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Path-integral approximation on the stability of large bipolarons
in quasi-one-dimensional confinement

R. T. Senger and A. Erc¸elebi
Department of Physics, Bilkent University, 06533 Ankara, Turkey

~Received 6 July 1999!

The stability of the singlet optical bipolaron is investigated in quasi-one-dimensional confinement with
parabolic boundary potential. Under the bulk-phonon approximation the Feynman-polaron model is used to
display the polaron-bipolaron phase diagram as a function of the Coulomb and phonon coupling strengths and
the degree of confinement.
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I. INTRODUCTION AND THEORY

It was conjectured by Vinetskii and Gitterman,1 and sub-
sequently by many other scientists, that bipolarons can
realized in selective materials where a pair of two electr
can form a composite bound state in which the phon
mediated attraction holds the particles together against t
Coulomb repulsion. As one of the pioneering works in th
area we should mention the paper by Bishop a
Overhauser2 where they explore the phonon-mediated int
action between two electrons and show that for ionic cr
tals, the effective electron-electron potential may lead to
attractive deep potential well with a minimum occurring f
particle separations as small as a few tens of Angstrom u
Over the last decade, proceeding the discovery of highTc

superconductivity, there has appeared a revived and ex
sive interest in this problem, devoted to the study of
stability criteria of bipolarons adopting different alternati
models and approximating theories. Among the numer
amount of papers published within the context of tw
polaron systems, we cite a few examples3–15 which are rel-
evant to the long-range Fro¨hlich interaction with the optica
phonons. The fundamental conclusion led by these studie
that the domain of stability of bipolarons is determined cr
cally by the upper and lower bounds for the repulsive C
lomb and the attractive electron-phonon coupling streng
respectively, and that a bipolaron phase can exist only
extreme strong phonon coupling. In parallel with the study
optical bipolarons, there has also appeared some altern
attention16,17 devoted to the investigation of the two polaro
complex where the electrons are assumed to couple to
longitudinal acoustic phonons through the deformation
tential interaction. The essential distinction which sets
acoustic bipolaron problem apart from the optical case is
in the acoustical problem the cutoff wave vector takes par
the description of the phase diagram as a further paramet
addition to the Coulomb and phonon coupling paramet
thus leading to a much richer and interesting content of
phase picture in comparison with the equivalent case of
tical bipolarons. For an extensive understanding of the
lient features encountered for acoustic bipolarons the re
is referred to the two articles by da Costa and Peeters16 and
by Farias, da Costa, and Peeters17 where they provide an
elaborate overview to the problem in both three and t
PRB 610163-1829/2000/61~9!/6063~6!/$15.00
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dimensions. In our present article we shall disregard any p
tinence to acoustic phonon coupling and give all emphasi
the optical bipolaron problem.

Of particular relevance to our main concern in this wo
is the recent literature5–7,11,15pertaining to the study of opti-
cal bipolarons in two space dimensions~2D! where it has
been noted that bipolaron formation should be more fav
ably attained due to the pronounced phonon coupling in lo
ering the dimensionality from 3 to 2. We are thus tempted
retrieve the same problem in a configuration of even low
dimensionality, namely in a quasi-one-dimensional~Q1D!
wirelike geometry, where the polaron binding can be stro
ger and even much deeper than in two dimensions.18 In our
model we assume a rather simple situation consisting of
two-polaron complex in a ‘‘free-stand’’ tubular configuratio
where the pair of electrons are free along one axis, but
erally confined in the remaining directions. The compos
system is then thought of as immersed in a bosonic reser
where they couple to the LO branch of the bulk phon
spectrum. We should emphasize that the fundamental
proach followed in this work is to take into account sole
the generic low dimensional aspect of the dynamical beh
ior of the confined electrons and visualize them as interac
with the medium and with one another through exchange
virtual LO phonons. We retain the problem in a simple for
and refrain from including any modifications such as tho
due to the contributions from all of the other kinds of phon
modes, the screening effects and further other detailed
tures. Thus adopting the so-calledbulk phonon approxima-
tion we wish to shed some insight into the possibility of
bipolaron phase in quasi-one-dimensional media. In the
lowing we shall concern ourselves with the intrinsic effect
the degree of confinement on the phonon-mediated inte
tion acting between the particles and investigate the pola
bipolaron transition as a function of the effective dimensio
ality encompassing the 3D and Q1D configurations. W
believe, the methodology followed in this work proves to
a powerful technique intended to lay out a satisfactory ch
acterization of the problem in the overall ranges of the
rameters describing the system. We treat our model with
similar framework of the three- and two-dimensional bip
laron models set up earlier by Verbist, Peeters, a
Devreese5 where they reformulate the Feynman ‘‘on
polaron’’ path-integral variational theory20 to treat the case
of two interacting polarons.
6063 ©2000 The American Physical Society
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A. Hamiltonian

