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A mesoscopic model of nucleation and Ostwald ripening /stepping:
Application to the silica polymorph system
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Precipitation is modeled using a patrticle size distributid8D approach for the single or multiple
polymorph system. A chemical kinetic-type model for the construction of the molecular clusters of
each polymorph is formulated that accounts for adsorption at a heterogeneous site, nucleation,
growth, and Ostwald ripening. When multiple polymorphs are accounted for, Ostwald stepping is
also predicted. The challenge of simulating the 23 order of magnitude in clustefmei@m®mmer,

dimer, ..., 10>men is met by a new formalism that accounts for the macroscopic behavior of
large clusters as well as the structure of small ones. The theory is set forth for the surface kinetic
controlled growth systems and it involves corrections to the Lifshitz—Slyozov, Wadusmw)
equation and preserves the monomer addition kinetics for small clusters. A time independent, scaled
PSD behavior is achieved both analytically and numerically, and the average radius grows with
Rae<tY? law for smooth particles. Applications are presented for the silica system that involves five
polymorphs. Effects of the adsorption energetics and the smooth or fractal nature of clusters on the
nucleation, ripening, and stepping behavior are analyzed. The Ostwald stepping scenario is found to
be highly sensitive to adsorption energetics. Long time scaling behavior of the PSD reveals time
exponents greater than those for the classical theory when particles are fractal. Exact scaling
solutions for the PSD are compared with numerical results to assess the accuracy and convergence
of our numerical technique. @000 American Institute of Physid$s0021-9606)0)70123-1]

I. INTRODUCTION ation stage are usually based on the theory of Lifshitz and
o S o Slyozov'® and Wagnet! and its modifications?~**> The
Precipitation typically involves four distinct processes— cjassical and modified versions of the LSW theory yield a

adsorption at a heterogeneous site, nucleation, Ostwald ripso\er law relation between the mean particle size and time
ening, and Ostwald stepping. These processes underlie may |ong times and a scaling form for the particle size distri-

key phenomena associated with chemical processing, as W‘?Jl.ltion (PSD. The low volume fraction theories of Mar-

as, In ngturterz](weathe.rmg, setds:;nen'ta_;y,t.metar:norphm, I9N€-quesse and Ro¥sand Tokuyama and Kawasafialthough
ous, and other environmeptsPrecipitation phenomena. in each employed a different statistical averaging procedure, all

nature include the ngc_lea_tlon and ripening of new So.hd redict a scaled particle size distribution which is broader
phases, selected precipitation of preferred polymorphs, Lise:

gang banding, agates, and igneous orbictiiéaVhile the han the LSW form.

importance of these phenomena has long been recognized, In this it_u?]y, we dtﬁveloped ahmOQeI |0f ptre?pltatllo? ph?-
their simulation has been limited due to numerical difficul- "OMeNa Which uses the same chemical rate formulation for

ties involved in describing the growth of particles over 23 both Fhe egrly nucleat_mn stagihe kinetics of monomer ad-
orders of magnitude in sizée., from monomer to cm-scale sorption, dimer creation, groyvth .of small surface-attached
crystals. A complete model of precipitation must therefore ClUSters and the growth and ripening stage to create macro-
integrate the microscopic, mesoscopic, and macroscopic le®cOPIC crystals. In the model, nucleation is initiated as an
els of description. adsorption event. Further monomer addition results in the
Several approaches have been used to model precipitf@rmation of small clusters whose dynamics becomes in-
tion kinetics®® In nucleation-growth studies, a critical creasingly independent of the adsorption site properties as
nucleus size is defined such that further growth is a fredhey grow. However, we do not separately treat the sub- and
energy reducing process and thus a supracritical cluster magpracritical clusters. Rather, we apply the same chemical
grow to macroscopic dimensions. Studies on the nucleatiorate equation over the whole size range by using a size-
stage focus on the behavior of clusters smaller than this critidependent rate coefficient and free energy, giving a unity and
cal size and on calculating the total number of supercriticatontinuity to the theory.
clusters but not on the transition from the nucleation stage to  Our formulation adds a higher order derivative term to
that of macroscopic particles. the LSW theory that introduces a diffusive-type behavior
Studies of the coarsening of precipitates after the nuclewith respect to the particle size axis; this tends to broaden the
PSD. For simplicity here, we refer to all PSD evolution theo-
dCurrent address: Department of Mathematics, Bilkent University, Bilkent,ries in the macroscopic particle limit to the LSW theories. In
Ankara 06533, Turkey. the present work, however, we focused on the reaction-
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limited case, and not the diffusion-limited case of the classiaime. The total number of sites in the macrovolume element
LSW theory. A second contribution is an efficient numericalis assumed to be constant during the evolution; it is the sum
simulation technique that allows for the solving of theseof the numbers of clusters for every polymorph cluster and
equations for 23 orders of magnitude in cluster size. Finallythe number of unoccupied surface sites available for nucle-
we simulate PSD dynamics in multiple polymorph systemsation. During evolution the number of sites occupied by vari-
to investigate Ostwald stepping and the commonly observedus m,nclusters and the shared pool of ${&g are con-
selected precipitation of higher free energy solids or the skipstantly shifting due to competition among polymorphs and
ping of intermediate free energy ones. We illustrate the relaamong different size clusters of a given polymorph. The frac-
tion of nucleation site energetics to the latter. tion of empty sites¢y, is given in terms of the fractions of
The present study focused on the $&ystem due to its m,ncluster-occupied sites via
importance in many geologic and engineering processes and M
the availability of ample rate and thermodynamic ddt?® f=1-3 3 gm 2.2
A model is set forth of the precipitation of Sjanto a set of 0 =1 n=1 "’ '
polymorphs which compete for the shared pool of SiPar-
ticles of the same polymorph but of different size also com
pete to yield ripening of the PSD of each polymorph. The
resulting model thus incorporates Ostwald ripening and stept-0 t
ping. The approach is easily generalized to other mineraliza- M

whereM is the number of polymorphs.
The dynamics of the site occupation fractions is assumed
ake the chemical kinetic form

. d
tion (carbonates, feldspars, etc. é= - 2 wy',
The formulation of our model is given in the next three dt m=1
sections. Numerical simulations based on our model for the 2.9

. L - . . d§m
SiO, system of initially amorphous silica are discussed in  =¢n _ m WD n=12,...% m=12,...M.

