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ABSTRACT: A new method for calculating the resonant frequency of electrically thin and
thick rectangular microstrip antennas, based on the fuzzy inference systems, is presented.
The optimum design parameters of the fuzzy inference systems are determined by using the
classical, modified, and improved tabu search algorithms. The calculated resonant fre-
quency results are in very good agreement with the experimental results reported elsewhere.
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I. INTRODUCTION

Accurate determination of the resonant fre-
quency of rectangular microstrip antennas is im-
portant in the design of microstrip antennas be-
cause they have narrow bandwidths and can only
operate effectively in the vicinity of the resonant
frequency. Several methods [1-45] are available
to determine the resonant frequency of rectangu-
lar patch antennas. These methods have different
levels of complexity, require vastly different com-
putational efforts, and can generally be divided
into two groups: simple analytical methods and
rigorous numerical methods. Simple analytical
methods can give a good intuitive explanation of
antenna radiation properties. Exact mathematical
formulations in rigorous methods involve exten-
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sive numerical procedures, resulting in round-off
errors, and may also need final experimental ad-
justments to the theoretical results. They are also
time consuming and not easily included in a com-
puter-aided design (CAD) package.

Most of the previous theoretical and experi-
mental work has been carried out with only elec-
trically thin rectangular microstrip antennas, nor-
mally on the order of /A, < 0.02, where 4 is the
thickness of dielectric substrate and A, is the
wavelength in the substrate. Recent interest has
developed in radiators etched on electrically thick
substrates. The need for theoretical and experi-
mental studies of microstrip antennas with elec-
trically thick substrates is motivated by several
major factors. Among these is the fact that mi-
crostrip antennas are currently being considered
for use in millimeter-wave systems. The sub-
strates proposed for such applications often have



high relative dielectric constants and, hence, ap-
pear electrically thick. The need for greater band-
width is another reason for studying thick sub-
strate microstrip antennas. Consequently, this
problem, particularly the resonant frequency as-
pect, has received considerable attention. The
theoretical resonant frequency values obtained by
using the previous methods are also not in very
good agreement with the experimental results of
both electrically thin and thick rectangular mi-
crostrip antennas. For these reasons, in this work
a new method based on fuzzy inference systems
(FISs) for calculating the resonant frequency of
both electrically thin and thick rectangular mi-
crostrip antenna elements has been presented.
The improved, modified, and classical tabu search
algorithms have been applied to find the design
parameters of the FISs.

FISs [46-49] are nonlinear systems capable of
inferring complex nonlinear relationships be-
tween input and output variables. The nonlinear-
ity property is particularly important when the
underlying physical mechanism to be modeled is
inherently nonlinear. The system can “learn” the
nonlinear mapping by being presented a sequence
of input signal and desired response pairs, which
are used in conjunction with an optimization al-
gorithm to determine the values of the system
parameters. The system produced by the learning
algorithm should be able to generalize to certain
regions of the multidimensional space where no
training data were given. Even if the process to be
modeled is nonstationary, the system can be up-
dated to reflect the changing statistics of the
process. Unlike conventional stochastic models
used to model such processes, FISs do not make
any assumptions regarding the structure of the
process, nor do they invoke any kind of proba-
bilistic distribution model, i.e., they belong to the
general family of model-free, data driven, non-
parametric methods. Because of the fascinating
features of FISs, many applications can be found
in the literature. They include those in automatic
control, data classification, decision analysis, ex-
pert systems, and computer vision. FISs in this
article are used to model the relationship be-
tween the parameters of the microstrip antenna
and the measured resonant frequency results.

A number of learning algorithms [47-49] used
in FISs are available in the literature. These
learning algorithms can be used to construct FISs
with different properties and characteristics. Some
of these algorithms are data intensive, some are
aimed at computational simplicity, some are re-
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cursive (thus giving the FISs an adaptive nature),
some are offline, and some are application spe-
cific. In the design of FISs, it is very important to
determine the types and parameters of member-
ship functions, and the consequent parameters,
necessary to adequately represent a given system.
Given an initial set of membership functions, one
wants to select the best possible subset of mem-
bership functions for an effective representation.
The tabu search algorithms used in this paper
enable us to obtain the best possible parameters
of FIS.

