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Path-integral approximation on the stability of large bipolarons
in quasi-one-dimensional confinement
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The stability of the singlet optical bipolaron is investigated in quasi-one-dimensional confinement with
parabolic boundary potential. Under the bulk-phonon approximation the Feynman-polaron model is used to
display the polaron-bipolaron phase diagram as a function of the Coulomb and phonon coupling strengths and
the degree of confinement.

I. INTRODUCTION AND THEORY dimensions. In our present article we shall disregard any per-
tinence to acoustic phonon coupling and give all emphasis to
It was conjectured by Vinetskii and Gittermamand sub- the optical bipolaron problem.
sequently by many other scientists, that bipolarons can be Of particular relevance to our main concern in this work
realized in selective materials where a pair of two electronds the recent literatufe”*-**pertaining to the study of opti-
can form a composite bound state in which the phononcal bipolarons in two space dimensio@D) where it has
mediated attraction holds the particles together against theffeen noted that bipolaron formation should be more favor-
Coulomb repulsion. As one of the pioneering works in this@Ply attained due to the pronounced phonon coupling in low-
area we should mention the paper by Bishop and'ing the dimensionality from 3 to 2. We are thus tempted to

Overhausérwhere they explore the phonon-mediated inter_re_trieve_ the same proble_m in a co_nfigura_tion Of_ even lower
action between two electrons and show that for ionic Crys_dl_me_nsmnallty, hamely in a qua3|-one_-d|r_nen5|o(QI1D)
irelike geometry, where the polaron binding can be stron-

tals, the effective electron-electron potential may lead to an’

. : . . . ger and even much deeper than in two dimenstns.our
attra_lctlve deep potential well with a minimum occurring for model we assume a rather simple situation consisting of the

: ; ?Wo-polaron complex in a “free-stand” tubular configuration
Over the last decade, proceeding the discovery of fligh- \yhere the pair of electrons are free along one axis, but lat-

superconductivity, there has appeared a revived and ext€gig|ly confined in the remaining directions. The composite
sive interest in this problem, devoted to the study of thesystem is then thought of as immersed in a bosonic reservoir
stability criteria of bipolarons adopting different alternative \yhere they couple to the LO branch of the bulk phonon
models and approximating theories. Among the numerougpectrum. We should emphasize that the fundamental ap-
amount of papers published within the context of two-proach followed in this work is to take into account solely
polaron systems, we cite a few exampiéwhich are rel-  the generic low dimensional aspect of the dynamical behav-
evant to the long-range Hnbich interaction with the optical ior of the confined electrons and visualize them as interacting
phonons. The fundamental conclusion led by these studies igith the medium and with one another through exchange of
that the domain of stability of bipolarons is determined criti- virtual LO phonons. We retain the problem in a simple form
cally by the upper and lower bounds for the repulsive Cou-and refrain from including any modifications such as those
lomb and the attractive electron-phonon coupling strengthsiue to the contributions from all of the other kinds of phonon
respectively, and that a bipolaron phase can exist only anodes, the screening effects and further other detailed fea-
extreme strong phonon coupling. In parallel with the study oftures. Thus adopting the so-calledlk phonon approxima-
optical bipolarons, there has also appeared some alternatiéi®n we wish to shed some insight into the possibility of a
attentiort®!’ devoted to the investigation of the two polaron bipolaron phase in quasi-one-dimensional media. In the fol-
complex where the electrons are assumed to couple to tHewing we shall concern ourselves with the intrinsic effect of
longitudinal acoustic phonons through the deformation pothe degree of confinement on the phonon-mediated interac-
tential interaction. The essential distinction which sets theion acting between the particles and investigate the polaron-
acoustic bipolaron problem apart from the optical case is thabipolaron transition as a function of the effective dimension-
in the acoustical problem the cutoff wave vector takes part irality encompassing the 3D and Q1D configurations. We
the description of the phase diagram as a further parameter brelieve, the methodology followed in this work proves to be
addition to the Coulomb and phonon coupling parametersa powerful technique intended to lay out a satisfactory char-
thus leading to a much richer and interesting content of thecterization of the problem in the overall ranges of the pa-
phase picture in comparison with the equivalent case of oprameters describing the system. We treat our model within a
tical bipolarons. For an extensive understanding of the sasimilar framework of the three- and two-dimensional bipo-
lient features encountered for acoustic bipolarons the readésiron models set up earlier by Verbist, Peeters, and
is referred to the two articles by da Costa and Pettarsd  Devreesé where they reformulate the Feynman ‘“one-
by Farias, da Costa, and Peetérahere they provide an polaron” path-integral variational thed®yto treat the case
elaborate overview to the problem in both three and twoof two interacting polarons.
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A. Hamiltonian

Z—H (1-eh)~3
Settingfw o as a unit of energy andi(m* w o) as a
unit of length, the relevant Hamiltonian reads as f(8)= ro L
J f eSIri(\).ra(\)] 2)
i= 12 ri(0)= ro

in which the actionS, expressed in imaginary timet (

1., 1 — —1iM\), has the form

H= > —pi2+—QZQi2)+ > aéa(j

=122 2 [ri=raf G B 1 .

