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Abstract

The SU(2) coherent state path integral is used to investigate the partition function of
the Holstein dimer. This approach naturally takes into account the symmetry of the model.
The ground-state energy and the number of the phonons are calculated as functions of
the parameters of the Hamiltonian. The renormalizations of the phonon frequency and electron
orbital energies are considered. The destruction of quasiclassical mean-�eld solution is discussed.
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1. Introduction

Despite their simplicity, the dimer models are subject to intense work because of
the fact that they represent simple interacting electron–phonon systems of which un-
derstanding can provide information about the polaron dynamics for more realistic but
equally unsolvable systems. There are at least two reasons for such interest in the dimer
models. First of all, we can understand the essential features of the interaction between
the electron and phonon degrees of freedom. The other reason is that the dimer models
are physical approximations to many organic compounds at the molecular level.
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There are various analytical (semi-analytical) approaches to the electron–phonon sys-
tems in general [1,2] and in particular to the problem of a dimer with a few number
of electrons interacting with local vibrations [3,4]. Numerical solution of the two-site
polaron problem was performed in Refs. [1,5]. The formation of small polaron was
investigated and comparison with analytical results was ful�lled.
The simplest analytical dimer model contains only a single electron interacting with

the molecular phonons at two sites. One of the semi-analytical approaches is based on
the symmetry of Shr�odinger equation and consists in diagonalization of the Shr�odinger
equation in the electron subspace [6] followed by the analysis (usually numerical) of
the obtained equations in the phonon variables [3]. In Ref. [7] the partition function
of the dimer Hamiltonian was calculated approximately via path integral using Fulton–
Gouterman (FG) transformation [6,8]. In Ref. [9] the equation of motion method was
applied to analyze the infrared spectra of a system of noninteracting Holstein dimers.
In the present work, we examine a di�erent method. We apply the SU(2) coher-

ent state path integral to calculate analytically the partition function of the Holstein
dimer with a single electron. The advantage of this particular method is that it natu-
rally incorporates the symmetry of the underlying Hamiltonian. We discuss the validity
of the obtained results and compare them with those obtained from other analytical
approaches.

2. SU(2) coherent state path integral representation of the partition function of
the Holstein dimer

We start with the one-mode Hamiltonian

Hdim =−t(c+1 c2 + c+2 c1) + !(a+1 a1 + a+2 a2)
+ g(a+1 + a1)n1 + g(a

+
2 + a2)n2 + �(n1 − n2) (1)

with the one-electron constraint

n1 + n2 = 1 ; (2)

where in the case of no spin-dependent interaction we drop the spin indices from the
fermion operators. We can separate in Eq. (1) the one-phonon degree of freedom by
rotating the initial phonon coordinates as

a1 =
w + v√
2
; a2 =

−w + v√
2

:

The initial Hamiltonian is then written in a separable form as

Hdim = Hv + Hw ;

where

Hv = !v+v+
g√
2
(v+ + v) (3)
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Hw =−t(c+1 c2 + c+2 c1) + !w+w +
[
g√
2
(w+ + w) + �

]
(n1 − n2) : (4)

Since v and w are separate independent variables, the partition function of the
Hamiltonian (1) is the product of the partition function Zv of the displaced Harmonic
oscillator (3)

Zv =
e�g

2=2!

1− e−�! (5)

and the partition function Zw of the Hamiltonian (4). On the other hand, the parti-
tion function Zw cannot be calculated exactly. Due to the constraint (2) the Hamilto-
nian (4) can be naturally rewritten by using the electron pseudo-spin operators in the
representation

Ĵ+ = c+1 c2; Ĵ− = c+2 c1; Ĵ0 = 1
2 (c

+
1 c1 − c+2 c2) ;

Hw =−t(Ĵ+ + Ĵ−) +
[
g√
2
(w+ + w) + �

]
2 Ĵ0 + !w+w :

Now, it is more convenient for further calculation to apply the rotation in the spin
space about the x-axis by �=2:

Ĵy → Ĵ0; Ĵ0 → −Ĵy ;
where

Jx =
J+ + J−
2

; Jy =
J+ − J−
2i

; [Jx; Jy] = iJ0 :