The classical tabu search meta-strategy [50—53]
has been shown to be an effective and efficient
scheme for combinatorial optimization that com-
bines a hill-climbing search strategy based on a
set of elementary moves and heuristics to avoid
stops at suboptimal points and the occurrence of
cycles. It has been successfully applied to obtain
optimal or suboptimal solutions to problems such
as scheduling, timetabling, traveling salesperson,
and layout optimization. In our previous work
[54], we successfully introduced the modified tabu
search algorithm (MTSA) to compute the reso-
nant frequencies of triangular microstrip anten-
nas. In [54], first, a model for the effective side
length expression of triangular microstrip an-
tenna was chosen, then the unknown coefficient
values of the expression were optimized by the
MTSA. The number of neighbors of each variable
was fixed to the two values, and the tabu restric-
tions based on recency and frequency memories
were used. The disadvantages of the MTSA are
that it has a very limited number of candidate
solutions at each iteration and is typically slow to
converge. Because of these disadvantages, in this
study the MTSA is improved.

The resonant frequency of rectangular mi-
crostrip antennas is a function of the dimensions
of the patch, the permittivity of the substrate, and
its thickness. Principally, the resonant frequency
is calculated by using a resonant-length transmis-
sion line or cavity model, together with equations
for the effective dielectric constant and edge ex-
tension from the literature. The FIS proposed
here requires neither a formula nor the calcula-
tion of the effective dielectric constant and the
edge extension. The proposed system only re-
quires the dimensions of the patch, the permittiv-
ity of the substrate, and its thickness.

The main aims of this paper are:

® to show the applicability of the FIS to the
calculation of resonant frequency for elec-
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trically thin and thick rectangular microstrip
antennas;

® to improve the tabu search algorithms pro-
posed in the literature;

® to determine optimally the design parame-
ters of the FIS by using the classical tabu
search algorithm (CTSA) proposed by
Glover [50, 51], the MTSA proposed by
Karaboga et al. [54], and the tabu search
algorithm improved in this work; and

® to compare the performance of the im-
proved tabu search algorithm (ITSA) with
the CTSA and the MTSA.

The theoretical resonant frequency results cal-
culated by using the FIS proposed in this paper
are in very good agreement with the experimental
results [23, 33, 43, 44]. The model is simple and
very useful to antenna engineers for predicting
accurately the resonant frequencies of both elec-
trically thin and thick rectangular microstrip an-
tennas. The authors [55-60] also proposed simple
methods and formulas for calculating accurately
the resonant frequencies of circular and triangu-
lar microstrip antennas. These methods and for-
mulas are also very useful for engineering appli-
cations and CAD.

Il. RESONANT FREQUENCY
OF RECTANGULAR
MICROSTRIP ANTENNA

Consider a rectangular patch of width W and
length L, both comparable to A, /2, over a ground
plane with a substrate of thickness % and a rela-
tive dielectric constant &,, as shown in Figure 1.
The resonant frequency f,,, of the antenna can

i A
. w
feed A v
point
= L —=>
conducting
patch s §|L

/b ground

plane

coaxial >
feed

Figure 1. Geometry of rectangular microstrip an-
tenna.

be evaluated from
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where ¢, is the effective relative dielectric con-
stant for the patch, ¢ is the velocity of electro-
magnetic waves in free space, m and n take
integer values, and L, and W, are the effective
dimensions. To calculate the resonant frequency
of a rectangular patch antenna driven at its fun-
damental TM,, mode, eq. (1) is written as

Cc

= 2
2e,) L, @
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The effective length L, can be defined as follows:
L,=L +2AL 3

The effects of the nonuniform medium and the
fringing fields at each end of the patch are ac-
counted for by the effective relative dielectric
constant, &,, and the edge extension, AL, being
the effective length to which the fields fringe at
each end of the patch. The following effective
dielectric constant expression proposed by
Schneider [61] and edge extension expression pro-
posed by Hammerstad [20] can be used in Egs.
2-3)
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The resonant frequency can be also calculated by
using the following formula [2]
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It is clear from eqgs. (1)-(7) and all of the
formulas proposed in the literature [1-45] that
the resonant frequency of a rectangular micro-
strip antenna is determined by W, L, h, and e,.

In this work, the resonant frequency of the
rectangular microstrip antennas is calculated by
using a new model based on FIS. Only four
parameters, W, L, h, and ¢,, are used in calculat-
ing the resonant frequency. The new model re-
quires neither a formula given by egs. (1), (2), and
(6) nor the calculations of the edge extension
given by eq. (5) and the effective permittivity
constant given by eq. (4).

In the following sections, the FISs and the
CTSA are described briefly, and the tabu search
algorithm improved in this work and the applica-
tion of FIS to the calculation of the resonant
frequency of both electrically thin and thick rect-
angular microstrip antennas are then explained.