Sec. V. These simulations show the selective nucleation of  dt
some polymorphs and the competitive evolution of poly- " )
morphs as SiQcascades from the amorphous state initially The ratesW, are assumed to take the mass action form
in the system, through several polymorphs, and finally to theym_ | m/,em.. _ :m M_ | ;MM gM_ gm
long time dominance by the lowest free energy phase, quartt;{évO ko(KoClo—£1), W=kn(KnCln—tnie) (249
(e.g., Ostwald steppingAfter the stepping phase is com- for size-dependent rate coefficieklf', equilibrium constant
pleted, larger quartz crystals grow at the expense of th&[', and SiQ(ag) molar concentratioa The data for silica
smaller ones. A power law for the mean diameter is demonpolymorphs are described in the next section.
strated. The PSD attains a LSW limiting scaled form in the = These equations describe the dynamics of the site occu-
ripening phase. The simulated and exact scaled PSD amancy probabilitiegfractions. The &' are the PSD’s of the
compared to evaluate the accuracy of the numerical methodpolymorphs in the present formulation. The kinetics depends
Conclusions are drawn in Sec. VI. The detailed formulationson the SiQ(ag) concentration variation with time in the mac-
for the model and the Si{data used in the numerical simu- rovolume element. This variation is obtained by equating the
lations are discussed in the Appendices. rate of change of total SiQunits in the macrovoluméboth
in aqueous phase or in cluster forio the total rate of flux
into the volume. The Sigag) concentration thus evolves via

J J Mo
oo a| S 3 ner)-

Il. FORMULATION

Total SiQ, flux intoJ
t

c
The model developed here is based on the classic chemi— + —
NO =4 the volume eleme

cal kinetic theory of nucleation through monomer addition s a
modified for heterogeneous systems and which integrates the 29

chemical kinetic and continuougmacroscopig particle  where is the porosity and® is Avogadro’s number. I¥;,
growth as suggested in Ref. 1. Modifications of the free enis the volume of inert solid in the medium, the porosity is

ergy are introduced to account for the heterogeneous natutgjculated by subtracting the volume fraction of all poly-
of initiation and early small cluster growth as well as surfacemorphs and inert solid from unity,
energy for larger clusters. " ~

The assumed kinetics of heterogeneous nucleation and Vin 1 —
growth is based on monomer addition discussed here in ¢=1—V—— WT;lmn; Vién',
terms of the SiQ system due to its importance in many o T
geologic and engineering processes and the availability ofvhereV' is the molar volume of a polymorpin cluster ofn

ample rate and thermodynamic dafa'®but the approach is units andVy is the volume of the macrovolume element.

(2.6

easily generalized to other mineralization. [S&tbe a cluster Equationg2.3)—(2.6) conclude the chemical kinetic for-
of polymorphm with n SiO, units on a heterogeneous site. mulation of the PSD dynamics of polymorph growth via
The monomer addition reaction is taken to be monomer addition. These equations constitute a set of non-

. linear differential equations foc, the PSDs of all poly-
'+ A : : i .

S+ SI0(a0 = Sy 4 @D morphs, the fraction of empty sites and the porosity. These

Let &' be the fraction of sites occupied ly,n-cluster in a  equations are solved by Newton—Raphson algorithm with

macrovolume element having identical sites per unit vol- second order time approximation.
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To complete the formulation, we must specify thewherex=In(n), andv andD are related to the chemical
n-dependence o¥/]', k', andK]'. We assumed that the parameters via
volume of clusters is proportional to the cluster number. The

m m H km_ 1/2 1
Ri/1enomenology ok, andK' are developed further in Sec. v™(n,c)= — 1+ o KM c—|1- =1, 3.5
km
D™(Nn,c)= ——2(KM ,.c+1) (3.6
lll. THE MESOSCOPIC TRANSITION FROM NUCLEUS ’ op2 © N2 ' '

TO MACROPARTICLE
The derivation of these results is given in Appendix A. Note

The chemical kinetic formulation bridges the transition that Eq.(3.4) yields the classical LSW equation when the
from monomer and dimer to macroparticle {3@en. How-  1/n2 term in v is ignored and the diffusionlik® term is
ever, there are several challenges presented by this formulgeglected. Thus Eq(3.49—LSW asn—co. However, for
tion. First, one must solve on the order of”i@quations finite n the PSD is broader than that of the LSW due to
because the cluster size ranges over this scale. Second, i#i¢fusive spreading fronD + 0.
ky' increase as surface aréasn?® for sgnall particles and The boundary conditions between the discrete and con-
hence become extremely large s> 10°°. The latter situa-  tinuous formulations are obtained from the continuity of the

tion presents us with a problem in stiff differential equations,“g' or y and from Eq.(2.2). At the interface, the boundary
i.e., equations with coefficients that differ by many orders of;qndition to be imposed on E€B.4) is

magnitude. The result is that to maintain accuracy, one must

know the factorsk'c&'— ¢, to an accuracy of order YT "
1/k". Thus even if one could solve 0equations numeri- vy"-D ax =Wh-1, 3.7
cally, the accuracy required would make the calculation un- x=Xo=In{N-1/2}

feasible. i N ) ) _and for Eq.(2.3) the boundary condition is
The resolution of these difficulties resides in the realiza-
tion that very large clusters act like macroparticles and thus . . y"(N—1/2t)
obey macroscopic-type growth equation. A quartz crystal of §N(t)=§N—1(t)+2N_—1/2- (3.9

0.1 um diameter is modeled as X40-mer cluster. For
cm-scale crystals, the numbaerof SiO, units goes up to With this discrete and continuous formulation, numerical
10%. Also, ripening makes PSD dynamics a type of movingsimulation of the mesoscopic transition becomes feasible as
boundary problem, i.e., the range of cluster sizes grows witlthe solution of the following integrated problem:

time. This makes the computational range infinitely large, M

with infinite number of equations. These difficulties are over- % S wr

come by dividing the cluster size domain into two parts ata ¢ = Wo', (3.9
cluster numberN (say, N=100). Forn<N, the discrete
chemical kinetic formulation given in Eq&.3) and(2.4) is der
applied. But for larger clusters, we transform the discrete at =WpL,;—Wy n=1.2,...N-1, (3.10
kinetic equations into a continuous form by introducing the
continuous site fractioné, and continuous cluster volume PNLI ay™
fraction, y, via —+ —|v"Yy"-D"— =0, x=In(N-1/2)
+1/2. X o
n
£n(t) = £"(n,tydn, (3.0 (3.19
n-12 with
m _ o~ m

yr(n.H=ngin.b. (2 wWy=kp(K§cgo— ), (3.12
The quantities andy are assumed to be smooth functionsof . . o .
n so that they and the first two derivatives with respeat to Wi =Kn(KnCén = £nia), (313
are well defined for aln>N. abc 4 M N-1 Mo

Whenn>N, we assume that fd|<1, we may write ~ %%, 7| 7T >3 n§m+ﬂ > j ey™(x,t)dx

ot t\ NO m=1 =1 n NC m=1 Xo
M™(n+8,t)=y™(n,t)+ &ym( t) 5+ ! azym( t) 62
n+46,t)=y™(n, —(n, = n, . = .
y y on 2 o2 0, (3.19
(3.3  where

With this specific meaning of smoothnessydt with respect V. Mg N-T
to n, insertion of these definitions and E(.3) into (2.3 H=1— _n_ 77T2 — > Vmngm
yields the continuous equation for the PSD, Vy m=1 N° n=1

aym™ 9 aym Mo e

—+ —|v"™Yy"-D™—|=0, n=N, (3.9 > —f VTMeXy™(x,t)dx. (3.1

ot 12 ox m=1 N° X0
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TABLE I. Silica polymorph data.