We then obtain the following form of the spin Hamiltonian:

Hw =!w+w −
[
t − i

(
�+

g√
2
(w+ + w)

)]
Ĵ+

−
[
t + i

(
�+

g√
2
(w+ + w)

)]
Ĵ− : (6)

The partition function of the Hamiltonian (6) can be represented as a path integral
over SU(2) variables [10,11] and phonon variables:

Zw = Tr e−�Hw =
∫
DwD �wD�SU(2) exp

{∫ �

0
[− �wẇ − ! �ww

+
1
2
��(�̇)�(�)− ��(�)�̇(�)

1 + |�|2 +
1
2

[
t + i

(
�+

g√
2
( �w(�) + w(�))

)]
�(�)
1 + |�|2

+
1
2

[
t − i

(
�+

g√
2
( �w(�) + w(�))

)]
��(�)

1 + |�|2
]
d�
}
; (7)

where SU(2) invariant measure

D�SU(2) =
∏
�

2
�

d2�(�)
(1 + |�(�)|2)2 : (8)

For the simplicity of the numerical calculations at the last stage we use in the present
consideration the particular representation with the eigenvalue J = 1

2 for the SU(2)
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path integral. Just the same the analytical calculations can be performed for arbitrary
representation index. The evaluation of the partiton function (7) will be performed in
two steps. The Hamiltonian Hw is linear in terms of the SU(2) generators and the
path integral over the SU(2) variables can be calculated by the method developed in
Ref. [12]. The resulting path integral over the phonon variables w(�); �w(�) will be calcu-
lated in the stationary phase approximation.
According to the approach [12] the path integral (7) can be calculated by the change

of integration variables �(�); ��(�). The result is expressed in terms of the auxiliary
functions z(�); �z(�) which de�ne the change of variables. The details of the methods
can be found in Refs. [12,13]. Therefore, the integration over the SU(2) variables
yields

Zw =
∫
D�SU(2) exp

{∫ �

0
[− �wẇ − ! �ww] d�+ log sinh

∫ �
0 
(�) d�

sinh (1=2)
∫ �
0 
(�) d�

}
;

(9)

where


(�) =−
[
t + i

(
�+

g√
2
( �w(�) + w(�))

)]
z(�)

−
[
t − i

(
�+

g√
2
( �w(�) + w(�))

)]
�z(�) : (10)

The auxiliary functions z(�); �z(�) are de�ned through the following system of equations:

d
d�
z(�) +

[
t + i

(
�+

g√
2
( �w(�) + w(�))

)]
z2(�)

−
[
t − i

(
�+

g√
2
( �w(�) + w(�))

)]
= 0

d
d�
�z(�)−

[
t − i

(
�+

g√
2
( �w(�) + w(�))

)]
�z 2(�)

+
[
t + i

(
�+

g√
2
( �w(�) + w(�))

)]
= 0 (11)

with the usual periodic boundary conditions z(0) = z(�); �z(0) = �z(�).
Simplifying the term with the logarithm in Eq. (9) we obtain the following expression

for the partition function:

Zw = Zw− + Zw+ =
∫
DwD �w exp(S−) +

∫
DwD �w exp(S+)

=
∫
DwD �w exp

∫ �

0
{− �wẇ − ! �ww − 
=2} d�

+
∫
DwD �w exp

∫ �

0
{− �wẇ − ! �ww + 
=2} d�
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=
∫
DwD �w exp

∫ �

0
{− �wẇ − ! �ww

+
1
2
t( �z + z) +

1
2
i
(
�+

g√
2
( �w + w)

)
(z − �z)

}
d�

+
∫
DwD �w exp

∫ �

0

{
− �wẇ − ! �ww − 1

2
t( �z + z)

− 1
2
i
(
�+

g√
2
( �w + w)

)
(z − �z)

}
d� : (12)

It is interesting to note that the representation of the dimer partition function as a sum

Z = Z+ + Z− (13)

can be obtained [7] by applying the Fulton–Gouterman transformation [6,8] to the initial
Hamiltonian. It should be noted that the “functional” Fulton–Gouterman-like represen-
tation (12) can still be obtained by using method [12] even for those Hamiltonians for
which the usual FG transformation is inapplicable.
Eq. (11) form a set of coupled Riccati equations which cannot be solved exactly as

a functional of the arbitrary functions �w(�); w(�). In addition to this fact, the system in
Eq. (12) fall outside the class of a few exactly calculable non-Gaussian path integrals.
We present the evaluation of the path integral (12) in detail in the stationary phase
approximation for Zw−.