. FIS

The FIS [47-49] is a popular computing frame-
work based on the concepts of fuzzy set theory,
fuzzy if-then rules, and fuzzy reasoning. Basically,
a FIS is composed of four functional blocks as
shown in Figure 2:

a) Fuzzification maps the crisp inputs into
fuzzy sets, which are subsequently used as
inputs to the inference engine. A fuzzy set
U is characterized by a membership func-
tion (MF) u: U — {0,1}. The membership
functions are labeled by a linguistic term
such as “small,” “medium,” or “large.” In
the following, the several classes of parame-
terized functions commonly used to define
membership functions are given

i) Gaussian MFs

Gaussian(x; a, b, c)
x—a\?
=exp(—( . ) ) (8)

Fuzzy Rule
Base

Non fuzzy
output(s)

Non fuzzy
input(s)

— | Fuzzification

Fuzzy
Inference
Engine

Figure 2. Basic fuzzy inference system.
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ii) Generalized bell MFs

1
Bell(x;a,b,c) = W (9)
1+
c
iii) Trapezoidal MFs
Trapezoid(x; a, b, ¢)
b 1 b 1
O,XZC+E+;OI‘XSC—5—;
b
1, x<c+ -orx>c— =
2 2
e s ea
alc+ -+ ——x|,x>c
2 a
[rerzea)
alx —c+ -+ —|,x<c
2 a

(10)

The parameterized membership functions
given in egs. (8)—(10) play an important role
in the FISs. In order to obtain a desired MF
which minimizes the cost function, the pa-
rameter set {a, b, ¢} in eqs. (8)—(10) is opti-
mized by using the ITSA, MTSA, and CTSA.

b) Fuzzy rule base is a set of fuzzy rules in the

form of if-then clauses. For a multi-input
single output case, the tth rule can be ex-
pressed by

R':if x, is A} and x, is A% and...

and x, is A, then y is B’ an

where x = (x, x,,..., x,) is the input vec-
tor, y is the output variable, and A% and B’
are the labels of membership functions as-
sociated to the input variable x; in the rule
t and to the output variable y in the rule ¢,
respectively.

¢) Fuzzy inference engine is a decision-making

logic which performs the inference opera-
tions on the rules and a given condition to
derive a reasonable output or conclusion.
Three types of FISs [48], the Mamdani fuzzy
model, the Sugeno fuzzy model, and the
Tsukamoto fuzzy model, have been widely
used in various applications. The differ-
ences between these three FISs lie in the



112 Ozer, Giiney, and Kaplan

consequents of their fuzzy rules, and thus
their aggregation and defuzzification proce-
dures differ accordingly. In this work, the
Sugeno fuzzy model was used. In this model,
the rth rule can be written as

R": if x; is A} and x, is A% and...
and x, is A} then y, is &), + &;,x,
+ &y X, o+ E, X, (12)

where ¢, is the consequent parameters of
the Sugeno model.

d) Defuzzification transforms the fuzzy results
of the inference into a crisp output. The
most commonly used defuzzification strat-
egy is the centroid of area, which is defined
as

f yup(y) dy
output = X——— (13)

[ )

where ug(y) is the aggregated output MF.
Other defuzzification strategies arise for
specific applications, which includes bisec-
tor of area, mean of maximum, largest of
maximum, and smallest of maximum, and
so on. These defuzzification strategies are
shown in Figure 3. These strategies are
computation intensive, and there is no rig-
orous way to analyze them except through
experimental-based works.

In this work, the optimum design parameters
of FIS explained above are determined by using
the ITSA, MTSA, and CTSA.

IV. CTSA

The tabu search [50—53] is a meta-heuristic algo-
rithm which uses memory to guide an iterative

/1 A \V\ Lt
Largest of max.

Mean Bisector Centroid
of max. of area of area

Smallest of max.

Figure 3. Various defuzzification strategies.

1) j = 0; initialize $,,,; Spest = Snow; tabu(j) = .

2) Construct a list of candidate moves from the neigh-
borhood of s,,. Evaluate each candidate move.

3) If a move is in tabu(j), but leads to a highly desired
solution, perform the move, update s, and go to
step 4. Otherwise, select the non-tabu move with
the highest evaluation. Perform the move, and up-
date s,

4) 1If s, is better than s, update s, -

5) If stopping criteria are satisfied, terminate with
Spest- Otherwise, j =j + 1; update tabu(j); go to
step 2.