Setting\vLO as a unit of energy and (\/m* vLO)1/2 as a
unit of length, the relevant Hamiltonian reads as

H5 (
i 51,2

S 1

2
pW i

21
1

2
V2% i

2D1
U

urW12rW2u
1(

QW
aQW

†
aQW

1 (
i 51,2

(
QW

VQ~aQW eiQW •rW i1aQW
†

e2 iQW •rW i ! ~1!

in which aQW and aQW
† denote the phonon operators andrW i

5(%W i ,zi) ( i 51,2) are the electron positions in cylindric

coordinates. Similarly,pW i ( i 51,2) denote the respective mo
menta of the electrons. The Fro¨hlich interaction amplitude is

related to the phonon wave vectorQW 5(qW ,qz) through VQ

5(2A2pa)1/2uQW u21, where a5(e2/A2)(e`
212e0

21) is the
coupling constant. In the Coulomb term, the unscreened
plitude U is related to the ratio of the dielectric constan
h5e` /e0, throughU5A2a/(12h).

The dimensionless frequencyV will be treated as a tun
able parameter to serve as a measure of the degree of
finement of the electrons. The usage of a harmonic-oscill
potential greatly facilitates the calculations and leads to c
cise and tractable analytic expressions due to its compat
ity with the framework of the path-integral approximatio
where one assumes the two electrons to be coupled to
another and to the corresponding fictitious particles via h
monic interactions. Moreover, due to the absence of
abrupt variation in the medium properties, the parabolic c
fining potential allows one to omit any interaction with th
interface phonon modes.21

A complementary remark regarding the particular pa
bolic form of the potential used here is that it also finds
relevance in the study of bipolarons under external magn
fields, where a field for a 3D bipolaron conforms it effe
tively to a quasi-one-dimensional bipolaron and a field
plied normally to a quasi-two-dimensional system make
effectively zero dimensional. Specifically, under the sy
metric gauge for the magnetic vector potential, one rea
has the cyclotron frequency to undertake the role of the c
fining parameterV. Indeed, it has been verified recently th
a magnetobipolaron in 3D behaves like a 1D bipolaron w
a renormalized phonon coupling strength, and that the
problems have a one-to-one correspondence in the limit
strong magnetic field.22

B. Trial action

In the Feynman path-integral representation of the
laron, the phonon variables can be projected out exactl
yield the partition function of the bipolaron system in th
product form
-
,
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Z5)
QW

~12e2b!23

3 )
i 51,2

S E drW0E
rW i (0)5rW0

rW i (b)5rW0DrW i~l! D eS[ rW1(l),rW2(l)] ~2!

in which the actionS, expressed in imaginary time (t
→2 il), has the form

S52E
0

b

dl (
i 51,2

1

2
@rẆ i

2~l!1V2% i
2~l!#1SC1Se-ph, ~3!

where

SC52E
0

b Udl

urW1~l!2rW2~l!u
~4!

is the Coulomb term, andSe-ph is the phonon mediated re
tarded attractive interaction between the electrons, given

Se-ph5
1

2 (
i , j 51,2

(
QW

VQ
2 E

0

b

dl

3E
0

b

dl8G1~l2l8!eiQW •[ rW i (l)2rW j (l8)] . ~5!

