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A mesoscopic model of nucleation and Ostwald ripening Õstepping:
Application to the silica polymorph system

G. Ozkana) and P. Ortoleva
Laboratory for Computational Geodynamics, Department of Chemistry, Indiana University,
Bloomington, Indiana 47405

~Received 10 September 1999; accepted 20 March 2000!

Precipitation is modeled using a particle size distribution~PSD! approach for the single or multiple
polymorph system. A chemical kinetic-type model for the construction of the molecular clusters of
each polymorph is formulated that accounts for adsorption at a heterogeneous site, nucleation,
growth, and Ostwald ripening. When multiple polymorphs are accounted for, Ostwald stepping is
also predicted. The challenge of simulating the 23 order of magnitude in cluster size~monomer,
dimer, . . . , 1023-mer! is met by a new formalism that accounts for the macroscopic behavior of
large clusters as well as the structure of small ones. The theory is set forth for the surface kinetic
controlled growth systems and it involves corrections to the Lifshitz–Slyozov, Wagner~LSW!
equation and preserves the monomer addition kinetics for small clusters. A time independent, scaled
PSD behavior is achieved both analytically and numerically, and the average radius grows with
Rave}t1/2 law for smooth particles. Applications are presented for the silica system that involves five
polymorphs. Effects of the adsorption energetics and the smooth or fractal nature of clusters on the
nucleation, ripening, and stepping behavior are analyzed. The Ostwald stepping scenario is found to
be highly sensitive to adsorption energetics. Long time scaling behavior of the PSD reveals time
exponents greater than those for the classical theory when particles are fractal. Exact scaling
solutions for the PSD are compared with numerical results to assess the accuracy and convergence
of our numerical technique. ©2000 American Institute of Physics.@S0021-9606~00!70123-1#

I. INTRODUCTION

Precipitation typically involves four distinct processes—
adsorption at a heterogeneous site, nucleation, Ostwald rip-
ening, and Ostwald stepping. These processes underlie many
key phenomena associated with chemical processing, as well
as, in nature~weathering, sedimentary, metamorphic, igne-
ous, and other environments!. Precipitation phenomena in
nature include the nucleation and ripening of new solid
phases, selected precipitation of preferred polymorphs, Lise-
gang banding, agates, and igneous orbicules.1–5 While the
importance of these phenomena has long been recognized,
their simulation has been limited due to numerical difficul-
ties involved in describing the growth of particles over 23
orders of magnitude in size~i.e., from monomer to cm-scale
crystals!. A complete model of precipitation must therefore
integrate the microscopic, mesoscopic, and macroscopic lev-
els of description.

Several approaches have been used to model precipita-
tion kinetics.6–9 In nucleation-growth studies, a critical
nucleus size is defined such that further growth is a free
energy reducing process and thus a supracritical cluster may
grow to macroscopic dimensions. Studies on the nucleation
stage focus on the behavior of clusters smaller than this criti-
cal size and on calculating the total number of supercritical
clusters but not on the transition from the nucleation stage to
that of macroscopic particles.

Studies of the coarsening of precipitates after the nucle-

ation stage are usually based on the theory of Lifshitz and
Slyozov10 and Wagner,11 and its modifications.12–15 The
classical and modified versions of the LSW theory yield a
power law relation between the mean particle size and time
at long times and a scaling form for the particle size distri-
bution ~PSD!. The low volume fraction theories of Mar-
quesse and Ross14 and Tokuyama and Kawasaki,16 although
each employed a different statistical averaging procedure, all
predict a scaled particle size distribution which is broader
than the LSW form.

In this study, we developed a model of precipitation phe-
nomena which uses the same chemical rate formulation for
both the early nucleation stage~the kinetics of monomer ad-
sorption, dimer creation, growth of small surface-attached
clusters! and the growth and ripening stage to create macro-
scopic crystals. In the model, nucleation is initiated as an
adsorption event. Further monomer addition results in the
formation of small clusters whose dynamics becomes in-
creasingly independent of the adsorption site properties as
they grow. However, we do not separately treat the sub- and
supracritical clusters. Rather, we apply the same chemical
rate equation over the whole size range by using a size-
dependent rate coefficient and free energy, giving a unity and
continuity to the theory.

Our formulation adds a higher order derivative term to
the LSW theory that introduces a diffusive-type behavior
with respect to the particle size axis; this tends to broaden the
PSD. For simplicity here, we refer to all PSD evolution theo-
ries in the macroscopic particle limit to the LSW theories. In
the present work, however, we focused on the reaction-
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limited case, and not the diffusion-limited case of the classic
LSW theory. A second contribution is an efficient numerical
simulation technique that allows for the solving of these
equations for 23 orders of magnitude in cluster size. Finally,
we simulate PSD dynamics in multiple polymorph systems
to investigate Ostwald stepping and the commonly observed
selected precipitation of higher free energy solids or the skip-
ping of intermediate free energy ones. We illustrate the rela-
tion of nucleation site energetics to the latter.

The present study focused on the SiO2 system due to its
importance in many geologic and engineering processes and
the availability of ample rate and thermodynamic data.17–19

A model is set forth of the precipitation of SiO2 into a set of
polymorphs which compete for the shared pool of SiO2. Par-
ticles of the same polymorph but of different size also com-
pete to yield ripening of the PSD of each polymorph. The
resulting model thus incorporates Ostwald ripening and step-
ping. The approach is easily generalized to other mineraliza-
tion ~carbonates, feldspars, etc.!.

The formulation of our model is given in the next three
sections. Numerical simulations based on our model for the
SiO2 system of initially amorphous silica are discussed in
Sec. V. These simulations show the selective nucleation of
some polymorphs and the competitive evolution of poly-
morphs as SiO2 cascades from the amorphous state initially
in the system, through several polymorphs, and finally to the
long time dominance by the lowest free energy phase, quartz
~e.g., Ostwald stepping!. After the stepping phase is com-
pleted, larger quartz crystals grow at the expense of the
smaller ones. A power law for the mean diameter is demon-
strated. The PSD attains a LSW limiting scaled form in the
ripening phase. The simulated and exact scaled PSD are
compared to evaluate the accuracy of the numerical methods.
Conclusions are drawn in Sec. VI. The detailed formulations
for the model and the SiO2 data used in the numerical simu-
lations are discussed in the Appendices.

II. FORMULATION

The model developed here is based on the classic chemi-
cal kinetic theory of nucleation through monomer addition
modified for heterogeneous systems and which integrates the
chemical kinetic and continuous~macroscopic! particle
growth as suggested in Ref. 1. Modifications of the free en-
ergy are introduced to account for the heterogeneous nature
of initiation and early small cluster growth as well as surface
energy for larger clusters.

The assumed kinetics of heterogeneous nucleation and
growth is based on monomer addition discussed here in
terms of the SiO2 system due to its importance in many
geologic and engineering processes and the availability of
ample rate and thermodynamic data,17–19but the approach is
easily generalized to other mineralization. LetSn

m be a cluster
of polymorphm with n SiO2 units on a heterogeneous site.
The monomer addition reaction is taken to be

Sn
m1SiO2~aq!⇔Sn11

m . ~2.1!