Figure 4. Main structure of classical tabu search algo-

rithm.

search. At each iteration of the search, a neigh-
borhood is examined to construct new solutions.
These solutions are compared against the mem-
ory structure (i.e., tabu list) to prevent cycling.
The best new solution which is not tabu list is
selected and the system moves to that new solu-
tion. This process continues until a predeter-
mined termination criterion is reached, e.g., every
move is tabu or a maximum number of iterations
has been reached. The main structure of the basic
tabu search is given in Figure 4. In the figure,
Snows Spests J» and tabu(j) represent, respectively,
the solution at the current iteration, the best
solution found so far, the current iteration
counter, and the set of tabu moves at iteration j.

V. ITSA

The CTSA uses a solution vector consisting of a
string of bits. Thus, in solving a numerical prob-
lem, the transformation from binary to real num-
bers should be used. This process has two major
disadvantages. The first disadvantage is that the
process yields a large number of neighbors (e.g.,
too many evaluations) when the word chosen is
very long. The second disadvantage is the diffi-
culty with neighborhood processing. This diffi-
culty is that while a neighbor of the solution
vector (e.g., a string of bits) is obtained, the
changing of the most significant bit does not
produce a number near the present variable. So,
this is not reasonable regarding the neighbor-
hood. In order to overcome these difficulties, the
MTSA and ITSA have been proposed in our
previous work [54] and in this work, respectively.

A real-valued solution vector is used by the
ITSA and MTSA; thus, a new neighbor produc-
tion mechanism is constructed. In this mecha-
nism, the neighbors are chosen adaptively, adding



an adaptive coefficient at each iteration. Due to
the diversification principle, the coefficient is large
at early iterations; therefore, the neighbors are
chosen too far from the present solution. This
neighbor production mechanism enables us to
find the most promising region of the search
space. After some iterations, the coefficient is
getting smaller; thus, the intensive searching at
the most promising region can be done.

The difference between the ITSA and the
MTSA is the number of neighbors produced at
each iteration. While the MTSA uses the fixed
number of neighbors for each variable in the
solution vector, the ITSA obtains the number of
neighbors, adaptively. At each iteration, the aver-
age of the results obtained from the neighbors of
each variable is used in the ITSA for calculating
the number of neighbors at the next iteration.
The neighbors of a present solution of the ITSA
are created by the following procedure.

At the first iteration, each variable on the so-
lution has two neighbors. After all neighbors are
evaluated, the average of evaluation values is cal-
culated for each variable. If s; = (sjyl,sjyz,...,
s; ,) is the solution vector at the jth iteration,
the number of neighbors, NumOf_N(s;, ,),
at the next iteration is determined by the fol-
lowing formula developed in this work,

NumOf_N(s;, ; ) = NumOf_N(s; ;)

A(k) — min(A)
max(A4) — min(A)
(14)

where A(k) is the average value of evaluations of
the kth variable’s neighbors and max(A) and
min(A4) are the maximum and the minimum aver-
ages of all variables at the jth iteration, respec-
tively. The value of eq. (14) is rounded towards
the nearest integer value. It is clear from Eq. (14)
that the variables having good averages get more
neighbors at the next iteration, otherwise the
number of neighbors becomes smaller.

At the jth iteration, the ith neighbor N of the
kth variable is produced by the following expres-
sion proposed in this work,

N(s; ) = NGs;_p ) + %(—1)'A(j) 15)
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with

AGH) A LatestImprovementlIteration
1= j | j + LatestlImprovementlteration

(16)

where A determines the initial magnitude of A(j),
and a controls the change of A(j). The index, j,
in A(j) represents the iteration number. The
suitable values for the parameters A and « in eq.
(16) are determined by experience on the tabu
search. Latestimprovementlteration in Eq. (16) is
the iteration number at which the latest improve-
ment was obtained.

Later, in order to prevent from any excess of
the boundary values of the kth variable, every
neighbor is inserted into a search space by using

N(s; )
=8+ Remain(N(sj,k), Sk, Skman)
(17a)
with
Remain(x, y) = x mod y (17b)

where s, and s, are the minimum and maxi-
mum boundary values of the kth variable, respec-
tively. The “remain function” in eq. (17b) keeps
the elements of solution within the desired ranges.

