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Abstract. Experimental results for large, sparse Markov chains, especially the ill-conditioned
nearly completely decomposable (NCD) ones, are few. We believe there is need for further research
in this area, specifically to aid in the understanding of the effects of the degree of coupling of NCD
Markov chains and their nonzero structure on the convergence characteristics and space requirements
of iterative solvers. The work of several researchers has raised the following questions that led to
research in a related direction: How must one go about partitioning the global coefficient matrix
into blocks when the system is NCD and a two-level iterative solver (such as block SOR) is to be
employed? Are block partitionings dictated by the NCD form of the stochastic one-step transition
probability matrix necessarily superior to others? Is it worth investigating alternative partitionings?
Better yet, for a fixed labeling and partitioning of the states, how does the performance of block SOR
(or even that of point SOR) compare to the performance of the iterative aggregation-disaggregation
(IAD) algorithm? Finally, is there any merit in using two-level iterative solvers when preconditioned
Krylov subspace methods are available? We seek answers to these questions on a test suite of 13
Markov chains arising in 7 applications.
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1. Introduction. Solving for the stationary distribution of an irreducible Markov
chain amounts to computing a positive solution vector to a homogeneous system of lin-
ear equations with a singular coefficient matrix subject to a normalization constraint.
That is, the (n× 1) unknown stationary vector x in

Ax = 0, ‖x‖1 = 1(1)

is to be found. Here A = I−PT is an n×n singular M-matrix [6] and P is a one-step
stochastic transition probability matrix.

Of special interest are nearly completely decomposable (NCD) Markov chains
[23]. An NCD Markov chain may be symmetrically permuted to the form

n1 n2 · · · nN

Pn×n =




P11 P12 · · · P1N
P21 P22 · · · P2N
...

...
. . .

...
PN1 PN2 · · · PNN




n1
n2
...
nN

(2)

in which the nonzero elements of the off-diagonal blocks are small compared with
those of the diagonal blocks. The subblocks Pii are square and of order ni, with
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1692 TUĞRUL DAYAR AND WILLIAM J. STEWART

n =
∑N

i=1 ni. Let P = diag(P11, P22, . . . , PNN ) + E. The quantity ‖E‖∞ is referred
to as the degree of coupling and is taken to be a measure of the decomposability of
the matrix.

Despite recent advances in iterative methods, practicing performance analysts
generally use methods based on splittings when they want to compare the performance
of newly devised algorithms against existing ones or when they need candidate solvers
to evaluate the performance of a systems model at hand. Experimental results for
large, sparse Markov chains, especially the ill-conditioned NCD ones, are few. We
believe there is a need for further research in this area, specifically to aid in the
understanding of the effects of the degree of coupling of NCD Markov chains and
their nonzero structure on the convergence characteristics and space requirements of
iterative solvers.

The work of several researchers [25, 17, 18, 16, 8, 24, 19] has raised important
and interesting questions that led to research in a related direction. These questions
are the following: How must one go about partitioning the global coefficient matrix
A in (1) into blocks when the system is NCD and a two-level iterative solver (such
as block successive overrelaxation (SOR)) is to be employed? Are block partitionings
dictated by the NCD form of P necessarily superior to others? Is it worth investigating
alternative partitionings? Better yet, for a fixed labeling and partitioning of the
states, how does the performance of block SOR (or even that of point SOR) compare
to the performance of the iterative aggregation-disaggregation (IAD) algorithm [30]?
Finally, is there any merit in using two-level iterative solvers when preconditioned
Krylov subspace methods [3, 27, 14, 26, 12, 28] are available?

Four block partitioning techniques are considered. The first one results from the
near-complete decomposability test (ncdtest) of the Markov chain analyzer (MARCA)
[31]. It determines the strongly connected components of the transition probability
matrix by ignoring the nonzeros less than a prespecified decomposability parameter.
Then symmetric permutations are performed to put the matrix into the form in which
the diagonal blocks form the strongly connected components. In a recent paper [9], it
is shown that the ncdtest algorithm may fail to produce a correct NCD partitioning of
the state space. The same paper highlights an improved NCD partitioning algorithm,
which has the same run-time complexity as that of ncdtest. We name this new NCD
partitioning algorithm newncd and experiment with it. Also two straightforward
partitionings are investigated. The equal partitioning forms (approximately) equal-
order blocks. The second straightforward partitioning, other, uses blocks of order
1,2,3,. . . , respectively. Finally, the threshold parameterized block ordering (TPABLO)
algorithm [8] is considered on some of the test problems.

When seeking answers to these questions, we did not consider two-level solvers
of the inner-outer iteration type [24] but attempted to solve diagonal blocks (and the
coupling matrix [23] in IAD) directly by Gaussian elimination. The memory needed
to solve the coupling matrix is set aside at the beginning and what is left is used
for diagonal blocks. Blocks of orders 1 and 2 are treated separately. We obtain the
LU factorizations of as many diagonal blocks as possible given available memory and
do this in such a way that smaller blocks are treated first, leaving the big blocks to
be solved using point SOR when there is insufficient memory. Currently, we use a
fairly large tolerance (i.e., 10−3), a relaxation parameter of 1.0 (hence, Gauss–Seidel),
and a maximum number of iterations of 100 with the point SOR algorithm when
solving diagonal blocks. Furthermore, the block Gauss–Seidel correction [34] in the
disaggregation step of IAD is replaced by block SOR.
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TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS 1693

Preconditioned Krylov subspace methods [29, 13] are state-of-the-art iterative
solvers, developed mostly in the last fifteen years, that may be used, among other
things, to solve for the stationary distribution of Markov chains [32]. A concise discus-
sion on popular Krylov subspace methods and the motivation behind preconditioning
may be found in [4]. In this study, we consider the methods generalized minimum
residual (GMRES), direct quasi-GMRES (DQGMRES), biconjugate gradient (BCG),
conjugate gradient squared (CGS), biconjugate gradient stabilized (BCGStab), and
quasi-minimal residual (QMR) with incomplete LU (ILU) factorization precondition-
ing. Chapter 4 of [32] presents some of these methods for Markov chains.