Let jn
m be the fraction of sites occupied bym,n-cluster in a

macrovolume element havinghT identical sites per unit vol-

ume. The total number of sites in the macrovolume element
is assumed to be constant during the evolution; it is the sum
of the numbers of clusters for every polymorph cluster and
the number of unoccupied surface sites available for nucle-
ation. During evolution the number of sites occupied by vari-
ous m,n-clusters and the shared pool of SiO2~aq! are con-
stantly shifting due to competition among polymorphs and
among different size clusters of a given polymorph. The frac-
tion of empty sites,j0 , is given in terms of the fractions of
m,n-cluster-occupied sites via

j0512 (
m51

M

(
n51

`

jn
m , ~2.2!

whereM is the number of polymorphs.
The dynamics of the site occupation fractions is assumed

to take the chemical kinetic form

dj0

dt
52 (

m51

M

W0
m ,

~2.3!
djn

m

dt
5Wn21

m 2Wn
m n51,2, . . . ,̀ m51,2, . . . ,M .

The ratesWn
m are assumed to take the mass action form

W0
m5k0

m~K0
mcj02j1

m!, Wn
m5kn

m~Kn
mcjn

m2jn11
m !, ~2.4!

for size-dependent rate coefficientkn
m , equilibrium constant

Kn
m , and SiO2(aq) molar concentrationc. The data for silica

polymorphs are described in the next section.
These equations describe the dynamics of the site occu-

pancy probabilities~fractions!. The jn
m are the PSD’s of the

polymorphs in the present formulation. The kinetics depends
on the SiO2~aq! concentration variation with time in the mac-
rovolume element. This variation is obtained by equating the
rate of change of total SiO2 units in the macrovolume~both
in aqueous phase or in cluster form! to the total rate of flux
into the volume. The SiO2~aq! concentration thus evolves via

]fc

]t
1

]

]t S hT

N0 (
m51

M

(
n51

`

njn
mD 5S Total SiO2 flux into

the volume elementD ,

~2.5!

wheref is the porosity andN0 is Avogadro’s number. IfVin

is the volume of inert solid in the medium, the porosity is
calculated by subtracting the volume fraction of all poly-
morphs and inert solid from unity,

f512
Vin

VT

2hT (
m51

M
1

N0 (
n51

`

V̄n
mjn

m , ~2.6!

whereV̄n
m is the molar volume of a polymorphm cluster ofn

units andVT is the volume of the macrovolume element.
Equations~2.3!–~2.6! conclude the chemical kinetic for-

mulation of the PSD dynamics of polymorph growth via
monomer addition. These equations constitute a set of non-
linear differential equations forc, the PSDs of all poly-
morphs, the fraction of empty sites and the porosity. These
equations are solved by Newton–Raphson algorithm with
second order time approximation.
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To complete the formulation, we must specify the
n-dependence ofV̄n

m , kn
m , and Kn

m . We assumed that the
volume of clusters is proportional to the cluster number. The
phenomenology ofkn

m andKn
m are developed further in Sec.

IV.

III. THE MESOSCOPIC TRANSITION FROM NUCLEUS
TO MACROPARTICLE

The chemical kinetic formulation bridges the transition
from monomer and dimer to macroparticle (1023-mer!. How-
ever, there are several challenges presented by this formula-
tion. First, one must solve on the order of 1023 equations
because the cluster size ranges over this scale. Second, the
kn

m increase as surface area~as n2/3 for small particles! and
hence become extremely large asn→1023. The latter situa-
tion presents us with a problem in stiff differential equations,
i.e., equations with coefficients that differ by many orders of
magnitude. The result is that to maintain accuracy, one must
know the factorsKn

mcjn
m2jn11

m to an accuracy of order
1/kn

m . Thus even if one could solve 1023 equations numeri-
cally, the accuracy required would make the calculation un-
feasible.

The resolution of these difficulties resides in the realiza-
tion that very large clusters act like macroparticles and thus
obey macroscopic-type growth equation. A quartz crystal of
0.1 mm diameter is modeled as 1.43107-mer cluster. For
cm-scale crystals, the numbern of SiO2 units goes up to
1023. Also, ripening makes PSD dynamics a type of moving
boundary problem, i.e., the range of cluster sizes grows with
time. This makes the computational range infinitely large,
with infinite number of equations. These difficulties are over-
come by dividing the cluster size domain into two parts at a
cluster numberN ~say, N5100). For n,N, the discrete
chemical kinetic formulation given in Eqs.~2.3! and~2.4! is
applied. But for larger clusters, we transform the discrete
kinetic equations into a continuous form by introducing the
continuous site fraction,j̃, and continuous cluster volume
fraction,y, via

jn
m~ t !5E

n21/2

n11/2

j̃m~n,t !dn, ~3.1!

ym~n,t !5nj̃m~n,t !. ~3.2!

The quantitiesj̃ andy are assumed to be smooth functions of
n so that they and the first two derivatives with respect ton
are well defined for alln.N.

Whenn.N, we assume that forudu<1, we may write

ym~n1d,t !5ym~n,t !1
]ym

]n
~n,t !d1

1

2

]2ym

]n2
~n,t !d2.

~3.3!

With this specific meaning of smoothness ofym with respect
to n, insertion of these definitions and Eq.~3.3! into ~2.3!
yields the continuous equation for the PSD,

]ym

]t
1

]

]x Fvmym2Dm
]ym

]x
G50, n>N, ~3.4!

where x5 ln(n), and v and D are related to the chemical
parameters via

vm~n,c!5
kn21/2

m

n
F S 11

1

2nDKn21/2
m c2S 12

1

2nD G , ~3.5!

Dm~n,c!5
kn21/2

m

2n2
~Kn21/2

m c11!. ~3.6!

The derivation of these results is given in Appendix A. Note
that Eq. ~3.4! yields the classical LSW equation when the
1/n2 term in v is ignored and the diffusionlikeD term is
neglected. Thus Eq.~3.4!→LSW as n→`. However, for
finite n the PSD is broader than that of the LSW due to
diffusive spreading fromDÞ0.

The boundary conditions between the discrete and con-
tinuous formulations are obtained from the continuity of the
j̃ or y and from Eq.~2.2!. At the interface, the boundary
condition to be imposed on Eq.~3.4! is

Fvmym2Dm
]ym

]x
G

x5x05 ln$N21/2%

5WN21
m , ~3.7!

and for Eq.~2.3! the boundary condition is

jN
m~ t !5jN21

m ~ t !12
ym~N21/2,t !

N21/2
. ~3.8!

With this discrete and continuous formulation, numerical
simulation of the mesoscopic transition becomes feasible as
the solution of the following integrated problem:

dj0

dt
52 (

m51

M

W0
m , ~3.9!

djn
m

dt
5Wn21

m 2Wn
m n51,2, . . . ,N21, ~3.10!

]ym

]t
1

]

]x Fvmym2Dm
]ym

]x
G50, x> ln~N21/2!

~3.11!

with

W0
m5k0

m~K0
mcj02j1

m!, ~3.12!

Wn
m5kn

m~Kn
mcjn

m2jn11
m !, ~3.13!