In the above,b51/kT, and the memory function

Gv~u!5coshuuuvS coth
1

2
bv1tanhuuuv D

is the harmonic oscillator Green’s function with frequen
v.

Due to the analytic complexity comprised by the actionS,
the exact ground-state energy,Eg52 lim

b→`
b21logZ, can-

not be determined. Nevertheless, it is always possible to
tain a convenient variational upper bound toEg , led by the
Jensen-Feynman inequality

Eg<E02 lim
b→`

1

b
^S2S0&S0

, ~6!

whereS0 refers to a solvable approximate trial action wi
corresponding ground-state energyE0. The notation^ &S0

denotes a path-integral average with density functioneS0.
For the trial action we adopt the model which has alrea

been applied to similar~bi!polaron problems5,15,18–20where
the electrons are considered to be in quadratic interac
with the fictitious masses. Through a set of four variation
parameters,$w,v1 ,v2 ,v3%, we approximate the Coulomb
and electron-phonon interactions harmonically as

SC5
1

4
~v1

22v2
22v3

2!E
0

b

dl@rW1~l!2rW2~l!#2 ~7!

Se-ph52
1

2E0

b

dlE
0

b

dl8Gw~l2l8!H cs (
i 51,2

@rW i~l!

2rW i~l8!#212cm@rW1~l!2rW2~l8!#2J , ~8!
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where the coefficientscs andcm refer to the self- and mutua
interaction of the electrons with the fictitious masses, e
with its own and with that of the remaining electron, respe
tively, and are given by

H cs

cm
J 5

1

8w
$w2~v1

22w2!6~v2
22w2!~w22v3

2!%. ~9!

C. Ground-state energy

Since the trial actionS0 and the relevant path integrals a
all separable in the Cartesian coordinates, the calculat
can be performed in identical manners for each spatial di
tion. Diagonalization of the part of the associated Lagrang
relevant to any chosen coordinate brings about four nor
modes of oscillation along that coordinate with eigenf
quencies

H j0~V!

j1~V!
J 5

1

A2
$V21v1

27A~V21v1
2!224V2w2%1/2,

~10!

H j2~V!

j3~V!
J 5

1

A2
$V21v2

21v3
2

6A~V21v2
21v3

2!224~V2w21v2
2v3

2!%1/2.

~11!

Here, it should be understood that the confining parameteV
is relevant only to the transverse coordinates, and it has t
accounted for having zero value along the wire axis. Clea
in the longitudinal6z directions the eigenfrequencies redu
to j0(0)50 andj i(0)5v i ( i 51,2,3), in whichv1 , v2, and
v3 are the characteristic frequencies calculated previou
for the bulk case by Verbist, Peeters, and Devreese.5

The normal-mode frequenciesj i given by Eqs.~10! and
~11! enable us to express the zero-point energyE0 ~corre-
sponding toS0) as

E0523w1
1

2 (
i 50

3

$j i~0!12j i~V!%, ~12!

wherein the additional term ‘‘23w9 comes about unde
eliminating the fictitious mass coordinates in obtaining
trial action.

In order to reach the upper bound to the bipolaro
ground-state energy, one has to evaluate the path-inte
averagê S2S0&S0

involved in the Jensen-Feynman inequ

ity ~6!. Following a series of tedious but straightforward a
gebra we obtain the variational bipolaron energy in the fo
h
-

ns
c-
n
al
-

be
,

ly

e

c
ral

Eg523w1 (
n51,2

1

n (
i 50

3

j i~Vn!

1
U

ApD1,2~0,V2!
FS D1,2~0,V1!

D1,2~0,V2! D
2 (

n51,2

1

2n H v1
22w2

j0~Vn!1j1~Vn!
1

v2
21v3

22w2

j2~Vn!1j3~Vn!