Section 2 includes a detailed description of the implementation framework. The
results of the numerical experiments are analyzed in section 3. Appendices A–G in
[10] provide a detailed explanation of each test problem, the nonzero plots of the
underlying matrices, information about the matrices and the partitionings, and the
results. In section 4, we draw some general conclusions.

2. Implementation framework. In this study, we experiment with the (point)
SOR method [32, 4], which is a stationary iterative method, two types of two-level
iterative methods, block SOR (BSOR) [32, 29, 24, 13] and IAD [30, 34, 32, 11], and the
Krylov subspace methods GMRES, DQGMRES, BCG, CGS, BCGStab, and QMR
(see [4, 29, 13] and the references therein).

2.1. Partitioning techniques. When applied to NCD Markov chains, one pos-
sibility is to order and partition the state space so that the stochastic matrix of tran-
sition probabilities has the form in (2). Obviously a zero degree of coupling (i.e.,
‖E‖∞ = 0) implies a completely decomposable matrix. In NCD systems, there are
eigenvalues close to 1. The poor separation of the unit eigenvalue results in a slow
rate of convergence for standard matrix iterative methods. Two-level iterative meth-
ods, in general, do not suffer from this limitation which makes them suitable for such
systems.

Four block partitioning techniques are considered. The first one is the ncdtest
partitioning algorithm in MARCA. This algorithm searches for the strongly connected
components (SCCs) of the directed graph (digraph) associated with the matrix ob-
tained by zeroing the elements of P that are less than a user specified decomposability
parameter γ, a real number between 0 and 1. The subset(s) of states output by the
SCC search algorithm are identified as forming the NCD blocks Pii. If the matrix is
not already in the form (2), then symmetric permutations are performed to put it into
the form in which the diagonal blocks form the SCCs. The ncdtest algorithm may
fail to produce a correct NCD partitioning of the state space due to the possibility of
having nonzeros greater than or equal to γ in the off-diagonal blocks. This is simply
because the algorithm zeroes out the elements that are smaller than γ, but not those
that are larger. The example in [9] shows how this can happen and presents an im-
proved NCD partitioning algorithm, which has the same run-time complexity as that
of ncdtest. We name this new NCD partitioning algorithm newncd and experiment
with it. For clarity, we use γ′ to denote the decomposability parameter of the newncd
algorithm. Also two straightforward partitionings are investigated. The equal parti-
tioning has

√
n blocks of order

√
n if n is a perfect square. If n �= �√n�2, there is

an extra block of order n − �√n�2. The second straightforward partitioning, other,
has nb blocks of order, respectively, 1, 2, . . . , nb if n =

∑nb
i=1 i (and possibly an extra

block of order n−∑nb
i=1 i if the difference is positive). This last partitioning ensures

that there are about
√
2n blocks and the largest block solved is of order roughly

√
2n.
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1694 TUĞRUL DAYAR AND WILLIAM J. STEWART

We have also experimented with the TPABLO algorithm [8] on some of the test
problems. The original parameterized block ordering (PABLO) algorithm presented
in [25] aims at obtaining dense diagonal blocks by performing symmetric permutations
of a given sparse coefficient matrix using two input parameters. The first parameter
α > 0 is used to ensure that the addition of a new state to a diagonal block will keep the
ratio of the percentage of nonzero elements in that block to the percentage of nonzero
elements in that block if the state were not added above α. The second parameter
0 ≤ β ≤ 1 is used to ensure that each state in a diagonal block is adjacent to at least a
certain proportion, i.e., β, of the states inside the diagonal block. TPABLO has three
other parameters requiring a total of five parameters. The third parameter, γ ≥ 0,
either makes sure the permuted matrix does not have any elements in the off-diagonal
blocks that are larger than γ in absolute value, or it makes sure all elements in the
diagonal blocks are above γ in absolute value with the possibility that some elements
in the off-diagonal blocks are also larger than γ in absolute value. The fourth and
fifth parameters minbs and maxbs are used to control the minimum and maximum
permissible order of diagonal blocks, respectively.

2.2. Preconditioners. The main idea behind preconditioning is to accelerate
convergence by transforming the linear system so that the difference between the
dominant and the subdominant eigenvalue of the preconditioned coefficient matrix is
larger than what it used to be in the original system. The need for a preconditioner
becomes vital when dealing with NCD systems. To provide effective solvers, Krylov
subspace methods are used with preconditioners.

Consider the system of linear equations in (1) which can be transformed into the
(left-)preconditioned equivalent system

M−1Ax = 0,

where the preconditioner matrixM (also called preconditioner) has the property that
it is a cheap approximation of A. The more M−1 resembles the group inverse A�

[22], the faster the method converges [32, p. 143]. The system is solved based on
imposing the necessary convergence criteria on the preconditioned residual vector r =
−M−1Ax. The matrix M−1 need not be formed explicitly since the preconditioned
residual vector may be computed by solving the system Mr = −Ax.

Various types of preconditioners have been (and are still being) developed (see [29,
5, 13]). Their efficiency is highly dependent on the system to be solved, and it is quite
difficult to forecast which preconditioner is the best for a given system. In this study,
we consider only preconditioners obtained from incomplete LU factorizations (ILU).
We should remark that the SOR method and its block version are preconditioned
power iterations (see [32, p. 144] and [13, pp. 26, 147–149]) and therefore can also
be used with Krylov subspace methods as preconditioners. Saad points out in [27,
p. 467] that “in addition to incomplete factorization preconditioning one can also
use the more traditional relaxation methods such as the SOR, or SSOR iteration,
as preconditioners. Our experience in [10] (reference [26] of this paper) with these
techniques on real Markov chain problems is that they are not as efficient as the
ILU type preconditioners. For further details see [10].” Nevertheless, we considered
BSOR with equal partitioning as a preconditioner for BCGStab. We return to this
point in the third section.