]fc

]t
1

]

]t S hT

N0 (
m51

M

(
n51

N21

njn
m1

hT

N0 (
m51

M E
x0

`

exym~x,t !dxD
50, ~3.14!

where

f512
Vin

VT

2hT (
m51

M
1

N0 (
n51

N21

V̄mnjn
m

2hT (
m51

M
1

N0Ex0

`

V̄mexym~x,t !dx. ~3.15!
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In the numerical analysis of this system, the continuous
range is truncated at a sufficiently large value ofx such that
y is negligible beyond this value. The continuous problem is
solved by finite element discretization, i.e., thex axis be-
tween lnN and the cutoff value is divided intoNF equal
segments. With this, the system size is reduced to the num-
ber of finite elements,NF , plusN, with N1NF!1023 ~typi-
cally N1NF is taken to be between 300 and 4000 in the
results presented here, yielding an improvement of 1020 in
the size of the problem order that stated in Sec. II!. Finally,
as kn

m is always divided by at least one factor ofn in the
equation of motion fory, the stiffness of the problem has
also been removed. The system is solved by the Newton–
Raphson algorithm with an upwinding scheme for the con-
tinuous part.

IV. EQUILIBRIUM AND RATE PHENOMENOLOGIES

The size dependent equilibrium constant is obtained
from dilute solution equilibrium equation. At equilibrium,
assuming a dilute aqueous SiO2 solution,

gn
m1mSiO2~aq!** 1RT lnS 1

Kn
mD 5gn11

m , ~4.1!

wheremSiO2~aq!** is the reference potential of SiO2~aq!, R is the

gas constant,T is absolute temperature, andgn
m is the free

energy of ann-mer of polymorphm ~referred asm,ncluster
in this document!. The (Kn

m)21 is the saturation SiO2~aq!
concentration of them,ncluster. The free energy of ann-mer
is classically related to the surface free energy and bulk free
energy via

~gn
m!cl5amn1bmn2/3, ~4.2!

wheream is the Gibbs free energy of bulkm per SiO2 unit
~i.e., the molar free energy divided by Avogadro’s number!.
The bm factor is related to the surface free energy~free en-
ergy per area! sm via

bm5bsmS V̄m

N0D 2/3

, ~4.3!

whereN0 is Avogadro’s number andb is a geometry factor
relating molar volumeV̄m to grain surface@for spherical
grainsb5(36p)1/3].

The above formulation must be supplemented with a
term that reflects the adsorption of SiO2 units onto heteroge-
neous nucleation sites in the sediment. One might expect this
to be proportional to the number of adsorbed SiO2 units.
Hence, for smalln we assume the independent adsorption
energy behaviorgn

m;dmn for a coefficientdm related to the
binding free energy of a SiO2 unit to the site surface. To
create an interpolation between the small and largern formu-
las, consider the ansatz

gn
m5c~n!dmn1~12c~n!!~gn

m!cl, ~4.4!

for weighting factorc(n) that varies between 1 and 0 asn
varies between 1 and infinity. For concreteness, in this study
we assume

c~n!5
1

11~n21!/n0

~4.5!

for parametern0 that fixes the transition number of SiO2

units beyond which the (gn
m)cl term should dominate. These

formulas determine then-dependence of the saturation
SiO2(aq) concentration form,n-mer.

The adsorption effect also included in the rate coefficient
in a similar way. For small clusters the rate coefficient is
proportional to the area of the nucleation sites and as the
cluster grows, the crystal surface area becomes dominant for
the kinetics rate. In our model, we used the same weighting
factor c(n) for interpolation of rate coefficients as

kn
m5 k̄mfFc~n!A01~12c~n!!bS V̄m

N0D 2/3

n2/3G , ~4.6!

where k̄m is the rate coefficient per surface area for poly-
morphm andA0 is the average area of the nucleation sites.
The porosity,f ~i.e., the volume fraction of fluid with aque-
ous species! is included in the rate coefficient expression to
model the effect of volume fractions of crystals in chemical
rate. As the volume fraction of solids increases the kinetic
rate decreases since the contact area of solids with liquids
decreases.

The rate and equilibrium constants are temperature de-
pendent. These expressions for silica polymorphs are ob-
tained from literature and the forms used in this study are
given in Table I.

TABLE I. Silica polymorph data.

Mineral
number Mineral species

Vm
a

~cm3 mol21!

Surface free
energy

s i ~mJ cm22!
Log dissolution rated

qi ~mol m22 s21!

1 Amorphous silica 29.0 4.5b 20.369– 7.89031024T23438/T
2 b-cristobalite 27.38 6.01c 20.93623392/T
3 a-cristobalite 25.74 8.43c 20.73923586/T
4 Chalcedony 22.688 10.65c 1.74422.84731023T24189/T
5 a-quartz 22.688 12b 1.17422.02831023T24158/T

aThermodynamic data from Ref. 18.
bSurface free energies taken from Ref. 17.
cSurface free energies estimated by Eq.~B4!.
dExperimental dissolution rates taken from Ref. 19.T is in K.
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V. SIMULATED OSTWALD PROCESSES: THE SiO 2
SYSTEM

A. Numerical simulations

Ostwald processes in the multiple polymorph SiO2 sys-
tem were investigated for using our model and numerical
algorithm. An initially amorphous silica-rich, closed system
with 60% porosity filled with an aqueous SiO2 solution was
allowed to evolve at either 23 °C or 100 °C via our model.
The initial amorphous silica PSD was assumed to be log-
normal with a mean diameter of 0.01mm. The five silica
polymorphs listed in Table II were allowed to nucleate, grow
and compete for the total SiO2 pool. The initial concentration
c(0) of SiO2~aq! was chosen be that in equilibrium with the
initial average size, amorphous silica cluster at the tempera-
ture of the run. The heterogeneous sites have radius of 50 Å
and the adsorption energies for all minerals are chosen to be
the same, i.e.,dm5aqz for all polymorphs except as noted
below where special cases were simulated to illustrate how
the energetics of the nucleation site can thwart the normal
Ostwald stepping sequence~see Sec. V D below!. For the
numerical simulations, the cluster number for transition from
discrete to continuous behavior is chosen asN5100, and the
continuous range of the logarithmic cluster number axis is
divided into 200 segments (NF5200) with Dx50.25. With
this numerical data, the cluster size ranges from monomer to
531023-mer is simulated for the five polymorphs, and a total
of 1497 equations are solved at each time step. The results of
the simulations are as follows.

The simulations illustrated a richness of nucleation and
Ostwald processes. The higher free energy polymorphs pre-
cipitate first @at the expense of amorphous silica through
SiO2~aq! dissolved from the latter# but eventually lower free
energy polymorphs nucleate and grow at the expense of the
higher free energy ones. The evolution of the silica poly-
morph volume fractions at 23 °C is seen in Fig. 1. The amor-
phous silica is quickly dissolved, allowing lower free energy
ones to nucleate and grow. The intermediate polymorph
b-cristobalite is essentially skipped, anda-cristobalite domi-
nates the system at the expense of amorphous silica. But
soon,a-cristobalite also starts to dissolve, and is replaced by
chalcedony and ultimately, quartz. Quartz always has higher
volume fraction than chalcedony because nucleation site ad-
sorption energy favors quartz over chalcedony. As the ther-
modynamic advantage of quartz over chalcedony is rather
small, these two polymorphs coexist over long times. Fi-
nally, chalcedony vanishes and quartz is the only surviving
phase concluding the Ostwald stepping dynamic. The varia-
tion of SiO2~aq! concentration during the Ostwald stepping
stage is shown in Fig. 2. The SiO2~aq! concentration drops to

that of equilibrium with the dominant polymorph at each
stage of the stepping.

