sizeOfðtiÞ ¼
Xnc

k¼1

ak

Xn

j¼1

qjk JDðtiÞ; for all ti 2 T

endBeforeStartðti; tj;/ijÞ; for all ti � tj 2 T
/ij ¼ f ijdpipj

; for all i; j 2 Ł

alwaysInðxi�1;0;mÞ; i ¼ 2; . . . ; nc

alwaysInðyi�1;0;mÞ; i ¼ 2; . . . ;nc

qjk 2 f0;1g; j ¼ 1; . . . ; n; k ¼ 1; . . . ;nc

pi 2 f1; . . . ;ng; i ¼ 1; . . . ;n:

ð5Þ
Although the number of blocks and their sizes are provided to our model as parameters, we can easily utilize an iterative
approach to find the optimal layouts of various sizes and shapes (both rectangular and square) of VFI compositions. Exper-
imental study can be conducted to determine optimal VFI layouts from a pool of predetermined VFI compositions. For this
purpose, we utilize the same benchmark sets and the same assumptions regarding heterogeneous design (such as core types
and their performances) as in the previous section. Recall that three types of cores are used in our experiments: namely slow,
regular and fast. We set the slow core type as default in our VFI experiments. Types 2 and 3 (i.e. regular and fast) are tested in
various square formations. Considering that an 8� 8 architecture is used in our experiments, we vary the side length of the
square blocks between 3 and 5 units. For example, the VFI layout given in Fig. 5 corresponds to 4� 4 and 3� 3 blocks of core
types 2 and 3, respectively. All the benchmark sets are used in VFI experiments for 8� 8 architecture.

We use following VFI layouts for types 2 and 3 cores respectively: 3-3, 3-4, 3-5, 4-3, 4-4, and 5-3. Square blocks are con-
sidered in our experiments for their simplicity but rectangular shapes are also implementable in our formulation. Table 2
depicts average completion times over ten realizations of corresponding application. They are consistent with the results
from heterogeneous design experiments (see Table 1). Complexity of VFI model is much simpler than two-stage model
for the heterogeneous design in the previous section. The largest application, H264 was used in VFI experiments. We set
the optimization runtimes of FPPPP and H264 applications as 1200 s and the remaining runtimes were set to 300 s, allowing
iterative runs on various VFI compositions were possible. In most of the VFI experiments 3-5 VFI composition was preferable
except for RS32DEC and RS32ENC applications in which 3-4 VFI composition was the best. Tables 3 and 4 show the comple-
tion times (i.e. objective value of Eq. (5)) of all the applications. They present minimum and maximum completion times
across the VFI compositions used in our experiments.
6. Concluding remarks

A CP-based two-stage model is proposed to solve the core mapping and the application scheduling problems for heter-
ogeneous NoC architectures. The major advantage of using CP is the clarity and understandability of models. We successfully
experimented our model on various MCSL benchmark datasets. Surface/area constraint has been introduced to our formu-
lation for the heterogeneous architecture. It has been shown that similar constraints for power and temperature can easily be
implemented in the CP framework of heterogeneous NoC architectures. We also implement this approach in a VFI-aware
fashion, where cores are mapped according to the optimal voltage levels while maintaining satisfactory task schedules.
Our CP approach for VFI problem is composed of a single-stage model which requires prior size and shape assumptions
regarding islands. Under these assumptions, single-stage model becomes possible via an elegant model.
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