In computing ILU preconditioners, first an LU factorization of the coefficient
matrix A is initiated. Throughout the factorization, nonzero elements are omitted
according to different rules. These rules characterize the ILU type. Thus, instead of
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TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS 1695

ending up with an exact LU factorization, what we obtain is of the form

A = L̃Ũ + F,(3)

where F , called the remainder, is expected to be small in some sense. The incomplete
LU factors L̃ and Ũ are lower and upper triangular matrices, respectively.

Recall that the coefficient matrices appearing in the systems of interest are irre-
ducible singular M-matrices. It has been shown that ILU factorizations exist for such
matrices [7] (in exact arithmetic) and that they are at least as stable as the com-
plete LU factorization without partial pivoting (see [21, p. 152]). We should stress
that not much work has been done in studying what constitutes a good incomplete
factorization for Markov chain models [27, 26, 28]. Further studies are still needed.

Three types of incomplete LU factorizations are considered. The first imposes on
the computed preconditioner the same nonzero structure as the original matrix and
is called ILU0. The idea of ILU0 is to drop all fill-in elements which occur during the
LU factorization (recall that a fill-in element refers to a nonzero element introduced
in the matrix which holds the LU factors in a location where there was initially a zero
element in the original matrix).

The second is called ILUTH and is a threshold-based approach. In ILUTH,
the factorization takes place in a row-by-row manner. The dropping rule of this
preconditioning technique is to zero out all elements having an absolute value less
than a prespecified threshold. The only exception is that the dropping rule does not
apply to the diagonal elements which are kept no matter how small they become. The
dropping rule is applied just after the multipliers are formed, once, and applied one
more time right after the reduction of a row is over.

The third type of ILU preconditioner forces the computed factors to have at most
a prespecified fixed number of nonzero elements per row and is called ILUK. This
approach enables the user to control the amount of fill-in. Therefore, it is especially
suitable for those cases where there is only a fixed amount of memory available to
store the incomplete factors L̃ and Ũ . Each time a row has been reduced, a search is
conducted to find the K largest elements in absolute value, a timewise costly process.
All other elements in the row are annihilated. As for ILUTH, the diagonal elements
are preserved regardless of their magnitude.

2.3. Implementation issues. Since we are dealing with large sparse systems,1

we need to work in sparse storage. We use the compact sparse row (CSR) Harwell–
Boeing format, which requires three arrays: one real and one integer of size nz (i.e.,
number of nonzero elements in the coefficient matrix) and one integer of size n + 1.
Unless otherwise specified, by reductions we mean row-reductions. This strategy is
used to take full advantage of the row-by-row storage of the CSR format. We would
like to remark that we generate and store all test matrices using the MARCA package.
Later these files are used as input to the solvers.

All code is written in Fortran and compiled in double precision with g77 on a SUN
Sparcstation 4 with 64 Mb RAM running Solaris 2.5. The numerical experiments are
timed using a C function that reports CPU time. SOR, the two-level iterative solvers,
the four partitioning algorithms, and the three ILU preconditioners are part of the
MARCA software package version 3.0. The Krylov subspace methods are implemented

1The average order of the seven problems we experimented with is 33, 278; the largest and the
smallest matrices are of order 104, 625 and 8, 258, respectively.
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1696 TUĞRUL DAYAR AND WILLIAM J. STEWART

using two one-dimensional arrays defined at the beginning of the driver program to
hold double precision and integer values.

In two-level iterative methods, we attempt to solve diagonal blocks and the cou-
pling matrix in IAD directly by Gaussian elimination. The memory needed to solve
the coupling matrix is set aside at the beginning and what is left is used for the diag-
onal blocks. If there is not enough space for solving the coupling matrix, the method
fails. Blocks of orders 1 and 2 are treated separately. We obtain the LU factorizations
of as many diagonal blocks as possible given available memory and do this in such
a way that smaller blocks are treated first, leaving the big blocks to be solved using
SOR when there is insufficient memory. In order to accelerate this process we use a
fairly large tolerance 10−3, a maximum number of iterations of 100, and a relaxation
parameter of 1.0 (hence, Gauss–Seidel) with the SOR algorithm when solving the re-
maining diagonal blocks. Furthermore, the block Gauss–Seidel correction [34] in the
disaggregation step is replaced by BSOR. The results reported are always those that
are obtained using the optimal relaxation parameter ω with one significant digit after
the decimal point.

The newncd partitioning algorithm is implemented so that if there are states
that are left in singletons after the NCD partition corresponding to a decomposability
parameter is determined, they are grouped into a single subset which forms the last
NCD block. When choosing decomposability parameters γ for ncdtest, we report
the smallest and largest values of γ (as 0.10 times a power of 10) for which there
are at least two blocks in the partition. On the other hand, when experimenting
with newncd, we had to work on a finer scale with γ′ since there were not as many
possibilities as γ of ncdtest. Hence, we report the smallest and largest values of γ′ (in
two decimal digits of precision times a power of 10) for which there are at least two
blocks in the partition (see [10, appendices A–G]).

The dimension of the Krylov subspace we used for (restarted) GMRES is 20 (i.e.,
m = 20). The number of vectors kept in DQGMRES is 20 (i.e., k = 20) in all
but one of the applications (qn), where we had to limit k to 7 or 9 depending on
the preconditioner used. With each Krylov subspace solver, we used three different
thresholds for the ILUTH preconditioner: 10−2, 10−3, and 10−5. Due to the amount
of fill-in and the computation time, it is futile to experiment with a threshold value
of 10−5 in two of the applications (qn, mutex). In ILUK, we allowed a maximum of
10 nonzero elements per row of the preconditioned matrix (i.e., K = 10). In all the
Krylov subspace methods implemented, we use left-preconditioning and take the ILU
preconditioner as M = L̃Ũ (see (3) in section 2.3).