The evolution of the quartz PSD at 23 °C is shown in
Fig. 3 during the Ostwald stepping and ripening stages. The
PSD is displayed asn2j

n
vs log(n); the area under this

function for any interval of log(n) is proportional to the
quartz volume in that interval at that time. The long time fate
of this system is that of pure quartz evolving according to
Ostwald ripening, i.e., larger quartz crystals grow at the ex-
pense of the smaller ones. As our model approaches the
LSW equations for largen, it should recover the LSW scal-
ing behavior. This is suggested in Fig. 3 where a steady pulse
of n2jn

qz(t) is seen to emerge at long times, propagating to
the right with maximum located at a point that advances as
t1/2. This behavior, different from the classict1/3 behavior, is
justified for our model via the scaling analysis presented in
the next section.

A difference in low and high temperature cases is that
the lower surface free energy of the intermediate phases rela-
tive to quartz is masked at higher temperatures. However, the
low bulk free energy advantage of quartz is diminished with
increasing temperature. The net result is that as temperature

TABLE II. Error between analytical scaled PSD and numerical simulations
at different discretizations.

NF Dx Error5A(1/N)( i(F i
num2F i

exact)2

200 0.25 0.1069
400 0.125 0.0878
800 0.0625 0.0698

4000 0.0125 0.0397

FIG. 1. Simulated silica polymorph volume fraction evolution at 23 °C. The
system initially contains only amorphous silica at 40% volume fraction and
finally reaches to the pure quartz state. Ostwald stepping behavior is ob-
served; note thatb-cristobalite is essentially skipped.

FIG. 2. The variation of SiO2(aq) concentration during the Ostwald step-
ping for the simulation of Fig. 1.

10514 J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 G. Ozkan and P. Ortoleva



increases, the overall process amorphous silica→quartz poly-
morph stepping is accelerated. In the Ostwald ripening
phase, when compared for the same time interval, higher
temperature evolution yields larger average size for quartz
than low temperature evolution. Ripening of quartz crystals
at 23 °C and 100 °C are given in Fig. 4 as a logarithmic plot
of average crystal size vs time. We define the average crystal
size as the median diameter. As seen from this figure, the
average size of quartz evolved at 100 °C is around one order
of magnitude larger than that of evolved at 23 °C. It is inter-
esting that the ripening stage at both temperatures can be
distinguished from the earlier stages by a linear increase of
the average size with time in the logarithmic plot. The lines
for different temperatures have the same slope of 0.5, which
yields a growth rate proportional tot1/2, independent of the
temperature of evolution. In the next section, we will justify
this result via scaling analysis.

B. Scaling behavior

The scaling~long time Ostwald ripening! behavior of the
PSD is a rather general property of the model of Sec. III for
a large class of systems. According to Eq.~3.4! the PSD
y(n,t)([nj̃(n,t)) for a single polymorph system satisfies

]y

]t
1n

]

]n Fkn

n
~Knc21!yG50. ~5.1!

In the asymptotic regimekn and Kn are determined by the
dependence of the surface area onn. For smooth clusters the
surface area is proportional ton2/3 but for fractal clusters it
can grow with a higher power than23. Furthermore,C may
have a factor ofn21/3 for diffusion controlled growth. To
generalize our treatment, we introduce a phenomenological
exponentv such that

FIG. 3. Simulation evolution of the
quartz PSD during the Ostwald step-
ping and ripening for the case of
Fig. 1.

FIG. 4. Temporal evolution of the av-
erage particle size illustrating the
emergence of t1/2 scaling at long
times, regardless of temperature.
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Kn ;
n→`

1

c`
F12

a

nvG , ~5.2!

kn

n
;

n→`

k

nv
, ~5.3!

wherev51/3 for the simulations of the previous section. In
arriving at this ansatz we restrict our treatment to the
reaction-limited case; for the diffusion-limited casekn

should vanish asn2v2(1/3) and not asn2v. Furthermore, we
assume that the surface area increases asn12v as n→`.
Introducing the supersaturations via c`s5c2c` , Eq. ~5.1!
becomes in the asymptotic regime,

]y

]t
1n

]

]n F k

nv S s2
a

nvD yG50. ~5.4!

Let us now investigate similarity solutions of Eq.~5.4!
that generalize the LSW asymptotic results for the present
v-system. To do so we introduce the similarity variablez
and a modified timet such that

z5
snv

a
, dt5

kv

a
s2dt. ~5.5!

With this we find

S ]y

]t D
n

1z
]

]z F1

z S 12
1

z D yG50. ~5.6!

In this equation we have made explicit the fact that the first
term is a partial derivative with respect tot at constantn ~not
z!.

Conservation of SiO2 units during ripening yields

Q5s1
1

c`

E
0

`

y~n,t !dn, ~5.7!

whereQ has a constant, finite value determined by the initial
conditions. In the asymptotic regime,s→0 and this equation
takes the form,

Q5
1

c`v
E

0

` ny~n,t!

z
dz, ~5.8!

which suggests that asQ is constant, there may be solutions
such thatny(n,t) might be a function of the similarity vari-
ablez only. DefiningY(z)5ny(n,t)/z11(1/v) and substitut-
ing into Eq.~5.6!, the modified PSD functionY satisfies

2Y1
d

dz
@vu~z,g!Y#50, ~5.9!

where

u~z,g!52
1

z Fz22
1

g
z1

1

gG , ~5.10!

andg is defined via

g52
1

s

ds

dt
52

a

kv

1

s3

ds

dt
. ~5.11!

If Y is to be a similarity solution~i.e.,Y is a function ofz but
not of t!, theng must be a constant. The mass conservation
equation with the new variables has the form

Q5
1

vc`

E
0

`

z1/vY~z!dz. ~5.12!

We are thus seeking a solution of Eq.~5.9! which satisfies
the normalization condition~5.12!. The solution of Eq.~5.9!
is

Y~z!5
A

u~z,g!
e~1/v!*0

z1/u~z,g!dz. ~5.13!

FIG. 5. Solutions for the asymptotic
Eq. ~5.9! at the ripening stage for dif-
ferent values ofg. Note that onlyg

5
1
4 gives a physically relevant PSD.
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This equation has three types of solution depending on the
value ofg. These solutions correspond to the cases whereu
has no root, one double root and two distinct roots. We ex-
amine each case separately to determine the value ofg for
which the solution~5.13! is physically relevant.
Case 1. No real roots:D51/g224/g,0,

Y~z!5A1

z

~z22~1/g!z11/g!11~1/2v!

3e$~1/vgA2D!arctan@2z~1/g!/A2D#%. ~5.14a!