3. Stationary phase approximation

As the �rst step, we replace the trajectories �w(�); w(�) by their stationary values
obtained from the stationary phase conditions �S−=�w(�) = 0; �S−=� �w(�) = 0 as

�S−
� �w(�)

=
(
− d
d�

− !
)
w(�) +

ig

2
√
2
(z(�)− �z(�)) +

1
2

∫ �

0

{
t
(
�z(�′)
� �w(�)

+
� �z(�′)
� �w(�)

)

+ i
(
�+

g√
2
( �w + w)

)(
�z(�′)
� �w(�)

− � �z(�′)
� �w(�)

)}
d�′ = 0 (14)

and

�S−
�w(�)

=
(
d
d�

− !
)
�w(�) +

ig

2
√
2
(z(�)− �z(�)) +

1
2

∫ �

0

{
t
(
�z(�′)
�w(�)

+
� �z(�′)
�w(�)

)

+ i
(
�+

g√
2
( �w + w)

)(
�z(�′)
�w(�)

− � �z(�′)
�w(�)

)}
d�′ = 0 (15)

with periodical boundary conditions �w(0) = �w(�); w(0) =w(�): In accordance with the
general scheme of stationary phase approximation [14], the partition function Zw− is
represented as∫

D �wDw eS− ∼ eS0−
∫
D �wDw e�

2S− = eS0−(Det L)−1 ; (16)
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where we denote by S0− the zeroth-order term (the stationary solution) for the action
S−. Here L is the kernel of the non-linear integral operator de�ned by the second
variation of the action S−. Eqs. (14) and (15) contain the variational derivatives of
the auxiliary functions z(�); �z(�). The equations for �z∗(�′)=�w∗∗(�) can be obtained
by variation of Eq. (11) as

d
d�′

�z(�′)
�w∗(�)

+ 2
[
t + i

(
�+

g√
2
(w(�′) + �w(�′))

)]
z(�′)

�z(�′)
�w∗(�)

+ i
g√
2
�(�′ − �)z2(�′) + i g√

2
�(�′ − �) = 0 ; (17)

d
d�′

� �z(�′)
�w∗(�)

− 2
[
t − i

(
�+

g√
2
(w(�′) + �w(�′))

)]
�z(�′)

�z(�′)
�w∗(�)

+ i
g√
2
�(�′ − �) �z2(�′) + i g√

2
�(�′ − �) = 0 : (18)

Periodic boundary conditions on variational derivatives imply that

�z∗(�′ = 0)
�w∗∗(�)

=
�z∗(�′ = �)
�w∗∗(�)

;

where z∗(�) = z(�) or �z(�) and w∗∗(�) = w(�) or �w(�): From here on the notations
“∗; ∗∗” denote the conjugation or the absence of the conjugation, respectively. The
second variation of the action �2S− is expressed in terms of the �rst and the second
variational derivatives of the auxiliary functions z(�); �z(�). By variation of Eqs. (17)
and (18) we obtain

d
d�′

�2z(�′)
�w∗(�)�w∗∗(�)

+ 2
[
t + i

(
�+

g√
2
(w(�′) + �w(�′))

)]
z(�′)

�2z(�′)
�w∗(�)�w∗∗(�)

+2
[
t + i

(
�+

g√
2
(w(�′) + �w(�′))

)]
�z(�′)
�w∗(�)

�z(�′)
�w∗∗(�)

+2 i
g√
2
z(�′)

(
�z(�′)
�w∗(�)

�(�′ − �) + �z(�′)
�w∗∗(�)

�(�′ − �)
)
= 0 (19)

and

d
d�′

�2 �z(�′)
�w∗(�)�w∗∗(�)