In order to regulate the amount of fill-in produced, ILUTH is implemented in
such a way that before the reduction of a given row, the number of free entries in the
double precision work array is divided by the number of remaining rows to be reduced.
This gives us the maximum number of allowable nonzero elements that can be stored
for the current row. If the reduction gives a higher number of nonzero elements than
the allowable maximum, the threshold is multiplied by 10 and the dropping rule is
applied again. This is repeated until the number of nonzero elements in a given row
becomes less than or equal to the allowable maximum. The first row of the matrix
is not reduced. As suggested by Axelsson in [2, p. 259] it is possible to “. . .modify
the pivot entry by adding a positive (usually small) number to it, when required,
before the elimination takes place to guarantee that pivot entries will have sufficient
size. . . .” We have not considered modified ILU preconditioners as such, and have let
the ILU factorization proceed naturally until we obtain a reduced diagonal element
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TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS 1697

with magnitude less than 10−300 in which case the computation is forced to fail. This
is done to avoid division by zero due to underflow of small pivot elements, and failure
happens only in one of our applications (leaky) which is a pathological case.

In ILUK, the Kth largest value in magnitude, say max, in the reduced row is
determined. Then all elements having an absolute value less than max are set to
zero. If the number of nonzero elements in the row is still higher than K, the reduced
row is scanned from left to right and elements having an absolute value equal to max
are set to zero until the number of nonzero elements becomes K. As in ILUTH, the
reduction does not include the first row of the matrix and the method fails if any
reduced diagonal element is found to be less than 10−300.

In order to reduce the possibility of underflow and overflow, each row of the co-
efficient matrix is multiplied by the inverse of the largest value in magnitude in that
row (i.e., absolute value of the diagonal element). This is a scaling operation and it
transforms the system to a more suitable form without altering the global solution.
Normalizing the solution vector at each iteration is an alternative way to limit the
effect of underflow and overflow and up to a certain extent control the irregular con-
vergence behavior of some iterative methods. The drawback of this strategy is that it
may lead to considerable loss of precision due to rounding errors that occur at each
iteration or to even divergence. In SOR, BSOR, and IAD, the coefficient matrix is
scaled and the solution vector is normalized at each iteration. As for the Krylov sub-
space methods we implemented, the coefficient matrix is not scaled and the solution
vector is normalized only upon convergence.

The initial approximation chosen is the uniform distribution. The convergence
criteria we use in SOR and the other solvers, respectively, are

stop if k ≥ maxit or ‖r(k)‖∞ ≤ stop tol

and

stop if k ≥ maxit or ‖r(k)‖∞ ≤ stop tol or(
‖r(k)‖∞ ≤ stop tol1 and |‖r(k)‖∞ − ‖r(k−1)‖∞| ≤ stop tol2

)
.

Here k is the iteration number, r(k) is the residual vector at iteration k, maxit is
the maximum number of iterations the algorithm will be permitted to perform, and
stop tol is the user-specified stopping tolerance, which should be less than 1 and
greater than machine epsilon. The stopping tolerance, stop tol, is set to 10−10, mean-
ing we consider the entries of A (our right-hand side is 0) to have errors in the range
±10−10‖A‖. The use of stop tol1 and stop tol2 forces the solver to terminate when
the norm of the residual vector is decreasing too slowly while the difference between
two successive residuals is small enough. In the experiments, we set stop tol1 and
stop tol2 to 10

−6 and 10−12, respectively. As for maxit, we use 100, 500, or 1,000,
depending on the solver and the particular problem at hand.

For each problem solved, the true residual and the relative backward error in the
solution (see [15, 2]) are computed. The true residual is computed as ‖Ax̂‖∞, where
x̂ is the normalized approximate solution upon convergence. The relative backward
error is computed as ‖Ax̂‖∞/(‖A‖∞‖x̂‖∞). In SOR and two-level iterative solvers,
we explicitly compute the residual vector at each iteration meaning there is an extra
matrix-vector multiplication involved. On the other hand, the residual vector is a
byproduct of all Krylov subspace methods (except GMRES and DQGMRES) from
which ‖r(k)‖∞ can be easily computed. In GMRES, we use ‖r(k)‖2 (and not ‖r(k)‖∞)
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1698 TUĞRUL DAYAR AND WILLIAM J. STEWART

in the convergence test at each (inner) iteration. At the end of each restart, the
residual vector is computed explicitly from the unnormalized current approximation
and then ‖r(k)‖∞ compared with stop tol. As for DQGMRES, it is the scalar gamma
that is used in the convergence test at each iteration (see the algorithm in [29]). If
BCGStab terminates due to the convergence test ‖s‖∞ ≤ stop tol (see the BCGStab
algorithm in [4, p. 27]), it is indicated in the results.

3. Overview of results. In this section, we overview the results of the nu-
merical experiments performed on 13 test cases. We consider 7 models, 6 of which
appear in [33] and one which is discussed in [1]. Details corresponding to each of
the 7 applications can be found in [10, appendices A–G]. The applications are named
pushout, 2D, ncd, telecom, qn, leaky, and mutex. All seven models arise in Markov
chain applications. Three of these models (pushout, ncd, and mutex) are chosen
and 2 more test problems for each one generated (namely, medium, hard, ncd alt1,
ncd alt2, mutex alt1, and mutex alt2) giving us a total of 13 test problems. The
original pushout test problem is given the name easy as it is somewhat easier to solve
compared to the medium and hard test matrices.