Case 2. One double root:z15z252 (g51/4),

Y~z!5A2

z

~z224z14!11~1/2v!
e@2/v~z22!#. ~5.14b!

Case 3. Two distinct roots:z1,251/2g6(1/2)AD, and D
51/g224/g.0,

Y~z!55
A3

z

~z12z!11~1/2v!2~1/2gvAD!~z22z!11~1/2v!1~1/2gvAD!
, z,z1

2A4

z

~z2z1!11~1/2v!2~1/2gvAD!~z22z!11~1/2v!1~1/2gvAD!
, z1,z,z2

A5

z

~z2z1!11~1/2v!2~1/2gvAD!~z2z2!11~1/2v!1~1/2gvAD!
, z.z2

~5.14c!

for constantsA1 , . . . ,A5 to be determined. In Fig. 5, these
three cases are plotted. In all cases independent ofv, the
large z behavior of the integrand in Eq.~5.12! is z1/vY(z)
→

largez
1/z; therefore the largez contribution to the integral

appears to be logarithmically divergent. Therefore,Y(z)
should have an augmented form: it is one of the solutions
given in Eq.~5.14! between 0<z<z* and it must be equal
to zero after the pointz5z* .

The key to the divergency dilemma is basically an argu-
ment of causality. If at time zero, there were only finite size
particles, then in any finite time the PSD must be identically
zero for allz beyond a cutoff valuez* .

TheD-term in Eq.~3.4! involves, in the present notation,
a term of the formd2Y/dz2 if these correction terms were
retained. Thus,dY/dz must be continuous for allz; other-
wise theD-term would be infinite and the above solutions
would be unphysical as theD-terms were assumed to be
small. By a similar argument, the transformation of the dis-
crete chemical kinetic model to the continuous one yields a
sum of terms involving all derivatives. Thus, if any deriva-
tive of Y with respect toz is discontinuous atz5z* , then the
solution will also be unphysical. More dramatically, these
types of lack of smoothness inY would imply a breakdown
of the entire continuum theory, a physically nonintuitive re-
sult. Thus, this implies,Y and all of its derivatives must be
zero atz5z* .

For the Case 1 (g. 1
4), Y has no zero for 0,z,`. In

Case 3 (g, 1
4), the solution has a divergence to the left of

where it has its first zero so that it cannot be a physical
solution if g,v(4v12)/(4v1I )25g* . For g* ,g, 1

4, a
surprising situation arises: there is a one parameter family of
scaling solutions for whichY and its first derivative is zero at
the first root,z1 . For a givenv, with g in this acceptable
range, the mode particle sizes of these solutions have the

same scaling exponent of time~see below!. We do not inves-
tigate further here which of these solutions is the most stable.
However, as noted aboveall derivatives ofY with respect to
z must vanish atz* . This is the only case forg5 1

4, Case 2.
For Case 2 (g5 1

4), Y and all its derivatives vanish atz52.
Note that for this caseg5 1

4 and from Eq.~5.10! we see that
u anddu/dz vanish atz52 whereY vanishes. Thus, we find
g5 1

4 andz* 52. With this the asymptotic PSD is given by

Y~z!55 Az* ~1/v!e~1/v!
z

~z* 2z!21~1/v!
e2~1/v!@z* /~z* 2z!#,

for z<z* 52

0, for z>z*

.

~5.15!

The constantA is obtained from the mass conservation con-
dition ~5.12! one finds

A5
Qc`v

*0
z* z* 1/ve1/v

z11~1/v!

~z* 2z!21~1/v!e
2~1/v!@z* /~z* 2z!#dz

.

~5.16!

In conclusion,g is determined as an eigenvalue andA is
implied by normalization. The cutoff atz* 52 is a property
of the form of the PSD equation and is required by the cau-
sality. The vanishing of all derivatives atz5z* and the con-
tinuity of dY/dz for 0<z<z* shows the self-consistency of
our continuum approximation to the discrete chemical kinet-
ics model.

For rough ~fractal! particles,v, 1
3. Three cases forv

, 1
3 are compared with the smooth particle case in Fig. 6.

The PSD’s are scaled to have unit area under the curves. The
maximum point of the PSD’s are atz* /A11(1/v), and the
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location of maximum points moves towards the left asv
decreases, yielding narrower PSD’s for rougher particles
than for smoother ones.

Our numerical results corresponds tov51/3, in which
the surface area is proportional ton2/3. For this caseA
>1.05Qc` . As seen from Fig. 6, atz51, Y(z) has a maxi-
mum. Therefore from the definition of the variablez,
(n1/3)max5a/s, where (n1/3)max represents the value ofn1/3

at which the asymptotic PSDY(z) has a maximum.
Sinceg51/4, Eq.~5.11! implies

g5
1

4
52

3a

ks3

ds

dt
, ~5.17!

which implies that

S 1

s D 2

5
1

a2
@~n1/3!max#

25
k

6a
t1constant, v5 1

3.

~5.18!

This determines the variations of concentration and maxi-
mum of the PSD with time in the asymptotic regime. Since
n1/3 is a measure of crystal diameter for this smooth cluster
case, we can conclude that, in surface kinetic controlled

growth systems, the square of average~mode! particle diam-
eter grows linearly with time. In the LSW theory, where
growth is diffusion controlled, the cube of the average diam-
eter grows linearly with time. Hence, kinetic limited ripening
is faster as one expects.

Ripening for fractal clusters is expected to be faster than
for smooth ones. From the definition ofz, the maximum of
the PSD is at

zmax~v!5
s~ t !~nv!max

a
. ~5.19!

Using Eq.~5.11! for the t-dependence ofs and noting that

zmax~v!5
2

A11~1/v!
, ~5.20!

one finds that

~n1/3!max5S 2akv2

11v
kD 1/6v

t1/6v. ~5.21!

This agrees with Eq.~5.18! for v5 1
3 and shows that ripening

accelerates as the roughness of the clusters increases~i.e., as
v decreases!.

C. Comparison of asymptotic and numerical results

In the numerical simulation, we obtainy(n,t) at various
times. To test how accurate our numerical scheme is, we
investigate the following:

~1! Do the numerical results yield a time independent scaled
form?

~2! If there is a numerical time-independent PSD, does it
converge to the analytical scaled PSD and what is the
convergence rate?

~3! Is there a numerical power law relating average~or
modal! diameter to time and is it converging to the ana-
lytical square law?

For the purpose of comparison, a pure quartz system
with initially having the average diameter of 0.01 microns

FIG. 6. Comparison of the PSD,Y(z), for smooth particles~v51/3! and for
rougher~fractal-like! casesv,1/3.

FIG. 7. The numerical algorithm yields a time indepen-
dent scaled PSD. The scaled PSD’s of the numerical
simulations at 200 000, 1 million, and 10 million years
exactly match each other. Note that thex-axis essen-
tially particle diameter scaled with the average~mode!
diameter.
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and volume fraction of 0.40 was investigated at 23 °C. The
numerical simulations are done withN5100 and withNF

varying from 200 to 4000. At each time step, the numerical
simulation gives the quartz PSD in the form ofjn

qz in the
discrete range (1<n<N) and yqz(n,t) in the continuous
range. From the definitions given in the previous section, the
scaled PSD,Y, will be related toy(n,t) via

Y5
a4

~s~ t !!4

y~n,t !

n1/3
. ~5.22!