− 2
[
t − i

(
�+

g√
2
(w(�′) + �w(�′))

)]
�z(�′)

�2 �z(�′)
�w∗(�)�w∗∗(�)

−2
[
t − i

(
�+

g√
2
(w(�′) + �w(�′))

)]
� �z(�′)
�w∗(�)

� �z(�′)
�w∗∗(�)

+2i
g√
2
�z(�′)

(
� �z(�′)
�w∗(�)

�(�′ − �) + � �z(�′)
�w∗∗(�)

�(�′ − �)
)
= 0 : (20)

Hereupon, we replace the functions z(�); �z(�); �w(�) + w(�) in Eqs. (17)–(20) by the
constants z0; �z0 and W0− correspondingly obtained as the time-independent solutions of
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Eqs. (11), (14) and (15). These equations give

z0 =

√
t − i(�+ (g=√2)W0−)
t + i(�+ (g=

√
2)W0−)

sign
(
�+

g√
2
W0−

)

�z0 =

√
t + i(�+ (g=

√
2)W0−)

t − i(�+ (g=√2)W0−)
sign

(
�+

g√
2
W0−

)
: (21)

We choose the branches of the square roots in Eq. (21) in such a way that the exactly
solvable limits (g=0 and t =0) can be reproduced. The factors sign(�+ (g=

√
2)W0−)

imply that we should make the branch cut along the positive real axis. Taking the sum
of Eqs. (14) and (15) we get

W0− =

√
2g(�+ (g=

√
2)W0−)

!E0−
sign

(
�+

g√
2
W0−

)
; (22)

where

E0− =

√
t2 +

(
�+

g√
2
W0−

)2
:

Now, the di�erential Eqs. (17)–(20) can be solved for the �rst and second variational
derivatives of z; �z with respect to w; �w. Then, these variational derivatives should be
substituted in the second variations of action S0− obtained by variation of Eqs. (14)
and (15). As a result the following form of the second variational derivatives of the
action can get:

�2S−
�w∗(�)�w∗∗(�)

= L0 +
g2t2 sign(�+ (g=

√
2)W0−)

2(t2 + (�+ (g=
√
2)W0−)2)

cosh 2E0−(�=2− |� − �|)
sinh �E0−

:

(23)

Here L0 is the second variation of the harmonic part of the action. In the framework
of the stationary phase approximation, the second variation de�nes the Gaussian path
integral with the kernel depending on the di�erence of the time �− �. Corresponding
path integral is calculated in the Appendix.
Using Eq. (23) we obtain for the partition function

Z− ≈ Zv · Zw− = e−�Eb

(1− e−�!)(1− e−�!1−)
1− e−2�E0−
1− e−�!2− : (24)

Here

Eb =
!W 2

0−
4

− 2E0− + !1− + !2− − !
2

− g2

2!

!21−;2− =
(4E20− + !

2)±
√
(4E20− − !2)2 + (16g2t2!=E0−)

2
: (25)
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The other partition function Z+ = ZvZw+ can be calculated separately in a similar way
which yields

Z+ =
e−�Ea

(1− e−�!)(1− e−�!1+)
1− e−2�E0+
1− e−�!2+ ; (26)

with

Ea =
!W 2

0+

4
+ E0+

(
sign

(
�+

g√
2
W0+

)
− 1
)
+
!1+ + !2+ − !

2
− g2

2!

!21+;2+ =
(4E20 + !

2)±
√
(4E20+ − !2)2 − (16g2t2!=E0+)

2

E0+ =
√
t2 + (�+ (g=

√
2)W0+)2 : (27)

The condition for W0+ is given by

W0+ =−
√
2g(�+ (g=

√
2)W0+)

!E0
sign

(
�+

g√
2
W0+

)
: (28)

To �nd the ground-state energy of the dimer one should represent the partition function
of the system in the form Z=

∑
n exp(−�En). The least energy among the En represents

the ground-state energy. Expanding the partition functions (24) and (26) we see that
the ground-state energy is the least energy between Ea and Eb. We will see when
analyzing the limiting cases g = 0 that Z− originates from the binding state of the
electron, so Eb(g = 0)¡Ea(g = 0). The same inequality holds for t = 0 limit. This
interrelation is true for g; t 6= 0 too. So, Eb represents the ground-state energy of the
dimer.