Table 1 summarizes the characteristics of the 13 test matrices. The majority
of the matrices would be ranked among the largest of the matrices considered in
the Matrix Market [20]. The sym column indicates whether the test matrix has
symmetric nonzero structure. Two of the problems (ncd, mutex) give test matrices
with symmetric nonzero structure. We would single out leaky, ncd alt2, ncd, ncd alt1,
and telecom as NCD test cases based on the smallest decomposability parameter that
could be used with the newncd partitioning algorithm. These test cases have degree
of coupling values (see column ‖E‖∞) ranging (in the given order) from 0.2e − 101
to 0.9e− 2. The test cases medium, qn, hard, easy, and 2D have degree of coupling
values between 0.7e+0 and 0.1e+0. Hence, they are not as NCD. The remaining test
cases mutex, mutex alt1, and mutex alt2 lie somewhere in between, all with degree
of coupling 0.2e−1. The number of blocks in the partition followed by the order of the
smallest and largest blocks corresponding to ‖E‖∞ are given in the column Partition.
We have noticed during the experiments that the ncdtest algorithm is unable to find
partitionings in NCD form with small degree of coupling values except for the ncd
test matrices. In fact, the degree of coupling values corresponding to various ncdtest
partitionings in all the other test matrices are notoriously large (see the discussion in
section 2.1). The symmetric nonzero structure of the ncd test problem seems to have
helped the ncdtest algorithm. The (a0, a1) column in Table 1 gives the coefficient of
asymmetry of each test matrix, where a0 = 0.5‖A + AT ‖1, a1 = 0.5‖A − AT ‖1, and
ao 
 a1 imply high asymmetry for each test matrix. None of the matrices is highly
asymmetric. Finally, the last two columns give, respectively, the lower and higher
bandwidth of each test matrix excluding the diagonal.

The time spent for partitioning using equal and other is negligible. On the other
hand, the time to partition a given test matrix using the ncdtest and newncd al-
gorithms has two components: time spent to determine the partition and time to
permute the coefficient matrix according to the ordering of states in the computed
partition. The time taken by the ncdtest and newncd partitionings used in our exper-
iments does not exceed, respectively, 1 and 1.8 seconds except for matrices generated
from the qn, leaky, and mutex test problems. The time spent by ncdtest and newncd
for the qn test matrix is no more than 5.4 and 6.8 seconds, respectively. The time
spent by ncdtest and newncd for the leaky test matrix is no more than 2.8 and 8.5
seconds, respectively. Finally, the time spent by ncdtest and newncd for the mutex
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TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS 1699

Table 1
Characteristics of the 13 test matrices.

Matrix n nz sym ‖E‖∞ Partition (a0, a1) lower higher
easy 20, 301 140, 504 no 0.1e+ 0 3 : 22− 20, 048 (2.97, 1.96) 201 201
medium 20, 301 140, 504 no 0.7e+ 0 67 : 4− 7, 430 (1.90, 0.94) 201 201
hard 20, 301 140, 504 no 0.3e+ 0 2 : 12− 20, 289 (1.97, 0.99) 201 201
2D 16, 641 66, 049 no 0.1e+ 0 129 : 129− 129 (2.00, 1.00) 65 129
ncd 23, 426 256, 026 yes 0.2e − 3 21 : 528− 5, 456 (2.00, 0.98) 460 460
ncd alt1 23, 426 256, 026 yes 0.2e − 3 21 : 528− 5, 456 (2.00, 0.98) 460 460
ncd alt2 23, 426 256, 026 yes 0.8e − 4 51 : 1− 1, 326 (2.00, 0.98) 460 460
telecom 20, 491 101, 041 no 0.9e − 2 3 : 1− 20, 488 (2.27, 1.14) 31 60
qn 104, 625 593, 115 no 0.2e+ 0 15 : 6, 975− 6, 975 (2.06, 1.06) 2, 728 5, 385
leaky 8, 258 197, 474 no 0.2e − 101 2 : 1− 8, 257 (2.46, 1.46) 191 435
mutex 39, 203 563, 491 yes 0.2e − 1 2 : 16, 384− 22, 819 (1.64, 0.69) 13, 495 13, 495
mutex alt1 39, 203 563, 491 yes 0.2e − 1 2 : 16, 384− 22, 819 (1.61, 0.70) 13, 495 13, 495
mutex alt2 39, 203 563, 491 yes 0.2e − 1 2 : 16, 384− 22, 819 (1.61, 0.70) 13, 495 13, 495

test matrices is no more than 5.5 and 5.8 seconds, respectively.

We present the fastest 5 solvers according to total solution time for the 13 test ma-
trices in Table 2. Beside the name of a Krylov subspace solver, we either write ILU0 or
the threshold of the ILUTH preconditioner employed. For two-level iterative solvers,
the value in parentheses beside the solver’s name is the decomposability parameter
used in the ncdtest/newncd partitioning algorithm, underlined in the latter case. The
figures in the P.T. and T. columns, respectively, denote partitioning/preconditioning
and solution times. The relaxation parameter given by ω is the optimal one. The
figures in the #it column represent the number of iterations taken to convergence
and those in the Bk.Error column give the corresponding relative backward error in
the computed solution. A superscript s in the #it column indicates BCGStab con-
vergence due to ‖s‖∞, whereas a superscript dagger (†) in the same column indicates
convergence due to the difference between the last two residuals (see section 2.3). For
two-level solvers, we denote by Blocks the number of diagonal blocks solved itera-
tively, followed after a colon by the number of blocks in the partitioning and inside
the parentheses by the order of the smallest and largest blocks, respectively. For ILU
preconditioned Krylov subspace solvers, we denote by nzlu the sum of the number of
nonzeros in L̃ and Ũ (see (3) in section 2.2).

For 2D, the fastest two-level solver is IAD with newncd γ = 0.57e − 1 taking
partitioning time 0.7 sec and solution time 7.5 sec. For ncd alt1, the fastest Krylov
subspace solver is BCGStab with ILUTH(10−5) taking preconditioning time 19.7 sec
and solution time 4.5 sec. The chosen ILU preconditioners fail to be computed for
the leaky test matrix.