Surface free

Mineral V2 energy Log dissolution raté
number Mineral species  (cm® mol™?) o (ud cm?) g; (molm2s71)
1 Amorphous silica 29.0 405 —0.369-7.89&% 107 4T — 3438
2 B-cristobalite 27.38 6.01 —0.936-3392T
3 a-cristobalite 25.74 8.43 —0.739-3586T
4 Chalcedony 22.688 10.65 1.744-2.847< 10" 3T —4189T
5 a-quartz 22.688 12 1.174-2.028< 10" 3T — 4158

&Thermodynamic data from Ref. 18.

bSurface free energies taken from Ref. 17.

‘Surface free energies estimated by Egg).

YExperimental dissolution rates taken from Ref. T9s in K.

In the numerical analysis of this system, the continuous The above formulation must be supplemented with a

range is truncated at a sufficiently large valuexauch that term that reflects the adsorption of SiGnits onto heteroge-

y is negligible beyond this value. The continuous problem isneous nucleation sites in the sediment. One might expect this

solved by finite element discretization, i.e., tkeaxis be- to be proportional to the number of adsorbed Simits.

tween InN and the cutoff value is divided intdlg equal Hence, for smalin we assume the independent adsorption

segments. With this, the system size is reduced to the nunenergy behaviog,'~dn for a coefficientd,, related to the

ber of finite elements\Ng, plusN, with N+ Ng<10?3 (typi-  binding free energy of a SiQunit to the site surface. To

cally N+ N¢ is taken to be between 300 and 4000 in thecreate an interpolation between the small and langermu-

results presented here, yielding an improvement ¢ #® las, consider the ansatz

the size of the problem order that stated in Sec.Rinally, " el

ask™ is always divided by at least one factor nfin the On = (M) dmun+ (1= ¢(n))(g,)", (4.9

equation of motion fory, the stn‘fngss of the problem has for weighting factory(n) that varies between 1 and 0 as

also been removed. The system is solved by the Newton—_ . o o
. . A varies between 1 and infinity. For concreteness, in this study

Raphson algorithm with an upwinding scheme for the con-

. we assume

tinuous part.

1
= (4.5
IV. EQUILIBRIUM AND RATE PHENOMENOLOGIES 1+(n—1)/ng

The size dependent equilibrium constant is obtainedor parametem, that fixes the transition number of SiO

assuming a dilute aqueous Sieblution, formulas determine then-dependence of the saturation
1 SiO,(aq) concentration fom,nmer.
an+ Mg;\bz(aa)+ RT In( —m) =01, (41)  The adsorption effect also included in the rate coefficient
Kn in a similar way. For small clusters the rate coefficient is

whereu sk aq IS the reference potential of Sj@q), Ris the proportional to the area of the nucleation sites and_ as the
2 . . cluster grows, the crystal surface area becomes dominant for
gas constant] is absolute temperature, ag]' is the free

energy of am-mer of polymorphm (referred asn,n cluster the kinetics rate. In our model, we used the same weighting
. 9y P ym _ 1p : S factor ¢/(n) for interpolation of rate coefficients as
in this document The (K;) * is the saturation Siglaq)

concentration of then,ncluster. The free energy of anmer o IVAEE
H H m
is classically related to the surface free energy and bulk free  k'=kpg| #(n)Ag+(1- l//(n))ﬁ(m n??, (4.6
energy via
(gm)°'=amn+bypn??, (4.2 Where?m is the rate coefficient per surface area for poly-

morphm and A, is the average area of the nucleation sites.
The porosity,¢ (i.e., the volume fraction of fluid with aque-
ous speciesis included in the rate coefficient expression to
; model the effect of volume fractions of crystals in chemical
er er arepo, via . o L
wPp h_m rate. As the volume fraction of solids increases the kinetic
Vv )2/3 rate decreases since the contact area of solids with liquids

wherea,, is the Gibbs free energy of bulk per SiGQ unit
(i.e., the molar free energy divided by Avogadro’s number
The by, factor is related to the surface free eneffge en-

m
NO (4.3 decreases.

The rate and equilibrium constants are temperature de-
whereN° is Avogadro’s number ang is a geometry factor pendent. These expressions for silica polymorphs are ob-
relating molar volumeV, to grain surface[for spherical tained from literature and the forms used in this study are
grains 3= (36m)%9. given in Table I.

bp=Bom
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0.45

TABLE Il. Error between analytical scaled PSD and numerical simulations

at different discretizations. 0.40 L, amorphous silica

Ne AX Error=y/(1/N)Z;(dMM— d£*ach2 0.35 -
0.30 +
200 0.25 0.1069 a-cristobalite
400 0.125 0.0878 0.25 |
800 0.0625 0.0698
4000 0.0125 0.0397 0.20

0.15

. chalcedony
V. SIMULATED OSTWALD PROCESSES: THE SiO ,

SYSTEM

A. Numerical simulations

0.05 -

VOLUME FRACTION OF POLYMORPHS

0.00 T T T T T
0 250 500 750 1000 1250 1500
TIME (years)

OStwaI.d progesses in the .mUItlple polymorph S&ys- . IG. 1. Simulated silica polymorph volume fraction evolution at 23 °C. The
tem were investigated for using our model and numerica ystem initially contains only amorphous silica at 40% volume fraction and
algorithm. An initially amorphous silica-rich, closed system finally reaches to the pure quartz state. Ostwald stepping behavior is ob-
with 60% porosity filled with an aqueous SiGolution was  served; note thag-cristobalite is essentially skipped.
allowed to evolve at either 23 °C or 100 °C via our model.

The initial amorphous silica PSD was assumed to be log-

normal with a mean diameter of 0.Qdm. The five silica that of equilibrium with the dominant polymorph at each
polymorphs listed in Table Il were allowed to nucleate, growStage of the stepping.

and compete for the total Si@ool. The initial concentration The evolution of the quartz PSD at 23 °C is shown in
c(0) of SiO,(ag) was chosen be that in equilibrium with the Fig. 3 during the Ostwald stepping and ripening stages. The
initial average size, amorphous silica cluster at the temperd2SD is displayed as’¢ vs log(n); the area under this
ture of the run. The heterogeneous sites have radius of 50 function for any interval of logf) is proportional to the
and the adsorption energies for all minerals are chosen to bguartz volume in that interval at that time. The long time fate
the same, i.e.d,=a,, for all polymorphs except as noted of this system is that of pure quartz evolving according to
below where special cases were simulated to illustrate hoWstwald ripening, i.e., larger quartz crystals grow at the ex-
the energetics of the nucleation site can thwart the normgbense of the smaller ones. As our model approaches the
Ostwald stepping sequendsee Sec. V D beloyw For the LSW equations for large, it should recover the LSW scal-
numerical simulations, the cluster number for transition froming behavior. This is suggested in Fig. 3 where a steady pulse
discrete to continuous behavior is choseMas100, and the  of n?£%4(t) is seen to emerge at long times, propagating to
continuous range of the logarithmic cluster number axis ighe right with maximum located at a point that advances as
divided into 200 segmentdNg=200) with Ax=0.25. With  t*2 This behavior, different from the clasgit’® behavior, is

this numerical data, the cluster size ranges from monomer tpustified for our model via the scaling analysis presented in
5x 10?*-mer is simulated for the five polymorphs, and a totalthe next section.