1
v2

2v3
2

j2~Vn!j3~Vn!@j2~Vn!1j3~Vn!#J
2aA2

pE0

`

dte2tH 1

AD1,1~t,V2!
FS D1,1~t,V1!

D1,1~t,V2! D
1

1

AD1,2~t,V2!
FS D1,2~t,V1!

D1,2~t,V2! D J , ~13!

whereV1 andV2 have to be accounted for having valuesV
and zero, respectively, and

F~x!5
arctan~Ax21!

Ax21
. ~14!

The auxiliary functionsD1,i(t,V) ( i 51,2) have the forms

D1,1~t,V!5
1

4 (
i 50

3

d i~V!~12e2j i (V)utu!, ~15!

D1,2~t,V!5
1

4 (
i 50,1

d i~V!~12e2j i (V)utu!

1
1

4 (
i 52,3

d i~V!~11e2j i (V)utu!, ~16!

where

d0~V!5
1

j0

w22j0
2

j1
22j0

2
, d1~V!5

1

j1

j1
22w2

j1
22j0

2
, ~17!

d2~V!5
1

j2

j2
22w2

j2
22j3

2
, d3~V!5

1

j3

w22j3
2

j2
22j3

2
. ~18!

II. RESULTS

To trace the condition for which a stable bipolaron can
realized, one has to provide a consistent comparison of
variational energy minimum of the bipolaron system w
that of the single polaron case. As a reference criterion
voring the bipolaron phase we demand that the ground-s
binding energy,Eb52V2Eg , of the pair of composite po-
larons which presumably make up the bipolaron be gre
than twice the binding energy of one single polaron, i.e.,
requireEb22Eb

(1).0 in which the one-polaron binding en
ergy, Eb

(1)5V2Eg
(1) , is to be calculated within an identica

framework of the present model and formalism and under
same numerical precision. Here, we do not replay the a
braic patterns pertaining to the derivation of the one-pola
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ground-state energy,Eg
(1) , but instead, use readily the seri

of Eqs. ~13!, ~22!, ~25!–~30! given in a preceding paper18

concerned with the Feynman one-polaron problem consis
of the same quadratic confinement potential.

To provide an understanding of the influence of the c
fining potential on the evolution of the complex of two p
larons in favor of a bipolaron bound state, we undertake
illustrative cases for which the Coulomb repulsion is cons
ered to be not too strong, and the phonon mediated bind
somewhat deep enough to overcome that repulsion. Se
a56 and h50.01, 0.02 as sample values, we display@cf.
Fig. 1~a!# a graphical comparison of the corresponding bin
ing energies in the polaron-polaron~PP! and bipolaron~BP!
phases as a function ofR5V21/2 which we hereafter refer to
as simply the radius. A glance at the plots in Fig. 1~a! reveals
that there are three major regions in the overall domain oR.
For R,RX , i.e., in the region BP~PP!, the bipolaronic phase
is energetically more favorable than the PP phase of
individual polarons, and yet, decreasing the wire radius
hances the stability of the BP phase. In going toward
opposite extreme and relaxing the degree of confinement
BP state can no more be sustained, and beyond the cros
radius RX , the bipolaronic phase is seen to persist rec
sively as a metastable state and eventually terminate
cutoff radiusRT ~shown in the figure by a dark dot!. For R
>RT one achieves solely the PP phase with whatsoeve
relevance to any possible bipolaronic characterization of
two-polaron system. An additional remark led by the cont
of the Fig. 1~a! is that, for a given fixeda, the stronger the
Coulomb repulsion is, the more is the requirement for a th
ner wire to favor and sustain the bipolaron state. In this
gard, fora56, we have calculatedRX51.03(0.76) andRT
51.27(1.13) forh50.01(0.02). For completeness, we al
display complementary plots of the variational parameter
a function of the transition from one phase to the other@cf.
Fig. 1~b!#. The parameters pertaining to the energetically
vorable phase are plotted in boldface curves and those w
correspond to the metastable state of either phase are g