S=—| d\ >, E[rm)+ng$(x)]+sc+3e_ph, 3)
- - 0 =12
+ 3 3 Volage i+age ) M |
=12 q where

B UdA
SC:— J - 5> (4)

in which ag and aJE denote the phonon operators and 0 [ry(N)=ra(N)]

=(0;.z) (i=1,2) are the electron positions in cylindrical js the Coulomb term, and. oh is the phonon mediated re-
coordinates. Similarlyp; (i =1,2) denote the respective mo- tarded attractive interaction between the electrons, given by
menta of the electrons. The Falich interaction amplitude is

related to the Phonon wave vectQ=(d,q,) throughVg Sept= 2 2 VZJ dh
= (2\27a) ]G] 1, where a=(€%/\2)(ex '~ €5 1) is the 2i/51275
coupling constant. In the Coulomb term, the unscreened am- B e
plitude U is related to the ratio of the dielectric constants, XJ d\' Gy (A —N")e'Q M= (], 5
7= €.l €y, throughU = 2a/(1— 7). 0

The dimensionless frequendy will be treated as a tun- |n the above 8= 1kT, and the memory function
able parameter to serve as a measure of the degree of con-
finement of the electrons. The usage of a harmonic-oscillator 1
potential greatly facilitates the calculations and leads to con- Gau(u) =coshu|w( cothi,BertanHulw)
cise and tractable analytic expressions due to its compatibil-
ity with the framework of the path-integral approximation is the harmonic oscillator Green’s function with frequency
where one assumes the two electrons to be coupled to orfe . . .
another and to the corresponding fictitious particles via har- Due to the analytic complexity comprised by the act#n
monic interactions. Moreover, due to the absence of ad€ €xact ground-state energg,=—lim , _..B""log Z, can-
abrupt variation in the medium properties, the parabolic connot be determined. Nevertheless, it is always possible to ob-
fining potential allows one to omit any interaction with the tain a convenient variational upper boundHg, led by the
interface phonon modés. Jensen-Feynman inequality

A complementary remark regarding the particular para- L
bolic form of the potential used here is that it also finds its .
relevance in the study of bipolarons under external magnetic Eg= EO_;‘LZE(S_ So) sy ©
fields, where a field for a 3D bipolaron conforms it effec-
tively to a quasi-one-dimensional bipolaron and a field apwhereS, refers to a solvable approximate trial action with
plied normally to a quasi-two-dimensional system makes icorresponding ground-state enerBy. The notation( )s,
effectively zero dimensional. Specifically, under the sym-denotes a path-integral average with density funcém
metric gauge for the magnetic vector potential, one readily For the trial action we adopt the model which has already
has the cyclotron frequency to undertake the role of the conbeen applied to similafbi)polaron problents'®#-2%where
fining parametef). Indeed, it has been verified recently that the electrons are considered to be in quadratic interaction
a magnetobipolaron in 3D behaves like a 1D bipolaron withwith the fictitious masses. Through a set of four variational
a renormalized phonon coupling strength, and that the tw@arameters{w,w;,w,,ws}, we approximate the Coulomb
problems have a one-to-one correspondence in the limit of @hd electron-phonon interactions harmonically as
strong magnetic field?

1 B oo -
Sc=7 (0]~ 05— 03) fo d\[r (M) =27 ()

B. Trial action

In the Feynman path-integral representation of the po-  Sepr= J dhf d\N'Gy(A—N") {CSE [ri(\)
laron, the phonon variables can be projected out exactly to 1=1.2
yield the partition function of the bipolaron system in the }

product form (NP4 2¢,[ri(N) —T2(N)]%, tS)
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where the coefficients; andc,, refer to the self- and mutual 3