Therefore, for any given time, the scaled PSD is proportional
to Fqz(n)5yqz(n)/n1/3 of the numerical results, and
(n1/3)max

qz can easily be evaluated from the position of the
maximum value ofFqz. If there is a time-independent scaled
PSD, the numerical results illustrated in the form ofFqz vs
n1/3/(n1/3)max

qz will coincide at every timestep. In Fig. 7, the
numerically scaled PSD,Fqz, is plotted at 200 000, 1 mil-
lion, and 10 million years of simulation withN5100 and
NF5200. As seen from this figure, the scaled PSD at
200 000 and 1 million years~dotted curves! fit almost ex-

actly to the PSD at 10 million years~solid curve!. This im-
plies that the numerical simulation yields a time-independent
scaled PSD.

The convergence of the numerical scaled PSD’s to the
analytical one is shown in Fig. 8~a!. The numerical PSD’s
correspond to the simulations withNF5200, 400, 800, and
4000. The numerical scaled PSD’s are more dispersed than
the analytical one, but converge to the analytical PSD as the
discretization of the numerical scheme gets finer. The dis-
persed shape of numerical PSD has two origins. First, for the
analytical solution, we ignored theD-term of Eq.~3.4!. The
D-term widens the PSD via a diffusionlike effect, especially
at the early stages of ripening~when the typical values ofn
are not so large!. The deviation of the numerical solutions
from the analytical asymptotic one due toD-term is indepen-
dent of numerical discretization, and vanishes as the system
ripens. The second reason for the dispersion of the numerical
results is the upwinding scheme used in the solution of the
continuous part.20 By applying the upwinding scheme, the
oscillations due to the transport errors in the numerical solu-
tion of the advective-type equation~3.4! are overcome at the
cost of an effective numerical dispersion. The error due to

FIG. 8. Convergence of numerical results to the ana-
lytical solution, ~a! comparison of numerical scaled
PSD with the analytical one forNF5200, 400, 800, and
4000. Note that asNF increases, the discretization be-
comes finer, and the numerical results approach to the
analytical one,~b! the error of numerical results versus
the number of discretization elementsNF .
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the upwind differencing depends on the discretization, and
becomes smaller as the discretization gets finer. The errors
for the numerical simulations are listed for different discreti-
zations in Table II and plotted in Fig. 8~b!. The error is
calculated as the square root of the sum of the square of
differences at each discretization point. By curve fitting these
values, we obtain error as a function of the numberNF of
discretization elements, we find

Error50.64S 1

NF
D 0.33

. ~5.23!

The slowness of the convergence is likely associated with the
simple constant finite element functions used. However,
these elements had the convenient property that total mass
was exactly conserved. Finally, this extrapolation formula
may be generalized and used to improve numerical simula-
tions to infinitely fine mesh results. With this we conclude
that our numerical approach yields well controlled approxi-
mations to the PSD problem.21,22

In Fig. 9, (n1/3)max vs At is plotted for numerical simu-
lations with NF5200, 400, and 800. As stated before,
(n1/3)max represent the value ofn1/3 at which the asymptotic
PSDY(z) has a maximum and it is a measure of the average
diameter for smooth particles. From this figure, it is seen that
(n1/3)max is linearly proportional to the square root of time.
Therefore, we can conclude that there is a numerical power
law relating average~or modal! diameter to time. The pro-
portionality constants~the slope of the growth curves! ob-
tained from the numerical simulation results are 0.666,
0.659, and 0.656 forNF5200, 400, and 800, respectively.
The sensitivity of these slopes to the numerical discretization
is much less than that of the PSD curves. The exact propor-
tionality constant of the growth relation was given in Eq.
~5.18!. Rearranging this equation yields the analytical rela-
tion between (n1/3)max andAt as

~n1/3!max5Aka

6
t1/21constant. ~5.24!

Using the data given in Appendix B with the definitions in
Sec. V B, for quartz at 23 °C,

k5 k̄qzf
3A36pS V̄qz

N0 D 2/3

50.211 38@year#21, ~5.25!

a5
2

3RT
bqz512.104, ~5.26!

the analytical proportionality constant becomesAka/6
50.653. Unlike the PSD errors listed in Table II, the numeri-
cal error of growing rate in theNF5200 simulation is less
than 2%, and it decreases rapidly as the mesh gets finer.

D. Nucleation site energetics and Ostwald stepping

In the numerical simulations of Sec. V A, the adsorption
energies for all polymorphs are assumed to be the same. The
effect of variation in adsorption energy to promote the ini-
tiation of one of the polymorphs is seen in the simulation of
Fig. 10~a!. There a case is run wherein all data are as in the
previous runs of Sec. V A, except that the adsorption energy
of b-cristobalite was taken to have the lower value of 2aqz

while the other polymorphs had the same value. Unlike for
the symmetric adsorption case of Fig. 1,b-cristobalite is
initiated and dominates for long times. Favoring
b-cristobalite suppressa-cristobalite initiation. The change
in the adsorption energies also effects the duration of the
Ostwald stepping stage. For the unsymmetric adsorption case
considered, Ostwald stepping takes much longer than for the
symmetric case.

In Fig. 10~b!, the results of another simulation are given
for a case where the adsorption energy of quartz is higher
than that of the other polymorphs viadqz50.85aqz. As a
result, chalcedony dominates over quartz for a long time; but

FIG. 9. Linear variation between (n1/3)max and At is
obtained in numerical simulations. The solid line is the
numerical evolution withNF5200, and the dotted ones
correspond to the finer discretizations (NF5400 and
800!.

10520 J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 G. Ozkan and P. Ortoleva



eventually, the system reaches the pure quartz state. A fur-
ther increase in the quartz adsorption energy results in a
longer time for the system to reach the pure quartz state.
Although the system will always end up at the lowest energy
polymorph, depending on the initiation scenario, the time
required to achieve it can be so long that it may become
impossible to obtain quartz even on a geological time scale.
Thus, the microstructure of the adsorption site can dramati-
cally change the Ostwald stepping scenario.

VI. CONCLUSIONS

We have presented a viable approach for simulating the
microscopic~adsorption and nucleation! stage to the macro-
scopic particle growth stage of precipitation. The boundary
condition on our extended LSW equation provides an essen-
tially seamless integration of the chemical kinetic and con-
tinuous formulations.

The four stages of precipitation can each profoundly af-
fect the evolution of the system. Our conclusions are based
on a new treatment of the chemical kinetic model of precipi-
tation that captures the evolution of clusters on over 23 or-

ders of magnitude in size, providing an integration of the
micro-, meso-, and macroscopic scales.

The first stage, adsorption at a heterogeneous site, pro-
vides a way to, in part, avoid the free energy barrier pre-
sented by surface free energy. It also serves to introduce
lower free energy phases early on in the overall process,
allowing the system to skip some polymorphs or other
phases in the Ostwald stepping sequence. The energetics of
the adsorption site can be so favorable so an intermediate
energy polymorph that lower free energy polymorphs can be
blocked for exceedingly long times. Similarly, if lower free
energy polymorphs are energetically strongly unfavored at
the nucleation site, they can be inhibited from forming.