Numerical experiments show that two-level iterative solvers are in general very
competitive with ILU preconditioned Krylov subspace solvers. Out of 10 test matrices
for which two-level iterative solvers are winners, BSOR is the fastest solver for 8 test
matrices, 4 times with equal (medium, ncd alt2, mutex alt1, mutex alt2), twice with
other (easy, ncd alt1), and twice with newncd (telecom, leaky). IAD is the fastest
solver for 2 test matrices (hard, ncd) both with newncd. CGS is the fastest solver
for 2 test matrices (qn, mutex) both with ILU0 and BCGStab is the fastest solver
for 1 test matrix (2D) with ILUTH(10−5). Obviously, these results depend on the
particular implementations and should be observed with care. For instance, among
the 65 iterative solvers appearing in Table 2, only 35 are two-level solvers. Now we
inspect the results in more detail, then draw general conclusions in the next section.

It is noticed that the more balanced, in terms of the order of blocks, is the parti-
tioning, the better two-level iterative solvers take advantage of the divide-and-conquer
notion, and hence the faster they converge. For the two-level solvers appearing in Ta-
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1700 TUĞRUL DAYAR AND WILLIAM J. STEWART

Table 2
Fastest solvers of the 13 test matrices.

Matrix # Solver ω P.T. T. #it Bk.Error Blocks/nzlu
easy 1 BSOR, other 1.0 0.0 2.3 5 0.3e− 11 0 : 201( 1 − 201)

2 CGS, (ILU0) 0.5 2.4 4 0.1e− 13 140, 504
3 BCGStab, (ILU0) 0.5 2.6 4 0.3e− 15 140, 504
4 GMRES, (ILU0) 0.5 2.6 7 0.7e− 16 140, 504
5 BSOR, (0.10e− 2) 1.0 0.7 2.6 5 0.5e− 11 0 : 4, 060( 1 − 162)

medium 1 BSOR, equal 1.0 0.0 4.3 1 0.6e− 15 0 : 143(137 − 142)
2 IAD, equal 1.0 0.0 5.3 1 0.4e− 15 0 : 143(137 − 142)
3 IAD, other 1.0 0.0 5.8 10 0.4e− 10 0 : 201( 1 − 201)
4 BCGStab, (10−3) 6.4 3.2 4 0.8e− 16 275, 253
5 CGS, (10−3) 6.4 4.0 5 0.4e− 16 275, 253

hard 1 IAD, (0.20e + 0) 1.4 1.2 33.7 51 0.2e− 08 0 : 201( 3 − 4, 860)
2 BCGStab, (10−3) 12.4 22.7 14 0.3e− 08 860, 386
3 GMRES, (10−3) 12.4 35.2 40 0.4e− 10 860, 386
4 IAD, other 1.3 0.0 49.0 127 0.3e− 08 0 : 201( 1 − 201)
5 CGS, (10−3) 12.4 37.2 23 0.5e− 09 860, 386

2D 1 BCGStab, (10−5) 3.3 1.0 2s 0.6e− 09 250, 897
2 CGS, (10−5) 3.3 1.3 2 0.9e− 11 250, 897
3 GMRES, (10−5) 3.3 1.6 4 0.1e− 11 250, 897
4 BCGStab, (10−3) 2.7 2.2 5 0.4e− 10 138, 392
5 CGS, (10−3) 2.7 2.4 5 0.4e− 11 138, 392

ncd 1 IAD, (0.10e + 0) 1.0 1.4 7.9 4 0.8e− 12 0 : 1, 221( 2 − 326)
2 IAD, (0.10e− 3) 1.0 1.0 19.7 3 0.2e− 14 0 : 51( 1 − 1, 326)
3 BSOR, (0.10e− 3) 1.0 1.0 20.4 11 0.4e− 12 0 : 51( 1 − 1, 326)
4 BSOR, (0.10e− 2) 1.0 1.8 20.3 11 0.4e− 12 0 : 51( 1 − 1, 326)
5 BCGStab, (10−5) 19.8 3.8 4 0.3e− 11 282, 825

ncd alt1 1 BSOR, other 1.0 0.0 2.9 6 0.6e− 15 0 : 216( 1 − 215)
2 IAD, (0.10e− 3) 1.0 0.9 4.8 2 0.8e− 16 0 : 1, 326( 1 − 51)
3 IAD, equal 1.0 0.0 5.8 5† 0.7e− 08 0 : 154( 17 − 153)
4 IAD, other 1.0 0.0 5.9 6 0.2e− 15 0 : 216( 1 − 215)
5 BSOR, (0.10e + 0) 1.0 1.4 4.8 9 0.5e− 11 0 : 1, 221( 2 − 326)

ncd alt2 1 BSOR, equal 1.0 0.0 1.5 1 0.3e− 13 0 : 154( 17 − 153)
2 BSOR, (0.10e + 0) 1.1 1.4 1.9 1 0.4e− 15 0 : 1, 221( 2 − 326)
3 IAD, (0.10e + 0) 1.0 1.4 4.1 1 0.3e− 16 0 : 1, 221( 2 − 326)
4 IAD, (0.10e− 1) 1.2 1.4 10.8 6 0.4e− 12 0 : 1, 273( 2 − 58)
5 BCGStab, (10−5) 18.3 13.9 18s 0.3e− 11 241, 259

ble 2, none of the diagonal blocks are solved iteratively. The IAD algorithm proves to
be competitive with BSOR. Seventeen of the 35 two-level iterative solvers in Table 2
are IAD. When the coupling matrix is of reasonable size, IAD usually gives good
performance. We especially recommend IAD for those cases that have a small degree
of coupling. However, the drawback of IAD is that it may fail if the coupling ma-
trix is reducible in floating point arithmetic or require an unreasonably long time to
converge when the coupling matrix is large. Straightforward partitionings, especially
equal, are very competitive with those of newncd. Out of 10 test matrices for which
two-level iterative solvers provide winners, 4 are with equal, 2 are with other, and 4
are with newncd partitionings. Out of 35 two-level solvers in Table 2, 14 are using
newncd partitionings, and 15 are using equal and other partitionings.