FIG. 1. ~a! Bipolaron and two single-polaron binding energie
and ~b! the variational parameters, as functions ofR5V21/2. The
sample parameter values are:a56 andh50.01, 0.02. The cross
over and cutoff radii (RX andRT) and the vertical lines separatin
the phases are relevant to onlyh50.02.
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in dashed lines. It should be noted that if the bipolaro
phase should indeed take place either as a metastable st
otherwise, the corresponding variational parameters
achieve nonzero and distinctive values. The phase of
independent polarons, however, is characterized by thatv1
andv2 coalesce into one single curve, andv350 regardless
of R. Consequently, one hasw andn(5v15v2) to be rec-
ognized as the well established Feynman variational par
eters of the one-polaron problem.18,20

In Fig. 2 we plot a phase diagram in the ‘‘U2a9 plane,
picturing the domain of stability of the bipolaron state
different degrees of confinement. In the diagram the sp
lying below the dashed line corresponds toh,0, and is
therefore irrelevant. The upper space bounded from below
the solid lines plotted for three distinctive radii (R50.3, R
51.0, andR@1) gives the unstable region. It is therefo
only the narrow triangular area bounded by the dashed
either of the solid lines in which the polarons can be found
a stable bound state forming a bipolaron. The vertex of e
triangular region at which the dashed and solid lines j
defines a critical minimum for the coupling constant in t
bulk and Q1D (R51.0, and 0.3! configurations. Coupling
constants larger than these critical vertex values serve
supporting the bipolaron to maintain its stability at corr
spondingly stronger Coulomb repulsions. In numeric
terms, settinga58 for instance, we evaluate the critical up
per bound for the Coulomb coefficient beyond which t
bipolaron dissociates into two individual polarons asUc
511.59, 11.70, and 11.88, respectively, for the casesR
5bulk, 1.0, and 0.3.

A more complete trace of the critical condition on th
Coulomb strength as a function of the degree of confinem
is given in Fig. 3 where we provide a layout of the altern
tive related parameterh againstR plotted for a sequence o
coupling constants ranging from 4 to 10. An immedia
glance at the series of plots in Fig. 3 reveals that, star
from the bulk limit, hc displays in general an increasin
trend with decreasingR, yielding an explicit evidence in fa-

FIG. 2. The phase diagram for bipolaron formation in the sp
of the Coulomb coefficient and the electron-phonon coupling c
stant. The solid lines from top to bottom are, respectively, forR
50.3, 1.0 andR→`. The dashed line (h50) is the boundary of
the unphysical region. The inset tabulates the corresponding
for a few sample values ofac .
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vor of a pronounced effective phonon coupling with the
crease in the degree of confinement, which correspondin
results in an enhancement in the phonon mediated interac
between the electrons to serve for opposing and counte
ancing even more stronger Coulomb repulsions. Examin
the low-lying plots in the figure, we note that forh50, i.e.,
for the Coulomb coefficient taken as assuming its hypoth
cal minimum value (U5A2a), the critical coupling constan
over which the bipolaron phase is realized is found to
ac

(3 D)56.85 for the bulk case.5 Correspondingly, we note
that our plots ofhc for a54, 5, 6 all intersect the abscissa
finite values ofR; hence, for not strong enougha, a bipo-
laron can form only beyond a critical degree of confineme
and the smaller the coupling constant is, the smaller is
corresponding critical radius. Clearly, fora.6.85 one has
Rc→`, where in this case bipolaron formation is favorab
even in bulk, and the additional effect of the confinemen
to take over in favor of enhancing the already establis
stability of the bipolaron.