The nucleation stage is dominated by surface free energy
effects arising from the interaction of small clusters with the
phase form which it would, from the point of view of mac-
roscopic~bulk! free energy, like to grow. Nucleation barriers
are seen to be higher for lower bulk free energy phases as the
latter appear to have higher surface energy. The surface free
energy barriers are thwarted by higher temperature or when
the spatial range of influence of the heterogeneous site ex-
ceeds the critical nucleus size. While not considered here, it

FIG. 10. The effect of nucleation site energy on the
Ostwald stepping scenario, simulations at 23 °C are re-
peated with the unsymmetrical adsorption energies
yielding, ~a! b-cristobalite favored initiation (db2cr

52aqz, and dm5aqz for all other polymorphs!, ~b!
quartz unfavored initiation (dqz50.85aqz, anddm5aqz

for all other polymorphs!. Note the persistence of chal-
cedony in case~b!. Compare these results to that of Fig.
1; note the difference in time scale.
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is clear that differences in adsorption components in the
growth medium with the surface of the various polymorphs
can also dramatically change the order in which the various
polymorphs nucleate.

The Ostwald stepping stage, the competition of the vari-
ous phases for common building blocks@here SiO2~aq!] al-
ways results in the final stage with the low free energy phase.
As the difference in the bulk free energies of the latter de-
creases, the persistence of near lowest bulk free energy
phases increases. Both temperature and nucleation site ener-
getics can dramatically change the stepping scenario.

The ripening stage, which may overlap with stepping,
leads to the long time state of fewer but larger particles. At
long times LSW-type scaling is achieved but with a time
scaling that depends on both the rate limiting growth process
~attachment kinetics versus diffusion! as well as the rough-
ness of the particles. For smooth particles, ripening is slower
than for rough~fractal! particles.

The methods used in this study can be generalized to
multimineralic systems or to more complex~multicompo-
nent! growth media. These generalizations and the extension
to open and spatially nonuniform systems shall enable us to
analyze the effects of the infiltration of fluids into seafloor
sediments and metasomatic, weathering and many other
geochemical systems as well as engineering contexts where
precipitation plays an important role. In all such contexts, the
methodology presented should provide an effective frame-
work for simulating the microscopic→macroscopic transi-
tion underlying precipitation dynamics.
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APPENDIX A: DERIVATION OF THE CONTINUOUS
PSD DYNAMICS

To analyze Ostwald phenomena, we must simulate a
large range of the cluster sizes. In our approach, we divided
the cluster size axis into two parts at a cluster sizeN ~as seen
in Fig. 11! and apply the discrete chemical kinetic formula-
tion for the small clusters (n,N). For the other part of the

domain, the PSD equations are reformulated in a continuous
form by defining a PSD functionj̃m and ym which are as-
sumed to be continuous on the cluster size axis. Starting
from the definition of the continuous site fractions@Eq.
~3.1!#, and changing the interaction limits as

jn
m~ t !5E

21/2

1/2

j̃m~n1a,t !da, ~A1!

we can apply Taylor series expansion aroundn to obtain the
explicit relation between the discrete and continuous site
fractions. The integral in Eq.~A1! then becomes

jn
m~ t !5E

21/2

1/2 S j̃m~n,t !1a
]j̃m

]n
~n,t !

1
a2

2

]2j̃m

]n2
~n,t !1¯ D da. ~A2!

Evaluating the integral, we obtain

jn
m~ t !5 j̃m~n,t !1 (

k51

`
2

~2k1I !! S 1

2D 2k11 ]2kj̃m

]n2k
~n,t !.

~A3!

The second term is seen to be a rapidly convergent series due
to the @(2k1I )!22k11#21 factor ~the first being 1/24!. Fur-
thermore, for largen, the PSD is slowly varying with respect
to n; therefore we can neglect the second and higher order
derivatives, yielding

jn
m~ t !> j̃m~n,t !. ~A4!

Note that the assumed smoothness of the PSD, or more spe-
cifically the existence of all derivatives of the PSD with re-
spect ton, has strong implications for the acceptable solu-
tions of the continuous PSD equations~see Sec. V B!.

To obtain the continuous form of the PSD equations, we
insert the approximation~A4! into Eq. ~2.3!. From the cen-
tral value theorem, the right-hand side of Eq.~2.3! may be
expressed as a derivative of the continuous functionWm at
the pointn* in the interval betweenn21 andn, such that
Wn21

m 2Wn
m52]Wm/]nun* , n21<n* <n. Then, the dis-

crete kinetic Eq.~2.3! takes the form,

FIG. 11. Schematic presentation of the cluster size do-
main. The domain is divided into two parts; for small
clusters (n,N), discrete kinetics equations are applied,
while for the large clusters, continuous kinetics equa-
tion is written with respect to thex5 log(n) variable.
The continuous domain is divided into equal sized ele-
ments for computational purposes in each of which the
PSD,y, is assumed to be constant.
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]j̃m~n,t !

]t
52

]Wm

]n
U

n*

52
]

]n
@kn

m~Kn
mcj̃m~n,t !2 j̃m~n11,t !!#n* .

~A5!

Using a first order Taylor expansion ofj̃m aroundn, with
n2n* 5D, yields

]j̃m

]t
52

]

]n Fkn2D
m S ~Kn2D

m c2I !j̃m

2~Kn2D
m cD1~12D!!

]j̃m

]n
D G . ~A6!

The value ofD is chosen in our approach to insure that the
summation/integration of the site fractions over the whole
range of cluster size should be unity at all times. Therefore,
the time derivative of site fractions adds up to zero over full
range ofn,

dj0

dt
1 (

m51

M

(
n51

` djn
m

dt
50, ~A7!

where all the variables are the same as defined in Sec. II.
Applying the discrete formulation up to cluster sizeN21
and the continuous formulation for the regionN2 1

2<n,`
~as suggested in Fig. 11!, the conservation of nucleation sites
takes the form

dj0

dt
1 (

m51

M H (
n51

N21 djn
m

dt
1E

n21/2

` ]j̃m

]t
dnJ 50. ~A8!

Using Eqs.~2.3! and ~A6!, we obtain

(
m51

M H 2WN21
m 1S kn2D

m ~Kn2D
m c21!j̃m~n,t !

2kn2D
m ~Kn2D

m cD1~12D!!
]j̃m

]n
~n,t !D

N21/2
J 50. ~A9!

Equation~A9! is to be satisfied for all possible cases; thus it
must hold for situations in which thej̃m, jn

m are zero for all
but one polymorph only. In this way, Eq.~A9! holds for
every polymorph separately. Inserting the expression forWn

m

given in Eq. ~2.4! and evaluating the continuous part atn
5N2 1

2, one obtains

kN21
m ~KN21

m cjN21
m 2jN

m!

5kN2~1/2!2D
m S ~KN2~1/2!2D

m c21!j̃m~N2 1
2,t !

2~KN2~1/2!2D
m cD1~12D!!

]j̃m

]n
~N2 1

2,t !D . ~A10!