SOR does not give satisfactory results; it converges in less than 1,000 iterations
in eight of the test matrices and appears only twice in Table 2. Interestingly, the
optimal relaxation parameter for SOR and BSOR always happens to be equal to or
larger than 1.0. For IAD, the optimal relaxation parameter turns out to be 0.9 for a
few test matrices, otherwise it is larger. In most of the experiments, 1.0 is the optimal
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Table 2 (continued)

Fastest solvers of the 13 test matrices.

Matrix # Solver ω P.T. T. #it Bk.Error Blocks/nzlu
telecom 1 BSOR, (0.15e+ 0) 1.9 1.0 2.9 1 0.2e − 11 0 : 563( 2− 3, 257)

2 IAD, (0.10e − 1) 1.0 0.7 3.4 1 0.2e − 15 0 : 1, 981( 1− 31)
3 IAD, (0.15e+ 0) 1.7 1.0 3.4 1 0.2e − 11 0 : 563( 2− 3, 257)

4 BCGStab, (10−5) 2.3 2.5 3 0.2e − 11 318, 749
5 CGS, (10−5) 2.3 2.5 3 0.2e − 11 318, 749

qn 1 CGS, (ILU0) 2.0 105.2 38 0.7e − 10 593, 115
2 IAD, equal 1.2 0.0 123.7 50 0.2e − 09 0 : 324(296− 323)
3 BSOR, (0.10e+ 0) 1.1 4.2 120.6 40 0.9e − 10 0 : 91, 800( 1− 450)
4 BCGStab, (ILU0) 2.0 125.3 45s 0.2e − 09 593, 115
5 IAD, other 1.2 0.0 130.6 54 0.1e − 09 0 : 457( 1− 456)

leaky 1 BSOR, (0.10e − 14) 1.0 4.5 12.4 1 0.5e − 16 0 : 2( 4− 8, 254)
2 IAD, (0.10e − 14) 1.0 4.5 12.4 1 0.7e − 16 0 : 2( 4− 8, 254)
3 BSOR, (0.64e+ 0) 1.0 2.8 19.1 1 0.2e − 13 0 : 64( 4− 8, 005)
4 IAD, (0.64e+ 0) 1.0 2.8 19.4 1 0.2e − 13 0 : 64( 4− 8, 005)
5 BSOR, (0.19e − 101) 1.0 8.5 20.9 1 0.2e − 15 0 : 2( 1− 8, 257)

mutex 1 CGS, (ILU0) 2.5 9.8 5 0.6e − 10 563, 491
2 BCGStab, (ILU0) 2.5 9.9 5 0.4e − 10 563, 491
3 GMRES, (ILU0) 2.5 11.8 10 0.3e − 11 563, 491
4 SOR 1.1 15.3 18 0.2e − 11
5 BSOR, equal 1.1 0.0 16.2 13 0.4e − 11 0 : 198(197− 394)

mutex alt1 1 BSOR, equal 1.0 0.0 4.6 1 0.8e − 13 0 : 198(197− 394)
2 BCGStab, (ILU0) 2.6 5.4 3s 0.2e − 10 563, 491
3 SOR 1.0 8.7 10 0.8e − 15
4 CGS, (ILU0) 2.6 6.3 3 0.1e − 11 563, 491
5 GMRES, (ILU0) 2.6 7.2 6 0.7e − 13 563, 491

mutex alt2 1 BSOR, equal 1.0 0.0 4.6 1 0.1e − 17 0 : 198(197− 394)
2 BCGStab, (ILU0) 2.6 5.4 3s 0.2e − 14 563, 491
3 CGS, (ILU0) 2.6 6.3 3 0.4e − 15 563, 491
4 GMRES, (ILU0) 2.6 7.1 6† 0.6e − 16 563, 491
5 BSOR, other 1.0 0.0 11.6 10† 0.4e − 16 0 : 280( 1− 279)

choice.

Among the Krylov subspace methods of interest, it is clear that BCGStab per-
forms the best. It converges for 12 test matrices with at least one preconditioner and
appears 12 times among 28 Krylov subspace solvers in Table 2. Its total solution time
is always the shortest or close to that of an outperforming Krylov subspace solver.
CGS comes a close second appearing 10 times in Table 2, and GMRES third, the latter
being more costly in terms of memory requirements and number of flops per iteration.
QMR is also competitive in some cases; however, it almost always terminates due to
the difference between the last two residuals. There are cases in which DQGMRES
takes a smaller number of iterations than the corresponding GMRES solver, but even
in those cases its solution time is almost always longer. BCG performs very poorly
and converges only for a few test matrices.

We should point out that the ILU0 preconditioner leads to better total solution
time than all the other ILU preconditioners for five test matrices (easy, qn, mutex,
mutex alt1, mutex alt2). As for the threshold preconditioners, ILUTH(10−3) is the
best preconditioner for two test matrices (medium, hard), whereas ILUTH(10−5) is
the best preconditioner for five test matrices (2D, ncd, ncd alt1, ncd alt2, telecom).
There are cases which show that a denser preconditioner is not always the better
preconditioner. The problem with ILUK is the long time overhead to form the pre-
conditioner. The ILUTH(10−3) and ILUTH(10−5) preconditioners are superior to
ILU0 for test matrices that are of medium order (around 20, 000 states), have narrow
bandwidth (such as 2D), or are relatively more difficult to solve (such as ncd alt2,
ncd, ncd alt1, telecom, hard, medium).