4. Exactly solvable limits

In this section, we investigate the exactly solvable limits g= 0 and t = 0.
(a) The non-interacting limit: g= 0
The electron and phonon subsystems are obviously decoupled in this case and the

partition function of the Hamiltonian (4) takes the form of a product of the electron
and phonon parts

Zw|g=0 = ZphZel : (29)

The phonon partition function now is that of the harmonic oscillator, Zph = (1 −
exp(−�!))−1. Electron part of Hamiltonian can be easily diagonalized in terms of
binding and anti-binding orbitals with the eigen energies

�b =−
√
� 2 + t 2; �a =

√
� 2 + t 2 :
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Therefore, the partition function (29) acquires the following form:

Zw|g=0 = e
−�√�2+t2

1− e−�! +
e�

√
�2+t2

1− e−�! : (30)

One can easily �nd that we obtain in the limit being considered W0+=W0−=0. Hence

!1±;2± =
[
!2

4E20

]
: (31)

Therefore, in the non-interacting limit, the sum of the expressions (24) and (26) is
transformed into Eq. (30). This implies that the partiton functions (24) and (26) cor-
respond to symmetric (binding) and antisymmetric (antibinding) electronic states. In
the work [7] the representation of the partition function of a dimer as Z = Z+ + Z−
was obtained. It is interesting to note that the summands Z+; Z− in that work di�er
from the summands of the same names which are obtained in the present work after
integrating (7) over SU(2) variables. The exact calculation of the path integral with
non-linear action corresponding to this solvable limit is represented in Ref. [15].
(b) The limit t = 0.
Now we turn to the other solvable case, t=0. In this limit, the electron energies of

the Hamiltonian (4) are given by �1=� or �2=−� depending on the site occupied (un-
occupied) by the electron. In both cases, the phonon partition function of Hamiltonian
(4) coincides with Zv, Eq. (5), so that we have

Zw|t=0 = exp(�g
2=2!)(exp(��) + exp(−��))
1− exp(−�!) : (32)

In the case, t=0 under consideration here it is easy to verify that W0−=−W0+=
√
2g=!

and for !±
1;2 the condition (31) is still valid. As a result, the partition function Zw− in

Eq. (24) is transformed into the �rst term in Eq. (32) whereas, Z+, (26) is transformed
into the second one. Therefore, our general expression reproduces both the exactly
solvable limiting cases.
Lastly, we would like to consider the dependence of exponents in Eqs. (24)

and (26) on �. We notice from Eqs. (22) and (28) that W0+ =W0− = 0 for �= 0 and
g2=!t ¡ 1. Nevertheless, the complicated renormalization (25), (27) of the binding and
antibinding energies takes place. In the general case, � 6= 0 it was found in Ref. [9] that
the additional distortion of the dimer takes place resulting in the renormalization of the
binding orbital energy in adiabatic approximation −√

t2 + �2 → −
√
t2 + (�+��)2.

In our approach the additional renormalizations di�er for Z− and Z+ and they are
represented by the general expressions (25) and (27).

5. Discussion and conclusion

Due to the stationary phase approximation we obtain a new e�ective constant of
expansion ge� = g2t2=!E30 which di�ers from the initial electron–phonon coupling
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Fig. 1. The e�ective coupling constant ge� as a function of g for !=t=1:2 (solid line) and the ratio Eb1=Eb0
(dotted line).

constant g=!. In this context, we refer to our approach as ”non-perturbative”. This new
constant can still be made small for su�ciently large g=!. The validity of the approx-
imation can be estimated by the comparison of the contribution into the ground-state
energy from the stationary trajectories, Eb0=S−|0 (Eq. (A.1)) and �2S− (quantum uc-
tuations). The contribution from the last term equals Eb1 = [(!1− +!2− −!)=2]− E0.
We cannot de�ne rigorously the region of validity of the stationary phase approxi-
mation. The general opinion is that the approximation is adequate if the contribution
from the stationary trajectories is dominant. The ratio Eb1=Eb0 is represented by Figs. 1
and 2. It shows that our approximation is adequate in the whole range of the parame-
ters except a narrow interval. The other criteria is the ratio of the e�ective expansion
constant to the phonon frequency g2t2=E30!. This ratio is represented by Figs. 1 and 2
as well.
Let us consider the ground-state energy Eb for various relationships between the

parameters of the model. For � = 0 we can obtain an explicit expression for Eb. For
weak electron–phonon interaction g2=!t ¡ 1 we get W0− = 0. Hence,