of 1497 equations are solved at each time step. The results of A difference in low and high temperature cases is that
the simulations are as follows. the lower surface free energy of the intermediate phases rela-

The simulations illustrated a richness of nucleation andive to quartz is masked at higher temperatures. However, the
Ostwald processes. The higher free energy polymorphs préew bulk free energy advantage of quartz is diminished with
cipitate first[at the expense of amorphous silica throughincreasing temperature. The net result is that as temperature
SiO,(ag) dissolved from the lattébut eventually lower free
energy polymorphs nucleate and grow at the expense of the
higher free energy ones. The evolution of the silica poly-
morph volume fractions at 23 °C is seen in Fig. 1. The amor- ¢
phous silica is quickly dissolved, allowing lower free energy gs
ones to nucleate and grow. The intermediate polymorph 5:"10 ]
B-cristobalite is essentially skipped, anecristobalite domi- >
nates the system at the expense of amorphous silica. Bug 1_\=
soon,a-cristobalite also starts to dissolve, and is replaced byﬁ ]
chalcedony and ultimately, quartz. Quartz always has higherg , |
volume fraction than chalcedony because nucleation site ad<
sorption energy favors quartz over chalcedony. As the ther-©
modynamic advantage of quartz over chalcedony is rather
small, these two polymorphs coexist over long times. Fi- o : . ‘ . .
nally, chalcedony vanishes and quartz is the only surviving 0 250 500 750 1000 1250 1500
phase concluding the Ostwald stepping dynamic. The varia- TIME (years)

tion Of_ SiO(ag) .con'centration QUring the OSt\IY&|d stepping Fig. 2. The variation of Sigiag) concentration during the Ostwald step-
stage is shown in Fig. 2. The Sj@g concentration drops to ping for the simulation of Fig. 1.

100

bulk solubility of a.silica

bulk solubility of chalcedony

bulk solubility of quartz
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6000
1,000 yrs
5000 - OSTWALD
NUCLEATION AND
1,000,000 yrs
-~ OSTWALD STEPPING 60,000 yrs PV
ol PHASE
c 4000 -
o 10,000,000 yrs
»n
0. 3000 FIG. 3. Simulation evolution of the
I':' quartz PSD during the Ostwald step-
[aed ping and ripening for the case of
g 2000 - Fig. 1.
o
1000 -
60 yrs
0 T
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

LOG (n)

increases, the overall process amorphous siigaartz poly-  B. Scaling behavior
morph stepping is accelerated. In the Ostwald ripening
phase, when compared for the same time interval, highelg,S
temperature evolution yields larger average size for quartz
than low temperature evolution. Ripening of quartz crystals
at 23 °C and 100 °C are given in Fig. 4 as a logarithmic pIoty
of average crystal size vs time. We define the average crystal
size as the median diameter. As seen from this figure, the &7y+n7 E(K c—1)y
average size of quartz evolved at 100 °C is around one order dt anjin "

of magnitude larger than that of evolved at 23 °C. It is inter-

esting that the ripening stage at both temperatures can ba the asymptotic regimé, andK,, are determined by the
distinguished from the earlier stages by a linear increase alependence of the surface areamoiror smooth clusters the
the average size with time in the logarithmic plot. The linessurface area is proportional t&¢'® but for fractal clusters it

for different temperatures have the same slope of 0.5, whicbhan grow with a higher power thag FurthermoreC may
yields a growth rate proportional 2, independent of the have a factor o~ for diffusion controlled growth. To
temperature of evolution. In the next section, we will justify generalize our treatment, we introduce a phenomenological
this result via scaling analysis. exponentw such that

The scalinglong time Ostwald ripeningbehavior of the

D is a rather general property of the model of Sec. Il for
large class of systems. According to E§.4) the PSD

(n,t)(=né(n,t)) for a single polymorph system satisfies

=0. (5.9

1.E+02

1.E+01 1 / 0.5 unit

@ 1 unit
c RIPENING PHASE
g 0.5 unit
—~ 1.E-01 A 1 unit FIG.4. T | evolution of the av-
% 100 °C SIMULATION erage paerrt]?ggrasii\éo liJIIIL?srertinge ?r\mle
k) emergence oft'? scaling at long
¢ 1.E-02 - times, regardless of temperature.
9 RIPENING PHASE
(23 °C)
1.E-03 A
23 °C SIMULATION
1 .E'04 T T T T T T T T

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
LOG (TIME) (years)
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10
8 Case 2
Case 3 Case 3
6 .
Case 1
4 /\
)
c‘£ 2 Case 2 \ FIG. 5. Solutions for the asymptotic
o C_, Eq. (5.9 at the ripening stage for dif-
L 0 ‘ T T ' ferent values ofy. Note that onlyy
<_(I 5 0 1 E\ 3 4 5 = 711 gives a physically relevant PSD.
8 = Root-1 for Root for
Case 3 Case 2 Root-2 for
-4 Case 3
-6 i
Case 3
-8
-1 0 i
1 o whereQ has a constant, finite value determined by the initial
Kn ~ —|1=—| (5.2 conditions. In the asymptotic regime;— 0 and this equation
n—e Ce n takes the form,
K, K 1 (=ny(n,7)
PO (5.3 Q=— d, (5.8
N nown CowJO {

wherew=1/3 for the simulations of the previous section. In which suggests that &3 is constant, there may be solutions
arriving at this ansatz we restrict our treatment to thesuch thaty(n,t) might be a function of the similarity vari-
reaction-limited case; for the diffusion-limited cade,  able only. DefiningY(Z)=ny(n,t)/¢*" %) and substitut-
should vanish aa~“~(#®) and not as1~ . Furthermore, we ing into Eq.(5.6), the modified PSD functiol satisfies
assume that the surface area increases’a$ asn— .

Introducing the supersaturatienvia c..c=c—c,,, Eq.(5.2) d

becomes in the asymptotic regime, dg[wu(g,y) 1=0, .9
ay | k a ) where
—+n—|—|o——|y|=0. 5.4
gt on|pe ne )Y 6.4 1, 1 1
U(§,7)=—Z {f=— i+ (5.10
Let us now investigate similarity solutions of E¢h.4) Yo

that generalize the LSW asymptotic results for the presenéndy is defined via
w-system. To do so we introduce the similarity varialjle

and a modified timer such that 1do a 1 do
VST dr T ke gd dt 619
on® kw o
l= . dr=—c?dt. (5.5 ) o o ] )
a a If Yis to be a similarity solutiofti.e., Y is a function of{ but

not of 7), theny must be a constant. The mass conservation

With this we find equation with the new variables has the form

ERHE
arl Tearln\ )

In this equation we have made explicit the fact that the firs
term is a partial derivative with respect @t constanh (not