1
interaction of the electrons with the fictitious masses, each E,=—3w+ E o Z &(Qy)
with its own and with that of the remaining electron, respec- n=12701=0
tively, and are given by N U F( D1,2(0,91)>
VD1 (0,0,) D10.02)
c 1 2 2 2 2 2
{ S ] =g WA@I-w) = (03— w) (W= w3)}.  (9) - i{ i S W
Cm 01220 | £(Qn)+E(Qn)  E(Qp)+E5(Qp)
. 0202 ]
C. Ground-state energy E2(00) E5(Q)[E(Qn) + E5(Q)]
Since the trial actioi$, and the relevant path integrals are \F % I 1 D, (7,Q4)
all separable in the Cartesian coordinates, the calculations —a —f dre” " (D ’ Q )
can be performed in identical manners for each spatial direc- mJo VD14(7,Q5) 11(7,82)
tion. Diagonalization of the part of the associated Lagrangian 1 Dy A7 Q)
relevant to any chosen coordinate brings about four normal + (Dl’ ’Ql )} (13
modes of oscillation along that coordinate with eigenfre- VD1 A7,€2)) 1A72)
quencies where(); andQ), have to be accounted for having valu@s
and zero, respectively, and
§o(9)] 1 arctarf Vx—1)
= —{0%+ 0?7 (Q%+ 0?)?— 40°W?} 172, F(X)= ———. (14)
[ gl(Q) \/E{ 1 \/( 1 } /X_ 1
(10 The auxiliary functions,;(7,Q) (i=1,2) have the forms
1 3
&) 1 Diy(7,Q)=7 2 §(Q)(1—e &) (15
=—{Qz+w§+w§ 4=0
&) 2
1
+\J(Q%+ w3+ 03)2— 4(Q2W2+ w3w3) Y2 DiAn)=7 X §(Q)(1-e @)
i=0,1
(13)

1
+7 2 ()(L+re a), (16
. .. i=2,3
Here, it should be understood that the confining paranfeter '
is relevant only to the transverse coordinates, and it has to bahere
accounted for having zero value along the wire axis. Clearly, ) ,
in the longitudinal* z directions the eigenfrequencies reduce 1 w?=§ 1 &-w?

t0 £4(0)=0 and& (0)=w; (i=1,2,3), in whichw, , w,, and So(M=¢ oy W)= oy (17)
w3 are the characteristic frequencies calculated previously roeo toeo
for the bulk case by Verbist, Peeters, and Devréese. 1 &2-w? 1 w2— g2
The normal-mode frequencie&s given by Eqs.(10) and 5,(Q)=— 22 . ()= — 23 (18
(11) enable us to express the zero-point enegy(corre- &2 &4 83 &5 &5
sponding toS,) as
Il. RESULTS

13 To trace the condition for which a stable bipolaron can be
Eo=—3w+ = E {£(0)+2&(Q)}, (12) realized, one has to provide a consistent comparison of the
20 variational energy minimum of the bipolaron system with
that of the single polaron case. As a reference criterion fa-
) - o voring the bipolaron phase we demand that the ground-state
whe_reln_ the ad(j|t|p_nal term = 3w comes about. u_nder binding energyE,=2Q—E,, of the pair of composite po-
eliminating the fictitious mass coordinates in obtaining thejzrons which presumably make up the bipolaron be greater
trial action. than twice the binding energy of one single polaron, i.e., we
In order to reach the upper bound to the bipolaronicrequireEb_2Egl)>0 in which the one-polaron binding en-
ground-state energy, one has to evaluate the path-integraglgy Egl)zﬂ—Egl), is to be calculated within an identical
average(S—Sp)s, involved in the Jensen-Feynman inequal- framework of the present model and formalism and under the
ity (6). Following a series of tedious but straightforward al- same numerical precision. Here, we do not replay the alge-
gebra we obtain the variational bipolaron energy in the formbraic patterns pertaining to the derivation of the one-polaron
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FIG. 2. The phase diagram for bipolaron formation in the space
FIG. 1. (& Bipolaron and two single-polaron binding energies, of the Coulomb coefficient and the electron-phonon coupling con-
and (b) the variational parameters, as functionsRof 0~ V2 The  stant. The solid lines from top to bottom are, respectively,Ror
sample parameter values are=6 and 7=0.01, 0.02. The cross- =0.3, 1.0 andR—. The dashed line =0) is the boundary of
over and cutoff radii Rx andRy) and the vertical lines separating the unphysical region. The inset tabulates the corresponding radii
the phases are relevant to onjy=0.02. for a few sample values af,..