At initialization, the goal is to make a coarse
examination of the solution space, known as “di-
versification,” but as the candidate locations are
identified the search is more focused to produce
local optimal solutions in a process of “intensifi-
cation.” At the early iterations, A(j) is too high,
and owing to the remain function, it seems that
the search direction looks like a random search as
in the diversification principle. While the number
of iterations increases, A(j) decreases exponen-
tially and the neighbors produced become very
near to the solution.

In order to describe clearly the ITSA proposed
in this work, the main structure of this algorithm
is given in Figure 5.

A solution vector s consists of real and integer
values and is given by

s = [kyay,byciikpanbscpy . kyya,b,00,
Ewénén - Eim -
knlanlbnlcnlanaannZCHZ . k a b c

b nm=~nm~-nm-nm

b Euml (18)
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{initialization}
N := Number of variables (e.g. length of solution
vector)

Best := Infinitive;
tabu_List[1..100] == NULL;
NumNeigh[1..N] = 5;
{all averages set to 1}
All.N]=1;
S, = random(N);
for j := 2 to Last_Iteration
begin
Fork:=1to N
begin
{calculating number of neighbors for each variable
using eqs. (14-17)}
For i == 1 to NumNeigh[k]
begin
{producing neighbors}
Cpi = S + 0.5%*(— D*A())
{projection to search space}
Ck,i = Sk min + Remain(ck,i’ (Sk max
k min
If C; ; not in tabu_list then
E, ; = evaluate(C; ;)

End;
End;
A(k) = Average(E,)
End;
E in = minimum(E)

{update the best solution}
If E,;, < Best then Best = E,
{update tabu list}
Add(tabu_List, parameters of C
End;
Figure 5. Main structure of improved tabu search
algorithm.

min>

min)

where k;;, a;;, b;, and c;; are the type, the
position, the slope, and the flatness parameters of
input membership functions, respectively. The
subscripts n and m in eq. (18) are the number of
rules and the number of inputs, respectively. The
rule constructed by the input membership func-
tion and consequent parameters can be written as

R, = [MyM; ... M, &0 & - &im] (19)
where M;; is the jth input membership function
for the ith rule, and is a function of k;;, a,;, b;;,
and c;;.

While the MTSA uses the tabu restrictions
based on the recency and frequency memories,
the ITSA uses the tabu restriction strategy based
on the type of list form. Each list element in the
ITSA consists of the input membership function
parameters M,;. Therefore, four parameters, k

a;;, b, and ¢,

ij>
are stored in a list element. The

ij> Yij

structure of the list used is LIFO (last in first
out). If a membership function exists in the tabu
list, this function is rejected and the membership
function which is not in the tabu list is repro-
duced. If all of the membership functions pro-
duced are listed in the tabu list, the aspiration
criterion is used. The aspiration criterion used in
this work is that the last element in the tabu list is
extracted from the list.

VI. APPLICATION OF FIS TO THE
CALCULATION OF THE RESONANT
FREQUENCY

The proposed technique involves training a FIS to
calculate the resonant frequency (RF) when the
values of W, L, h, and &, are given. Figure 6
shows the FIS model used in computation of the
RF. Training the FIS by the ITSA, MTSA, and
CTSA to compute the RF involves presenting
them sequentially with different (W, L, h, &,) sets
and corresponding measured values f). Differ-
ences between the target output f,,; and the
actual output RF of the FIS are used to deter-
mine optimally the types and parameters of the
membership functions and the consequent pa-
rameters. This optimum determination is made by
using the ITSA, MTSA, and CTSA. The optimiza-
tion is carried out after the presentation of each
set (W, L, h, &,) until the calculation accuracy of
the FIS is deemed satisfactory according to the
root-mean-square error between the target out-
put fys and the actual output RF for all the
training sets that fall below a given threshold or
the maximum allowable number of iteration is
reached.

The training and test data sets used in this
paper have been obtained from previous experi-
mental works [23, 33, 43, 44] and are given in
Table I. Nine data sets (marked with superscript
b) are used for testing, and the remaining 37 data

h —| Fuzzy inference
system for RF
L resonant frequency
w > calculation
& »

Figure 6. Fuzzy model for resonant frequency compu-
tation.
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sets are used for training the FISs. In microstrip
antenna designs, the most important parameter is
the electrical thickness 4 /A, of the antenna. The
electrical thickness values are given in the fifth
column of Table I. It is clear from Table I that
the range of electrical thickness h/A; is very
wide for microstrip antennas. As can be also seen
from Table I that nine different electrical thick-
nesses, which are not close to each other, are
chosen to test the performance of FISs. These
testing sets are also the same as those used for
the artificial neural networks [45].