— 1 o
0 S Q=—— fo oY (2)de. (5.12

RNe are thus seeking a solution of E§.9) which satisfies

0 the normalization conditiof6.12). The solution of Eq(5.9)
Conservation of SiQunits during ripening yields IS
I q A .
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This equation has three types of solution depending on th€ase 2. One double roaf;={,=2 (y=1/4),

value of y. These solutions correspond to the cases where

has no root, one double root and two distinct roots. We ex-

amine each case separately to determine the valuefof

which the solution(5.13 is physically relevant. Y(0)= ¢ el2/o(t-2)] (5.14h
Case 1. No real rootst = 1/y*— 4/y<0, 2(2—ap+ 4yt ' '

4
(2= (Uy) L+ Uyt 2

% e{(l/ww‘——A) arctan2¢(1/y)/V=~4AT1} )

Y({)=A1
Case 3. Two distinct roots{; ,= 12y=(1/2)yA, and A

(5.148  =1/y*—4ly>0,

p
{
As = ‘ = (<
(é’l_ §)1+(l/2a)) (1/2yw\sf)(§2_§)1+(1/211))+(1/23/va)
¢
Y(9=9 _A4(§_ £)FF (120) (120 B) () )1+ (U20) + (1720 8) h<i<fs (5.149
As 1+(120) — (12yw sx)g 1+(1120) + (12y0 K) * (=62
({—40) TR E) e

\

for constantsA,, ... ,As to be determined. In Fig. 5, these same scaling exponent of tinigee below. We do not inves-

three cases are plotted. In all cases independend, dhe
large ¢ behavior of the integrand in Eq5.12 is ZY“Y(¢)

large Z1/5; therefore the largg contribution to the integral

appears to be logarithmically divergent. Therefoxd{)

tigate further here which of these solutions is the most stable.
However, as noted abow!l derivatives ofY with respect to

¢ must vanish at*. This is the only case foy= 3, Case 2.
For Case 2 ¢=13), Y and all its derivatives vanish @t=2.

Note that for this casg=; and from Eq.(5.10 we see that
u anddu/d{ vanish atf=2 whereY vanishes. Thus, we find
y= % and * = 2. With this the asymptotic PSD is given by

should have an augmented form: it is one of the solution
given in Eq.(5.14 between G<{<¢* and it must be equal
to zero after the poinf={*.

The key to the divergency dilemma is basically an argu-

ment of causality. If at time zero, there were only finite size Ag*(llw)e(llm; g~ (M)[&*/(E* =01
particles, then in any finite time the PSD must be identically,, . (L —¢)2t e
zero for all{ beyond a cutoff valug™. Y(o)= for (<¢*=2
TheD-term in Eq.(3.4) involves, in the present notation, N
a term of the formd?Y/d{? if these correction terms were 0, for {=¢ (5.19

retained. ThusdY/d{ must be continuous for alf; other-
wise theD-term would be infinite and the above solutions The constanf is obtained from the mass conservation con-
would be unphysical as thB-terms were assumed to be dition (5.12) one finds

small. By a similar argument, the transformation of the dis-

crete chemical kinetic model to the continuous one yields a Qc.w
sum of terms involving all derivatives. Thus, if any deriva- . 1+ (o) . :
tive of Y with respect ta is discontinuous af= ¢*, then the J§ l/wellwmef(lm)u 1 0ldg

solution will also be unphysical. More dramatically, these (5.16

types of lack of smoothness Mwould imply a breakdown

of the entire continuum theory, a physically nonintuitive re-In conclusion,y is determined as an eigenvalue aAds

sult. Thus, this impliesY and all of its derivatives must be implied by normalization. The cutoff at* =2 is a property

zero at{={*. of the form of the PSD equation and is required by the cau-
For the Case 1%>3), Y has no zero for & /<. In  sality. The vanishing of all derivatives &t ¢* and the con-

Case 3 (<3), the solution has a divergence to the left of tinuity of dY/d{ for 0<{¢<{* shows the self-consistency of

where it has its first zero so that it cannot be a physicabur continuum approximation to the discrete chemical kinet-

solution if y<w(4w+2)/(4w+1)?=y*. For y*<y<3 a ics model.

surprising situation arises: there is a one parameter family of  For rough (fractal) particles, w<3. Three cases fot

scaling solutions for whicly and its first derivative is zero at <3 are compared with the smooth particle case in Fig. 6.

the first root,{;. For a givenw, with vy in this acceptable The PSD’s are scaled to have unit area under the curves. The

range, the mode particle sizes of these solutions have thmaximum point of the PSD’s are §t/\1+(1l/w), and the
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4.00 growth systems, the square of averagmwde particle diam-
250 4 ®=1/100 eter grows linearly with time. In the LSW theory, where
growth is diffusion controlled, the cube of the average diam-
eter grows linearly with time. Hence, kinetic limited ripening
. 2.50 - is faster as one expects.

w

o

S
\

Y(©)

§ 2004 Ripening for fractal clusters is expected to be faster than
a ' 0=1/10 for smooth ones. From the definition ¢f the maximum of
T 1501 w=1/5 the PSD is at
2 o=1/3

1o ()(N°) max

0.50 {mad ©) = ———. (5.19

a
N s 05 ow 1 1m 1s 1w » Using Eq.(5.11 for thet-dependence af and noting that
g
FIG. 6. Comparison of the PSI¥(£), for smooth particle$w=1/3) and for {mad @)= 1+ (Lw) ' (5.20
rougher(fractal-like) casesw<1/3.
one finds that
. . . 2 1/6w

location of maximum points moves towards the left @s (n¥3) - 2akw K {160 (5.21)
decreases, yielding narrower PSD’s for rougher particles max 1+ '

than for smoother ones. hi ith for w="1 and sh hat ripeni
Our numerical results corresponds do=1/3, in which | NS agrees wit Eq5.18 for w= 3 and shows that ripening

the surface area is proportional 3. For this caseA accelerates as the roughness of the clusters incréiasess

=1.05Qc,,. As seen from Fig. 6, af=1, Y({) has a maxi- ¢ decreasgs

mum. Therefore from the definition of the variablg

(nY3) = al o, where 0Y3) .., represents the value of®  C. Comparison of asymptotic and numerical results
at which the asymptotic PS®({) has a maximum.

Since y=1/4, Eq.(5.17) implies In the numerical simulation, we obtayr{n,t) at various

times. To test how accurate our numerical scheme is, we
1 3a do investigate the following:

== 5.1 . . L
[ ko? dt (.19 (1) Do the numerical results yield a time independent scaled

form?

(2) If there is a numerical time-independent PSD, does it
1\2 1 s ) k ) converge to the analytical scaled PSD and what is the
—] =5l mad® =g t+constant, w=s3. convergence rate?