ground-state energ)Eél), but instead, use readily the series in dashed lines. It should be noted that if the bipolaronic
of Egs. (13), (22), (25—(30) given in a preceding papér phase should indeed take place either as a metastable state or
concerned with the Feynman one-polaron problem consistingtherwise, the corresponding variational parameters all
of the same quadratic confinement potential. achieve nonzero and distinctive values. The phase of two
To provide an understanding of the influence of the conindependent polarons, however, is characterized by dhat
fining potential on the evolution of the complex of two po- andw, coalesce into one single curve, ang=0 regardless
larons in favor of a bipolaron bound state, we undertake tw®f R. Consequently, one hag and v(= w;= w,) to be rec-
illustrative cases for which the Coulomb repulsion is consid-ognized as the well established Feynman variational param-
ered to be not too strong, and the phonon mediated bindingters of the one-polaron problefh?
somewhat deep enough to overcome that repulsion. Setting In Fig. 2 we plot a phase diagram in theJ - «" plane,
a=6 and »=0.01, 0.02 as sample values, we displafi  picturing the domain of stability of the bipolaron state at
Fig. 1(a)] a graphical comparison of the corresponding bind-different degrees of confinement. In the diagram the space
ing energies in the polaron-polargRP and bipolaronBP) lying below the dashed line corresponds #3<0, and is
phases as a function 8= Q ~ Y2 which we hereafter refer to therefore irrelevant. The upper space bounded from below by
as simply the radius. A glance at the plots in Figa)Teveals the solid lines plotted for three distinctive radR€ 0.3, R
that there are three major regions in the overall domaiR.of =1.0, andR>1) gives the unstable region. It is therefore
ForR<Ry, i.e., in the region BRPP), the bipolaronic phase only the narrow triangular area bounded by the dashed and
is energetically more favorable than the PP phase of tweither of the solid lines in which the polarons can be found in
individual polarons, and yet, decreasing the wire radius ena stable bound state forming a bipolaron. The vertex of each
hances the stability of the BP phase. In going toward thdriangular region at which the dashed and solid lines join
opposite extreme and relaxing the degree of confinement, thdefines a critical minimum for the coupling constant in the
BP state can no more be sustained, and beyond the crossovaiik and Q1D R=1.0, and 0.3 configurations. Coupling
radius Ry, the bipolaronic phase is seen to persist receseonstants larger than these critical vertex values serve for
sively as a metastable state and eventually terminate at supporting the bipolaron to maintain its stability at corre-
cutoff radiusRy (shown in the figure by a dark dotFor R spondingly stronger Coulomb repulsions. In numerical
=R; one achieves solely the PP phase with whatsoever nterms, settingr=8 for instance, we evaluate the critical up-
relevance to any possible bipolaronic characterization of thger bound for the Coulomb coefficient beyond which the
two-polaron system. An additional remark led by the contenbipolaron dissociates into two individual polarons Eg
of the Fig. 1a) is that, for a given fixedv, the stronger the =11.59,11.70, and 11.88, respectively, for the caBes
Coulomb repulsion is, the more is the requirement for a thin=>bulk, 1.0, and 0.3.
ner wire to favor and sustain the bipolaron state. In this re- A more complete trace of the critical condition on the
gard, fora=6, we have calculateRBy=1.03(0.76) and?y  Coulomb strength as a function of the degree of confinement
=1.27(1.13) forp=0.01(0.02). For completeness, we alsois given in Fig. 3 where we provide a layout of the alterna-
display complementary plots of the variational parameters ative related parametey againstR plotted for a sequence of
a function of the transition from one phase to the offufr  coupling constants ranging from 4 to 10. An immediate
Fig. 1(b)]. The parameters pertaining to the energetically fa-glance at the series of plots in Fig. 3 reveals that, starting
vorable phase are plotted in boldface curves and those whidnom the bulk limit, 7. displays in general an increasing
correspond to the metastable state of either phase are givénend with decreasin®, yielding an explicit evidence in fa-
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FIG. 3. The critical ratioz, as a function oR=Q "2, Q

vor of a pronounced effective phonon coupling with the in-  FIG. 4. The critical coupling constant. as a function of in
crease in the degree of confinement, which correspondinglghe extreme high confinement limit. The solid curve reflects the
results in an enhancement in the phonon mediated interactiagsults of the present model. The dashed curve is the asymptotic 1D
between the electrons to serve for opposing and counterbatelation: «{®)=4.6/InB derived by Smondyreet al. (Ref. 22 for
ancing even more stronger Coulomb repulsions. Examininghe 3D magnetobipolaron in the strong magnetic-field limit. For
the low-lying plots in the figure, we note that fgr=0, i.e.,  compatibility, we have seB=2.20Q.