The parameters of the learning algorithms are:
for the ITSA, MTSA, and CTSA, the number of
iterations is fixed to 2000 in the training process,
the number of membership functions for the in-
put variables (W, L, h, and &,) are 3, 3, 3, and 2,
respectively, the number of rules is then 54 [3 X
3 X 3 X 2=054], three types of membership
functions, gaussian, generalized bell, and trape-
zoidal, are used, and the values of n and m in eq.
(18) are 54 and 4, respectively; for the ITSA and
MTSA, 1134 [54(4 + 4 + 4 + 4 + 5) = 1134] pa-
rameters are optimized, and the values taken for
A and « in eq. (16) are 100,000 and 2, respec-
tively; for the ITSA, the size of the tabu list is
fixed to 100; for the CTSA and MTSA, the tabu
restrictions based on the recency and frequency
memories are used, and the recency and fre-
quency factors are 1.5 and 2, respectively; for the
CTSA, ki]- is expressed by 2 bits, each of a;, b,-j,
¢;;» and §; are represented by 4 bits, and the
solution vector consists of 4104 [54(14 + 14 +
14 + 14 + 20) = 4104] bits.

The computer program based on the FIS pro-
posed here is written in C. The program begins by
asking for the four parameters, W, L, h, and &,.
The resonant frequency is then calculated directly
by the FIS (The program source code for the FIS
proposed in this paper can be obtained from the
authors either by mail or electronic mail.)

Vil. RESULTS AND CONCLUSIONS

In order to determine the most appropriate sug-
gestion given in the literature, we compared our
computed values of resonant frequencies for elec-
trically thin and thick rectangular microstrip patch
antennas with the theoretical and experimental
results reported by other scientists, which are all
given in Table I. The entries for fyg, firsas

fMTSAa fCTSA’ fHOa fHAa fCA’ fBA’ fJA’ fSEs fGA7

fens fous fxars fxazs and fynn represent, respec-
tively, the values measured [23, 33, 43, 44], calcu-

lated by the FIS with the use of the ITSA, MTSA,
CTSA, by Howell [19], by Hammerstad [20], by
Carver [23], by Bahl and Bhartia [1], by James et
al. [2], by Sengupta [30], by Garg and Long [34],
by Chew and Liu [35], by Giiney [41], by using the
curve-fitting formula proposed by Kara [44], by
using the modified cavity model [44], and by using
the artificial neural networks [45]. The results of
Carver [23] are obtained by using a program
called MSAnt which was written by Pozar [6]. The
total absolute errors (absolute error = |theoretical
result—experimental result|) for every suggestion
in Table I are also listed in Table II.

It can be clearly seen from Tables I and II that
the previous methods give comparable results—
some cases are in very good agreement with mea-
surements, and others are far off. The results of
the FIS proposed in this work are superior to
those predicted by other scientists and are also
better than those calculated by using the artificial
neural networks proposed in our previous work
[45]. The very good agreement between the mea-
sured values and our computed resonant fre-
quency values supports the validity of the present
FIS.

From the results, we can find that the best
results are obtained from the FIS trained by the
ITSA. The ITSA is a very powerful method that
allows us to design highly accurate and parsimo-
nious FISs. It also needs to be emphasized once
more that better and more robust results may be
obtained from the proposed method if more input
data set values are supplied for training.

Since the model presented in this work has
high accuracy and requires no complicated math-
ematical functions, it can be very useful for the
development of fast CAD algorithms. This CAD
model, capable of accurately predicting the reso-
nant frequency of electrically thin and thick rect-
angular microstrip antennas, is also very useful to
antenna engineers. Using this model with a per-
sonal computer, one can calculate accurately the
resonant frequency of rectangular patch antennas
without possessing any background knowledge of
microstrip antennas. The real-time calculation is
less than 200 us after training. Thus, the FIS is
very fast after training. Finally, we expect that the
FIS models will find wide applications in CAD of
antennas and microwave integrated circuits.



Total Absolute Errors between the Measured and Calculated Resonant Frequencies

TABLE II.

fHA fCA fBA fJA fSE fGA fCH fGU fKAl fKAZ fANN

fHO

Present FIS Models

fersa [19] [20] [23] [l 2] [30] [34] 35] [41] [44] [44] [45]

fM']'SA

fI'I'SA

Methods

50.5 81.6 36059 26908 1104916 19179 32930 23746 23761 19899 31436 108707 126945

235

Total absolute

deviations from the

measured data (MHz)
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