« (5.19 (3) Is there a numerical power law relating avera@e

moda) diameter to time and is it converging to the ana-
This determines the variations of concentration and maxi- |ytical square law?

mum of the PSD with time in the asymptotic regime. Since

n'3is a measure of crystal diameter for this smooth cluster ~ For the purpose of comparison, a pure quartz system

case, we can conclude that, in surface kinetic controlledvith initially having the average diameter of 0.01 microns

which implies that

0.9
0.8 - mmm t=200,000yrs
0.7 | o oo t=1,000,000 yrs

t= 10,000,000 yrs

0.6 1
~ 05 FIG. 7. The numerical algorithm yields a time indepen-
N4 dent scaled PSD. The scaled PSD’s of the numerical
o 0.4 simulations at 200 000, 1 million, and 10 million years
exactly match each other. Note that tkexis essen-
0.3 4 tially particle diameter scaled with the averageode
diameter.
0.2
0.1 1
0.0
0.0 0.5 1.0 1.5 2.0 25 3.0

C=n 1/3/(n 1B)mode
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1.40

Analytical
Ng = 4,000
1.20 A F Scaled PSD

1.00 -
0.80 Fedh N

0.60 -

: % finer
0.40 + finer vy, discretization
discretization \9\\.\‘4_

SCALED PSD, &(t)

0.20 -

0.00 \ T
0.0 0.5 1.0

3.5 FIG. 8. Convergence of numerical results to the ana-
lytical solution, () comparison of numerical scaled
(a) g PSD with the analytical one fadg= 200, 400, 800, and
4000. Note that adlr increases, the discretization be-
1.4E-01 comes finer, and the numerical results approach to the
analytical one(b) the error of numerical results versus
the number of discretization elemeng .

1.2E-01 -

1.0E-01 -

8.0E-02

ERROR

6.0E-02 - Error = 0.64 * N 033
4.0E-02

2.0E-02

0.0E+00 T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500

(b) N

and volume fraction of 0.40 was investigated at 23 °C. Theactly to the PSD at 10 million yearsolid curvg. This im-
numerical simulations are done witi=100 and withNg plies that the numerical simulation yields a time-independent
varying from 200 to 4000. At each time step, the numericalscaled PSD.
simulation gives the quartz PSD in the form &f in the The convergence of the numerical scaled PSD’s to the
discrete range (¥n=<N) and y¥(n,t) in the continuous analytical one is shown in Fig.(&. The numerical PSD’s
range. From the definitions given in the previous section, theorrespond to the simulations witd- =200, 400, 800, and
scaled PSDY, will be related toy(n,t) via 4000. The numerical scaled PSD’s are more dispersed than
the analytical one, but converge to the analytical PSD as the
discretization of the numerical scheme gets finer. The dis-
= (5.22 persed shape of numerical PSD has two origins. First, for the
(o(H)* n*® analytical solution, we ignored tHa-term of Eq.(3.4). The
D-term widens the PSD via a diffusionlike effect, especially
Therefore, for any given time, the scaled PSD is proportionaht the early stages of ripenin@hen the typical values af
to ®%(n)=y%n)/n*® of the numerical results, and are not so large The deviation of the numerical solutions
(9% can easily be evaluated from the position of thefrom the analytical asymptotic one duelsterm is indepen-
maximum value ofb%. If there is a time-independent scaled dent of numerical discretization, and vanishes as the system
PSD, the numerical results illustrated in the formd@¥ vs  ripens. The second reason for the dispersion of the numerical
nY¥(n¥3) % will coincide at every timestep. In Fig. 7, the results is the upwinding scheme used in the solution of the
numerically scaled PSDP%, is plotted at 200 000, 1 mil- continuous part® By applying the upwinding scheme, the
lion, and 10 million years of simulation witN=100 and oscillations due to the transport errors in the numerical solu-
N=200. As seen from this figure, the scaled PSD ation of the advective-type equatidB.4) are overcome at the
200 000 and 1 million yeargdotted curvesfit almost ex-  cost of an effective numerical dispersion. The error due to

a* y(n,t)
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2500
—NF =200
2000 1 m NF =400
o NF =800
1500 -
— 0.66 unit FIG. 9. Linear variation betweem??),,., and \t is
-\—C | oo uni obtained in numerical simulations. The solid line is the
~ 1000 - islope ~ 0.66 numerical evolution wittNg =200, and the dotted ones
i correspond to the finer discretizationsl{=400 and
800.
500 -
0 T T T T T T
0 500 1000 1500 2000 2500 3000 3500
t0.5 (yearso5)
the upwind differencing depends on the discretization, and a
becomes smaller as the discretization gets finer. The errors  (nY®) = \/ =tY*+ constant. (5.29

for the numerical simulations are listed for different discreti-

zations in Table Il and plotted in Fig.(®. The error is Using the data given in Appendix B with the definitions in
calculated as the square root of the sum of the square &ec. V B, for quartz at 23 °C,

differences at each discretization point. By curve fitting these =

2/3
values, we obtain error as a function of the numbigr of k:EZ¢3‘/367.,(V_‘lZ) =0.211 3@yead %, (5.25
discretization elements, we find N

0.33 — 2 —
4( 1 ) a= ﬁqu_ 12.104, (52@
Error=0.64 — . (5.23
F the analytical proportionality constant become&a/6
=0.653. Unlike the PSD errors listed in Table Il, the numeri-
The slowness of the convergence is likely associated with thga| error of growing rate in thélr=200 simulation is less

simple constant finite element functions used. Howeverihan 29, and it decreases rapidly as the mesh gets finer.
these elements had the convenient property that total mass

was exactly conserved. Finally, this extrapolation formula _ . ) :
may be generalized and used to improve numerical simula?” Nucleation site energetics and Ostwald stepping
tions to infinitely fine mesh results. With this we conclude In the numerical simulations of Sec. V A, the adsorption
that our numerical approach yields well controlled approxi-energies for all polymorphs are assumed to be the same. The
mations to the PSD problef?2 effect of variation in adsorption energy to promote the ini-
In Fig. 9, ("¥3)a Vs \t is plotted for numerical simu- tiation of one of the polymorphs is seen in the simulation of
lations with Nr=200, 400, and 800. As stated before, Fig. 10@). There a case is run wherein all data are as in the
(n*®).ax represent the value of'® at which the asymptotic previous runs of Sec. V A, except that the adsorption energy
PSDY(¢) has a maximum and it is a measure of the averagef S-cristobalite was taken to have the lower value af2
diameter for smooth particles. From this figure, it is seen thatvhile the other polymorphs had the same value. Unlike for
(n*®) ..« is linearly proportional to the square root of time. the symmetric adsorption case of Fig. @-cristobalite is
Therefore, we can conclude that there is a numerical powenitiated and dominates for long times. Favoring
law relating averagéor moda) diameter to time. The pro- p-cristobalite suppresg-cristobalite initiation. The change
portionality constantgthe slope of the growth curvesb- in the adsorption energies also effects the duration of the
tained from the numerical simulation results are 0.6660stwald stepping stage. For the unsymmetric adsorption case
0.659, and 0.656 foN-=200, 400, and 800, respectively. considered, Ostwald stepping takes much longer than for the
The sensitivity of these slopes to the numerical discretizatiosymmetric case.
is much less than that of the PSD curves. The exact propor- In Fig. 1Qb), the results of another simulation are given
tionality constant of the growth relation was given in Eq.for a case where the adsorption energy of quartz is higher
(5.18. Rearranging this equation yields the analytical relathan that of the other polymorphs vih,=0.8%%. As a
tion between §%9) ... and \t as result, chalcedony dominates over quartz for a long time; but
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0.00 { T r ‘ r ‘ r T FIG. 10. The effect of nucleation site energy on the
0 1000 2000 3000 4000 5000 6000 7000 8000 Ostwald stepping scenario, simulations at 23 °C are re-
peated with the unsymmetrical adsorption energies
(@) TIME (years) yielding, (a) B-cristobalite favored initiation dg_ ¢
=2a% and d,=a% for all other polymorphs (b)
0.45 quartz unfavored initiationd,,=0.8%%, anddy,=a%
amorphous silica for all other polymorphs Note the persistence of chal-
0.40 1 / cedony in caséb). Compare these results to that of Fig.
1; note the difference in time scale.
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eventually, the system reaches the pure quartz state. A fuders of magnitude in size, providing an integration of the
ther increase in the quartz adsorption energy results in eicro-, meso-, and macroscopic scales.