We considered BSOR with equal partitioning as a preconditioner for BCGStab
using w = 1.0 as the relaxation parameter. In doing this, we transformed the block
lower triangular part of the coefficient matrix A from sparse point format to sparse
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Table 3
Solvers with TPABLO ordering, α = β = 0.5,minbs = 10,maxbs = 200.

Matrix Solver ω P.T. T. #it Bk.Error Blocks
easy IAD, γ = 0.10e− 3 1.0 6.3 10.3 8 0.3e− 12 0 : 103( 8 − 200)
medium IAD, γ = 0.10e− 2 1.2 6.5 7.6 2 0.6e− 10 0 : 103( 8 − 200)
2D IAD, γ = 0.10e + 0 1.1 9.2 5.9 17 0.9e− 10 0 : 129(129 − 129)
ncd IAD, γ = 0.10e + 0 1.0 6.6 16.5 5 0.7e− 13 0 : 1, 045( 10 − 52)
telecom IAD, γ = 0.10e− 1 1.0 5.2 28.6 47 0.3e− 12 0 : 196( 6 − 200)

block format and factorized its diagonal blocks. The resulting sparse block matrix
was then used in the preconditioner solves of BCGStab. Results of 13 test cases which
we have not included show that the particular BSOR preconditioned BCGStab solver
is inferior to ILU0 preconditioned BCGStab. Furthermore, the BSOR preconditioner
computation time is larger than that of ILU0 with the exception of the mutex test
matrices. An intuitive explanation is the following. ILU0 has no indirect addressing
other than that involved to access A in sparse format. It is a highly sequential
algorithm introducing no fill-in and therefore is capable of employing a static data
structure to store the factors. The test cases that we consider have relatively small
bandwidths, and factorizing the diagonal blocks in BSOR comprises a lot of the work
done in computing ILU0, and maybe more due to fill-in. Furthermore, BSOR has
the transformation overhead and extra indirection in the factorization of the diagonal
blocks due to the sparse block format. Finally, the ILU0 preconditioner attempts at
an “approximate” factorization of the complete A using its original sparsity pattern,
whereas BSOR uses the LU factors of the diagonal blocks only.

We executed the TPABLO algorithm on five of the test matrices and recorded
the computed partitionings for α = β = 0.5, minbs = 10, maxbs = 200. Then we
solved for the stationary distribution using both BSOR and IAD with the recorded
block structure and the optimal threshold value γ of TPABLO (see section 2.1), which
we picked from {0.10e + 0, 0.10e − 1, 0.10e − 2, 0.10e − 3}. When choosing the test
matrices, we tried to form a representative set of problems with different degrees of
difficulty and sparsity patterns. Unfortunately, it was not possible to use TPABLO
with the qn and mutex test matrices. The winners of these experiments are given in
Table 3.

Note that TPABLO gives mostly balanced partitionings for the chosen param-
eters, and it turns out to be the case that, when input to the two-level solvers of
MARCA, all diagonal blocks in these partitionings are solved directly. Also, in the
partitionings TPABLO computes, it can come up with blocks of order less thanminbs
(or larger thanmaxbs, something observed in our experiments). None of the TPABLO
solvers considered provide a winner when compared with the results in Table 2 though
IAD with TPABLO γ = 0.10e + 0 is competitive with ncdtest γ = 0.10e − 3 for the
ncd test matrix. The partitioning provided by TPABLO for the 2D matrix is an
equal partitioning, however, with a different ordering of the states. The solution time
for 2D is better than its IAD with equal counterpart if we exclude the partitioning
time. However, in both the ncd and 2D test matrices, there is a faster IAD solver
with a newncd partitioning. Our conclusion regarding TPABLO is that it may give
faster converging orderings, but with a set of five parameters, it is quite difficult to
fine-tune.

4. Conclusion. Results of experiments on a test suite of 13 Markov chains show
that the particular two-level iterative solvers BSOR and IAD are in general very com-
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TWO-LEVEL SOLVERS FOR LARGE, SPARSE MARKOV CHAINS 1703

petitive with ILU preconditioned Krylov subspace solvers BCGStab, CGS, and GM-
RES. For these two-level iterative solvers, there are cases in which a straightforward
partitioning of the coefficient matrix such as equal or other gives a faster solution
than can be obtained using the ncdtest or newncd partitioning algorithms. However,
in between newncd and ncdtest, the former gives faster converging iterations than the
latter in a larger number of the test cases, and therefore should be more favorable.

It is clear that the ILU preconditioned Krylov subspace solvers under considera-
tion are affected adversely with higher ill-conditioning (leaky, ncd alt2, ncd, ncd alt1)
unless the matrix is very narrow banded (telecom). When the Markov chain is ex-
tremely ill-conditioned (leaky), incomplete LU factorization may even fail. For NCD
matrices, we recommend IAD and BSOR with newncd partitioning and relaxation
parameter 1.0. When using newncd, one should opt as much as possible for a bal-
anced partitioning in terms of the number and order of blocks so that all blocks are
solved directly. However, higher ill-conditioning does not always imply poorer per-
formance. It is noticed in some cases that it may even help a solver, especially IAD
(compare results of ncd alt2 with those of ncd alt1 and ncd), to converge faster. If
a Krylov subspace solver needs to be used with an NCD matrix, the choice of the
preconditioner should be ILUTH with a small threshold value.

For very narrow banded and well behaving matrices (2D), the ILUTH precondi-
tioner is cheap to compute and very strong which makes Krylov subspace methods
the solvers of choice. Furthermore, we see that ILU0 preconditioned BCGStab and
CGS are very effective Krylov subspace solvers if the coefficient matrix is relatively
large but highly sparse (qn) or wide-banded (mutex). For such matrices, we can also
recommend BSOR equal and SOR with relaxation parameter 1.0 or slightly larger.
One final remark is that a BSOR equal preconditioned BCGStab does not improve
the situation over an ILU0 preconditioned BCGStab.
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