for the Coulomb coefficient taken as assuming its hypotheti-

cal minimum value U = y2«), the critical coupling constant or the electron-phonon interaction over the other may be-
over which the bipolaron phase is realized is found to become altered as a function of the degree of confinement. In
aﬁs D)=6.85 for the bulk casg.Correspondingly, we note the particular Q1D configuration, with contracting wire ra-
that our plots ofy. for a=4, 5, 6 all intersect the abscissa at dius, the electrons experience an increasingly large restric-
finite values ofR; hence, for not strong enough, a bipo- tion toward the wire axis and therefore, below a certain wire
laron can form only beyond a critical degree of confinementsize, the phonon-mediated attraction starts to lose its over-
and the smaller the coupling constant is, the smaller is tha&vhelming strength against the rapidly increasing Coulomb
corresponding critical radius. Clearly, far>6.85 one has and kinetic repulsions thus leading to a decreasing profile of
R.— <, where in this case bipolaron formation is favorable 7. asR is made even smaller. This feature however is seen
even in bulk, and the additional effect of the confinement isto diminish asa is tuned to smaller values. For compara-
to take over in favor of enhancing the already establishedively weak «, where the electrons are not too tightly bound
stability of the bipolaron. by the lattice, we think that, with shrinking wire size, the
We would like to draw attention to that, for comparatively charge density of the electrons acquire a spatial extent ex-
large «, the critical  exhibits a peculiar variation as the wire panded to relax itself in the longitudinakt-z) directions
radius is decreased; compatible with our anticipations, it firsalong the wire axis, resulting in the overall a weaker repul-
increases, and after having gone through a maximum, dision between the particles; thus enabling the phonon-
plays a decreasing trend. We feel that this salient feature imediated attraction to maintain its capability in supporting
an implicit consequence of the fact that the parameters  the bipolaron state against larger values of the Coulomb co-
and ) which characterize the system do not enter the probefficient, and correspondingly, larger valuesigf.
lem in an independent way but all together take part in the In this report we have studied the possibility and criteria
binding in related manners through an entangled admixturé achieving stable bipolarons in Q1D media where the elec-
of the competing effects of the Coulomb repulsion and therons are laterally confined by a cylindrical free-stand wire
phonon mediated attraction over the other and the crossovewith parabolic boundary potential. The overall implication
ing between these counter aspects as the confining parameted by the numerical outcomes of this work is that, the stron-
is varied. Clearly, in a confined volume whefk is tuned  ger the phonon coupling and/or the larger the degree of con-
from zero to large values, it is not only the phonon couplingfinement is, the more favorably the bipolaron state can form
which gets pronounced, but in the meantime the kinetic enand be supported against the repulsive Coulomb potential.
ergy of the electrons increases and the Coulomb repulsiowe further conclude that it is the mutual and interrelated
becomes steadily strengthened due to that the particles areles which the Coulomb and phonon coupling parameters
squeezed to get closer. Thus the overall role of the confingplay together with the confinement that lead to the formation
ment on the phonon-coupling induced localization of the(or dissociatioh of a bipolaron. As a final complementary
electron-electron pair and the withstanding kinetic and Couremark we would like to add the note that the confined bi-
lomb repulsions is to make these competing counter aspecp®laron model adopted here reproduces almost similar quali-
stronger. What is more peculiar to the present context is thdative features as for the alternative case of a 3D bipolaron in
during when() is varied, the phonon coupling and the Cou- a magnetic field. In both cases it is seen that the common
lomb strengths may not in general grow or decrease mondundamental effect of either the cylindrical parabolic poten-
tonically in concert at the same rate and consequently, thial or the external magnetic field is to enlarge the region of
relative dominating strength of either the Coulomb potentialbipolaron formation so that the critical coupling constant re-
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quired to sustain the bipolaron phase assumes smaller valugsin B. Numerical treatment of the present calculation tack-
as the parabolic potential or the magnetic field are madgq in the unrealistic extreme high confinement limit(Y
stronger. The similarity between the two problems become., «c) reproduces somewhat the same nature in an asymptotic
more closer in the high magnetic-field limB(- =), since it manner, where we observe that the critical coupling constant

is only then the dominant contribution to the magneto-seems to bear a linkage to the confining parameter through
bipolaron energy comes from the ground Landau level angyn analogous relationt.~ 1/In €} (cf. Fig. 4.

the essential digression originating from the angular momen-
tum term in the vector-potential part of the Hamiltonian gets
removed. It has already been shown by Smondieal ?2

that the 3D magnetobipolaron maps onto a 1D bipolaron for
strong fields and that the effective critical coupling constant R. T. Senger acknowledges the financial support of the
scales to smaller values with proportionality to the reciprocaMunir Birsel Foundation—TBITAK.
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