longer time for the system to reach the pure quartz state. The first stage, adsorption at a heterogeneous site, pro-
Although the system will always end up at the lowest energyides a way to, in part, avoid the free energy barrier pre-
polymorph, depending on the initiation scenario, the timesented by surface free energy. It also serves to introduce
required to achieve it can be so long that it may becomgower free energy phases early on in the overall process,
impossible to obtain quartz even on a geological time scaleauowing the system to skip some polymorphs or other
Thus, the microstructure of the adsorption site can dramatiphases in the Ostwald stepping sequence. The energetics of
cally change the Ostwald stepping scenario. the adsorption site can be so favorable so an intermediate
energy polymorph that lower free energy polymorphs can be
blocked for exceedingly long times. Similarly, if lower free
energy polymorphs are energetically strongly unfavored at

We have presented a viable approach for simulating théhe nucleation site, they can be inhibited from forming.
microscopic(adsorption and nucleatipistage to the macro- The nucleation stage is dominated by surface free energy
scopic particle growth stage of precipitation. The boundanyeffects arising from the interaction of small clusters with the
condition on our extended LSW equation provides an esserzhase form which it would, from the point of view of mac-
tially seamless integration of the chemical kinetic and confoscopic(bulk) free energy, like to grow. Nucleation barriers
tinuous formulations. are seen to be higher for lower bulk free energy phases as the

The four stages of precipitation can each profoundly afatter appear to have higher surface energy. The surface free
fect the evolution of the system. Our conclusions are baseenergy barriers are thwarted by higher temperature or when
on a new treatment of the chemical kinetic model of precipi-the spatial range of influence of the heterogeneous site ex-
tation that captures the evolution of clusters on over 23 oreeeds the critical nucleus size. While not considered here, it

VI. CONCLUSIONS



10522  J. Chem. Phys., Vol. 112, No. 23, 15 June 2000 G. Ozkan and P. Ortoleva

DISCRETE PART

A

r Y

& & & &

Pl x s FIG. 11. Schematic presentation of the cluster size do-

——— —| > main. The domain is divided into two parts; for small

0123 N-1 N n clu§ters (<N), discrete kinetics gquatlong are applied,
, while for the large clusters, continuous kinetics equa-
CONTINUOUS PART tion is written with respect to th&=log(n) variable.
:f A —~ The continuous domain is divided into equal sized ele-
Y ¥, y. y, ments for computational purposes in each of which the
| ! 2 3 NF PSD,y, is assumed to be constant.
B I %
—e—t—e———— ——t—»

AX X

Xo X1 X2 s Xney  XnE

is clear that differences in adsorption components in thelomain, the PSD equations are reformulated in a continuous
growth medium with the surface of the various polymorphsform by defining a PSD functiofg“-m andy™ which are as-
can also dramatically change the order in which the variousumed to be continuous on the cluster size axis. Starting
polymorphs nucleate. from the definition of the continuous site fractiofgq.

The Ostwald stepping stage, the competition of the vari{3.1)], and changing the interaction limits as
ous phases for common building blocksere SiQ(ag)] al- "
ways results in the final stage with the low free energy phase.  .m ,\_ Zm
As the difference in the bulk free energies of the latter de- &)= J—llzg (n+a.t)de, (A1)

creases, the persistence of near lowest bulk free energy . . .
phases increases. Both temperature and nucleation site enéf€ can apply Taylor series expansion arourtd obtain the

getics can dramatically change the stepping scenario. explicit relation between the discrete and continuous site
The ripening stage, which may overlap with Stepping,fractions. The integral in EAL) then becomes

leads to the long time state of fewer but larger particles. At » ~

long times LSW-type scaling is achieved but with a time gm(t):J (Em(n t)+a£(n t)

scaling that depends on both the rate limiting growth process ™" —1/2 ’ an

(attachment kinetics versus diffusioas well as the rough- -

ness of the particles. For smooth particles, ripening is slower n a_z FE" 4 d A2

than for rough(fracta) particles. 2 an2 (n.0) « (A2)

The methods used in this study can be generalized to
multimineralic systems or to more complémulticompo- Evaluating the integral, we obtain
nend growth media. These generalizations and the extension . ot 2k
to open and spatially nonuniform systems shall enable us to 0 =F )+ S 2 E) 9" (n.t)
analyze the effects of the infiltration of fluids into seafloor n OEL (2k+)1 2 gn2k ~
sediments and metasomatic, weathering and many other (A3)
geochemical systems as well as engineering contexts where _ . _
precipitation plays an important role. In all such contexts, thel € sécond term is seen to be a rapidly convergent series due
methodology presented should provide an effective framet® the[(2k+1)122< 4]~ factor (the first being 1/24 Fur-
work for simulating the microscopiemacroscopic transi- thermore, for large, the PSD is slowly varying with respect

derivatives, yielding
ACKNOWLEDGMENT fnm(t)EEm(n,t). (A4)

We thank the Division of Earth Sciences of Directorate

for Geosciences of National Science Foundation for suppo%‘,qte that the a}ssumed smoothpes_s of the PSD, or mpre Spe-
of this project. cifically the existence of all derivatives of the PSD with re-

spect ton, has strong implications for the acceptable solu-
. tions of the continuous PSD equatiofsee Sec. V B
QEBEI;\‘\I(D,\KGC%ERIVATION OF THE CONTINUOUS _ To obtain the_con'Finuous_ form of the PSD equations, we
insert the approximatiofA4) into Eg. (2.3). From the cen-
To analyze Ostwald phenomena, we must simulate #ral value theorem, the right-hand side of E8.3) may be
large range of the cluster sizes. In our approach, we divideéxpressed as a derivative of the continuous functsh at
the cluster size axis into two parts at a cluster $iz@s seen the pointn* in the interval betweem—1 andn, such that
in Fig. 11 and apply the discrete chemical kinetic formula- W], —W]'= — dW™/dn|,«, n—1<n*<n. Then, the dis-
tion for the small clustersn<N). For the other part of the crete kinetic Eq(2.3) takes the form,
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JET(n) W™

ot an

d m/mzm _Fm
= =~ TKT(KTeE™(n,) = £M(n+ 1)) T

(A5)

Using a first order Taylor expansion Ef” aroundn, with
n—n*=A, yields

aEm 9| m m m
P Or,_n{knA (Kpzac—1hé
aEm)
— (K™ JcA+(1—A) =] . (A6)
an
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m Fm 10¢"
én-1=¢ |n=N—(1/2>_§— ,
an n=N-1/2
~ (A11)
m_~m 1 9&m
EN=EMn=n—up T 5>
J n=N—(1/2)

InsertingA = 3 into Eq. (A6), the continuous PSD equation
takes the form,

gE™ g -
? = %[ knm—(1/2) (K?—(l/z)c_ 1)¢m

(A12)

1 o9&
——(K™ ,,c+1)—]| |.
2112 n

In terms of the continuous cluster volume fraction function

The value ofA is chosen in our approach to insure that they™, wherey™(n,t)= n~§m(n,t), Eq. (A12) takes the form

summation/integration of the site fractions over the whole
range of cluster size should be unity at all times. Therefore,
the time derivative of site fractions adds up to zero over full

range ofn,

d Mo 2 dem
dé n
dt m=1n=1 dt

=0, (A7)

where all the variables are the same as defined in Sec. Il.