We would like to draw attention to that, for comparative
largea, the criticalh exhibits a peculiar variation as the wir
radius is decreased; compatible with our anticipations, it fi
increases, and after having gone through a maximum,
plays a decreasing trend. We feel that this salient featur
an implicit consequence of the fact that the parametersa,h,
andV which characterize the system do not enter the pr
lem in an independent way but all together take part in
binding in related manners through an entangled admix
of the competing effects of the Coulomb repulsion and
phonon mediated attraction over the other and the crosso
ing between these counter aspects as the confining param
is varied. Clearly, in a confined volume whereV is tuned
from zero to large values, it is not only the phonon coupli
which gets pronounced, but in the meantime the kinetic
ergy of the electrons increases and the Coulomb repul
becomes steadily strengthened due to that the particles
squeezed to get closer. Thus the overall role of the confi
ment on the phonon-coupling induced localization of t
electron-electron pair and the withstanding kinetic and C
lomb repulsions is to make these competing counter asp
stronger. What is more peculiar to the present context is
during whenV is varied, the phonon coupling and the Co
lomb strengths may not in general grow or decrease mo
tonically in concert at the same rate and consequently,
relative dominating strength of either the Coulomb poten

FIG. 3. The critical ratiohc as a function ofR5V21/2.
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or the electron-phonon interaction over the other may
come altered as a function of the degree of confinement
the particular Q1D configuration, with contracting wire r
dius, the electrons experience an increasingly large res
tion toward the wire axis and therefore, below a certain w
size, the phonon-mediated attraction starts to lose its o
whelming strength against the rapidly increasing Coulo
and kinetic repulsions thus leading to a decreasing profile
hc asR is made even smaller. This feature however is se
to diminish asa is tuned to smaller values. For compar
tively weaka, where the electrons are not too tightly boun
by the lattice, we think that, with shrinking wire size, th
charge density of the electrons acquire a spatial extent
panded to relax itself in the longitudinal (6z) directions
along the wire axis, resulting in the overall a weaker rep
sion between the particles; thus enabling the phon
mediated attraction to maintain its capability in supporti
the bipolaron state against larger values of the Coulomb
efficient, and correspondingly, larger values ofhc .

In this report we have studied the possibility and crite
in achieving stable bipolarons in Q1D media where the el
trons are laterally confined by a cylindrical free-stand w
with parabolic boundary potential. The overall implicatio
led by the numerical outcomes of this work is that, the stro
ger the phonon coupling and/or the larger the degree of c
finement is, the more favorably the bipolaron state can fo
and be supported against the repulsive Coulomb poten
We further conclude that it is the mutual and interrelat
roles which the Coulomb and phonon coupling parame
play together with the confinement that lead to the format
~or dissociation! of a bipolaron. As a final complementar
remark we would like to add the note that the confined
polaron model adopted here reproduces almost similar qu
tative features as for the alternative case of a 3D bipolaro
a magnetic field. In both cases it is seen that the comm
fundamental effect of either the cylindrical parabolic pote
tial or the external magnetic field is to enlarge the region
bipolaron formation so that the critical coupling constant

FIG. 4. The critical coupling constantac as a function ofV in
the extreme high confinement limit. The solid curve reflects
results of the present model. The dashed curve is the asymptoti
relation: ac

(B)54.6/lnB derived by Smondyrevet al. ~Ref. 22! for
the 3D magnetobipolaron in the strong magnetic-field limit. F
compatibility, we have setB52A2V.
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quired to sustain the bipolaron phase assumes smaller va
as the parabolic potential or the magnetic field are m
stronger. The similarity between the two problems beco
more closer in the high magnetic-field limit (B→`), since it
is only then the dominant contribution to the magne
bipolaron energy comes from the ground Landau level
the essential digression originating from the angular mom
tum term in the vector-potential part of the Hamiltonian g
removed. It has already been shown by Smondyrevet al.22

that the 3D magnetobipolaron maps onto a 1D bipolaron
strong fields and that the effective critical coupling const
scales to smaller values with proportionality to the recipro
.

s

r

e,
es
e
e

-
d

n-
s

r
t
l

of ln B. Numerical treatment of the present calculation tac
led in the unrealistic extreme high confinement limit (V
→`) reproduces somewhat the same nature in an asymp
manner, where we observe that the critical coupling cons
seems to bear a linkage to the confining parameter thro
an analogous relation:ac.1/lnV ~cf. Fig. 4!.
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