From Eq. ~A10!, it can be concluded that,D5 1
2, and the

boundary conditions for the discrete and continuous formu-
lations at the interface which satisfy Eq.~A10! are

jN21
m 5 j̃mun5N2~1/2!2

1

2

]j̃m

]n
U

n5N21/2

,

~A11!

jN
m5 j̃mun5N2~1/2!1

1

2

]j̃m

]n
U

n5N2~1/2!

.

InsertingD5 1
2 into Eq. ~A6!, the continuous PSD equation

takes the form,

]j̃m

]t
52

]

]n Fkn2~1/2!
m S ~Kn2~1/2!

m c21!j̃m

2
1

2
~Kn2~1/2!

m c11!
]j̃m

]n
D G . ~A12!

In terms of the continuous cluster volume fraction function
ym, whereym(n,t)5nj̃m(n,t), Eq. ~A12! takes the form

]ym

]t
52

1

n

]

]n Fkn2~1/2!
m S H 1

n
~Kn2~1/2!

m c21!

1
1

2n2
~Kn2~1/2!

m c11!J ym

2
1

2n
~Kn2~1/2!

m c11!
]ym

]n
D G . ~A13!

Changing fromn to x5 ln(n), the continuous equations for
the PSD takes the form of Eq.~3.4!.

APPENDIX B: SiO 2 DATA

Rearranging Eqs.~4.1!–~4.4!, the equilibrium constant
for an m,n-cluster is given by

RT lnS 1

Kn
mD 5gn11

m 2gn
m2mSiO2~aq!**

5c~n!dm1~12c~n!!am2mSiO2~aq!** 1~12c~n!!

3bm@~n11!2/32n2/3#. ~B1!

For large crystals,n→`, the solubility~i.e., 1/Kn
m) only de-

pends on the bulk free energy via

RT lnS 1

K`
mD 5RT ln~c`

m!5am2mSiO2~aq!** , ~B2!

wherec`
m is the concentration~mol/l! of SiO2~aq! in equilib-

rium with bulk polymorphm. With this, the equilibrium con-
stant ofm,n-cluster becomes

ln~Kn
m!52 ln~c`

m!2c~n!S dm2mSiO2~aq!**

RT
2 ln~c`

m!D
2~12c~n!!

bm

RT
@~n11!2/32n2/3!. ~B3!

To calculateKn
m at a specific temperature, the bulk solubility

(c`
m), surface free energy (bm), and adsorption energy (dm)

of polymorphm are needed.
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1. Bulk solubility „c `
m
…

Walther and Helgeson18 calculated bulk solubilities for
silica polymorphs at temperatures ranging from 0 to 600 °C
and these calculated solubilities are in agreement with ex-
perimentally derived values. In our numerical simulations,
the bulk solubilities at a given temperature are calculated by
polynomial approximation of the curves given by Walther
and Helgeson.18

2. Surface free energy „b m…

Where experimental data are available, surface free en-
ergies can be estimated using the observed dependence of
solubility on specific surface area. These experiments have
been reported for amorphous silica and quartz.17 If the SiO2

units on the surface of a grain partially project into the aque-
ous medium and partly reside in the bulk, then we might
assume that the interfacial free energy is a weighted sum of
the bulk and solution free energies; thus we conjecture

sm5~AmSiO2~aq!** 2Bam!
Dm

V̄m

, ~B4!

wheresm5surface free energy ofm in contact with an aque-
ous solution;Dm5(V̄m /N0)1/35 lattice spacing normal to
the surface~on the order of the thickness of the surface
layer!; A53.39643,B50.53.

The coefficientsA andB were determined by substitut-
ing known sm values for quartz and amorphous silica into
Eq. ~B4!.

The surface free energy coefficient,bm , is calculated
from sm via

bm54psmS 3V̄m

4pN0D 2/3

. ~B5!

3. Adsorption energy „d mÀmSiO2„aq…** …

The kinetics of small clusters and nucleation initiation
are strongly affected by the adsorption energy of SiO2 units
to the site of nucleation. Clearly this quantity depends
strongly on the atomic-scale geometry and chemical nature
of the heterogeneous nucleation site. Values ofdm are there-
fore most likely to be best estimated using molecular me-
chanics software and is beyond the scope of this study. How-

FIG. 12. Effect of adsorption energy on the equilibrium
constants of silica polymorphs. The equilibrium con-
stants vs cluster number at 20 °C for~a! no adsorption
energy, and~b! dm5aqz for all polymorphs.
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ever, we have included this parameter in our study to
investigate the sensitivity of the nucleation and Ostwald pro-
cesses to this parameter. In Fig. 12, the effect of adsorption
energy on saturation concentrations (Kn

m)21 are shown. In
these figures, temperature is 20 °C and the diameter of the
nucleation site is assumed to be 100 Å. If there is no adsorp-
tion energy, the initiation of quartz needs a huge supersatu-
ration as seen in Fig. 12~a!. Therefore, with no adsorption
energy, at 20 °C the initiation of quartz is practically impos-
sible. In Fig. 12~b!, the adsorption energies for all polymor-
phs are chosen to be the same, i.e.,dm5aqz. This selection
enables the initiation of quartz, even at the saturation con-
centration of bulk quartz.

4. Rate coefficients „ k̄ m…

We obtained rate coefficients from experimental data as
follows. The rate of change of the number of SiO2 units in
the solid phase per unit time is given by

d

dt S number of units
in solid state per

unit system volume
D

5hT(
m,n

n
djn

m

dt

5hT(
m,n

Wn
m5hT(

m,n
kn

m@Kn
mcjn

m2jn11
m #, ~B6!

where the variables are the same as described in Sec. II.
Consider a monomineralic, monodisperse system of particles
of mineral m, wherejn

m50 for nÞn8, jn8
m

51. Whenn8 is
sufficiently large, the rate coefficient varies slowly with re-
spect ton, and thus, we can assumekn821

m 'kn8
m . With these,

the change in number of SiO2 in monodisperse systems be-
comes

d

dt S number of units
in solid state per

unit system volume
D 5hTkn8

m
~Kn8

m c21!. ~B7!

From experimental data~see Refs. 19 and 23! the crystal
growth rate is

dr

dt
5V̄mqm~Kn8

m c21!, ~B8!

whereqm5experimental first order rate coefficient for disso-
lution ~mol m22 s21!; r5grain radius~m!.

The change of number of units in one grain of mineralm
per unit time is

d

dt S number of units
in one grain D

5
N0

V̄m

4pr 2
dr

dt
5S Surface area of

the grain DN0qm~Kn8
m c21!.

~B9!

In the monomineralic, monodisperse systemhT is the total
number of grains per unit system volume, and, usingAn8

m for
the surface area of ann8 cluster, one finds

d

dt S number of units
in solid state per

unit system volume
D 5hTAn8

m N0qm~Kn8
m c21!.

~B10!

Comparing Eqs.~B7! and ~B10! yields kn8
m

5An8
m N0qm . For

sufficiently large, smooth clusters, the rate coefficient is in-
dependent from the adsorption effects the rate coefficient per
unit area is related to the experimental dissolution rate via

k̄m5qmN0. ~B11!
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