Applying the discrete formulation up to cluster sike-1
and the continuous formulation for the regibh- 3<n<o

ay™ 19

- km
o n onl Kn—-@2

1
{E(Knm(m)C_l)
1 m m
+ E(an(lm)c—'— 1) y

(A13)

1 ay™
— (K™ c+1)—) .
on n=(112) n

Changing fromn to x=In(n), the continuous equations for

(as suggested in Fig. L1the conservation of nucleation sites he PSD takes the form of EB.4).

takes the form
d Mo N2t ggm ©  gEm
9o, i +J % dnf =0,
dt m=1 | n=1 dt n—1/2 Jt

Using Egs.(2.3) and (A6), we obtain

M

» [—vvw

(A8)

KM (K™ ,c—1)EM(n,t)

m=1

—kg"_A(Knm_ACA—i-(l—A))E(n,t)) }=O. (A9)
on N-1/2

APPENDIX B: SiO , DATA

Rearranging Eqs(4.1)—(4.4), the equilibrium constant
for an m,n-cluster is given by

RTIn |~ Un' 1~ O — H50,a9
n

= (N)dm+ (1= g(n)am— 1o ag+ (1= ¥(N))
X by [ (n+1)%3—n?3]. (B1)

For large crystalsp— o, the solubility(i.e., 1K[") only de-

Equation(A9) is to be satisfied for all possible cases; thus itpends on the bulk free energy via

must hold for situations in which th&", &' are zero for all
but one polymorph only. In this way, EGA9) holds for
every polymorph separately. Inserting the expressioWgr
given in Eqg.(2.4) and evaluating the continuous part rat
=N-— 3, one obtains

N-1(KN-1CEN_1— &0
=KN-(112-a (Krrllﬂl—(1/2)fAC_1)Em(N_%at)
. gEm
_(KN7(1/2)7ACA+(1_A))E(N_Eat)- (A10)

From Eq.(A10), it can be concluded thaty\=3, and the

RTIn| —|=RT In(c$)=am—ﬂ’§i’§)2(aa), (B2)

wherec! is the concentratiotmol/l) of SiO(ag) in equilib-
rium with bulk polymorphm. With this, the equilibrium con-
stant ofm,n-cluster becomes
dm_ :U“’S(it)z(aq)
In(KY) = —In(cX) — ¢(n)| —————In(cZ)

—(l—zﬁ(n))%[(n-ﬁ-l)m—n%). (B3)

To calculateK]!" at a specific temperature, the bulk solubility

boundary conditions for the discrete and continuous formu{cl)), surface free energyb(,), and adsorption energyl{,)

lations at the interface which satisfy E@\10) are

of polymorphm are needed.
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1. Bulk solubility (c7) whereo,=surface free energy ohin contact with an aque-

; . _ 0y1/3_ H H
Walther and Helgesdh calculated bulk solubilities for ©US Solution;Ay,=(Vy,/N7)™= lattice spacing normal to
silica polymorphs at temperatures ranging from 0 to 600 ocfhe surface(on the order of the thickness of the surface

and these calculated solubilities are in agreement with ex@Ye); A=3.39643,8=0.53. _ _
perimentally derived values. In our numerical simulations,, The coefficientsA and B were determined by substitut-

the bulk solubilities at a given temperature are calculated b{9 known o, values for quartz and amorphous silica into
polynomial approximation of the curves given by Walther q. (B4).

and Helgesor® The surface free energy coefficiett,,, is calculated
' from o, via
2. Surface free energy (b,,) 3v,, |
. . bp=4m0on,| —— (B5)
Where experimental data are available, surface free en- NO°

ergies can be estimated using the observed dependence of
solubility on specific surface area. These experiments have ) -
been reported for amorphous silica and quifti.the Si0, > Adsorption energy  (dn— K50, (aq)
units on the surface of a grain partially project into the aque-  The kinetics of small clusters and nucleation initiation
ous medium and partly reside in the bulk, then we mightg,e strongly affected by the adsorption energy of Qiits
assume that the interfacial free energy is a weighted sum gf the site of nucleation. Clearly this quantity depends
the bulk and solution free energies; thus we conjecture  strongly on the atomic-scale geometry and chemical nature
A of the heterogeneous nucleation site. Valued,pfre there-
Um:(AM’s‘i’bz(aquam):m- (B4)  fore most likely to be best estimated using molecular me-
Vim chanics software and is beyond the scope of this study. How-
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ever, we have included this parameter in our study togd
investigate the sensitivity of the nucleation and Ostwald prog;

Nucleation and Ostwald ripening in silica polymorph 10525

number of unitj

cesses to this parameter. In Fig. 12, the effect of adsorption

energy on saturation concentratiort§]) " are shown. In

these figures, temperature is 20 °C and the diameter of the
nucleation site is assumed to be 100 A. If there is no adsorp-
tion energy, the initiation of quartz needs a huge supersatu-

ration as seen in Fig. 1. Therefore, with no adsorption

energy, at 20 °C the initiation of quartz is practically impos-

sible. In Fig. 12b), the adsorption energies for all polymor-
phs are chosen to be the same, idg,=a,,. This selection

enables the initiation of quartz, even at the saturation con-

centration of bulk quartz.

4. Rate coefficients (k_m)

NO
—47r?
Vi

Surface area

dr (
dt
(B9)

In the monomineralic, monodisperse systemis the total
number of grains per unit system volume, and, uﬂnﬂbfor
the surface area of am' cluster, one finds

number of units

in solid state per| = 7A",N%, (K c—1).
unit system volum

(B10)

We obtained rate coefficients from experimental data agomparing Eqs(B7) and (B10) yields k =A"™NCg,,. For
n’ .

follows. The rate of change of the number of Sitnits in
the solid phase per unit time is given by

number of units
in solid state per
unit system volum

df
—WTE n—-
= 7r2 W= 712, KITKTCl £, (86)

where the variables are the same as described in Sec.

sufficiently large, smooth clusters, the rate coefficient is in-
dependent from the adsorption effects the rate coefficient per
unit area is related to the experimental dissolution rate via

Km= 0mN°. (B11)
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