Eb =−2t − g2

2!
− !
2
+
1
2

√
!2 + 4t2 +

√
[!2 − 4t2]2 + 16g2t2

+
1
2

√
!2 + 4t2 −

√
[!2 − 4t2]2 + 16g2t2 : (33)
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Fig. 2. The e�ective coupling constant ge� as a function of g for !=t=5:0 (solid line) and the ratio Eb1=Eb0
(dotted line).

We can expand the square roots for some typical relative strengths of !; t; g. We have
for instance

if g.!.t; then Eb ' −t − g2

2!
− g2

4t
+
g2!
8t2

; (34)

and

if g.t.!; then Eb ' −t + g2t
2!2

− g2

!
: (35)

In the case, g2=!t ¿ 1 we �nd that

W0− =

√
2
g

√
g4

!2
− t2;

and

Eb ' −g
2

!
− t2!
2g2

− t2!3

4g4
: (36)

The �rst terms of ground-state energy in Eq. (35) coincides with the expression
obtained in Ref. [16] for the lattice in the strongly interacting limit.
Another quantity which is often calculated is the renormalized phonon frequency.

Our analysis indicates that a realistic picture is more involved than a simple calculation
of the renormalization of the initial phonon frequency. The obtained structure of the
dimer partition function can be treated as an e�ective splitting of the original phonon
frequency !. A similar splitting was obtained in Ref. [7] in the framework of at
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Fig. 3. The number of phonons as a function of g for !=t = 1:2. The non-valid part of the curve is marked
as a dotted line.

coherent state path integral approach. However, strongly nonlinear action hampered the
applicability of the stationary phase approximation in the at path integral in Ref. [7].
Another physical quantity which can be calculated by the obtained partition function

is the thermal phonon occupation factors,

nph =− 1
Z�
dZ
d!

; (37)

which are presented in Figs. 3–4 for such low temperatures (�t = 10000) that the
dominant contribution from the ground-state energy Eb is su�cient to consider. In
the narrow interval of the electron–phonon coupling constant g, where our approach is
inapplicable the number of the phonons calculated in accordance with Eq. (35) becomes
negative. We suppose that the smooth transition to small polaron picture takes place
in this area.
The critical value of the ratio g=t, where derivative @nph=@g becomes negative is

calculated as a function of phonon frequency !=t (Fig. 5). The obtained dependence
is linear except in the region of small g. It corresponds to “self-trapping line” of the
Ref. [17].
Accordingly to Ref. [18] the non-trivial part of the problem of one electron in

Holstein chain is the same as in two-site problem. So, our consideration concerning
the mean-�eld description of single-electron coupling with phonons and critical value
of ! as a function of the coupling constant g is also valid for the chain.
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Fig. 4. The number of phonons as a function of g for !=t = 5:0 . The non-valid part of the curve is marked
as a dashed line.

Fig. 5. The critical value of g=t as a function of !=t.
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Appendix

In this Appendix, we calculate the path integral
∫
DwD �w e�

2S− which is the Gaussian
integral with the kernel depending on the di�erence of the times �− �.
The action (S−)0 at stationary trajectories shifts the energy scale as

(S−)0 =
∫ �

0

[
− �wẇ − ! �ww − 


2

]∣∣∣∣
w= �w=W0−=2

d�

=−�!W
2
0−
4

+ �

√
t2 +

(
�+

g√
2
W0−

)2
sign

(
�+

g√
2
W0−

)
: (A.1)

Here we take into account that


|0 =−t(z0 + �z0)− i(�+ g
√
2W0−)(z0 − �z0)

=−2
√
t2 +

(
�+

g√
2
W0−

)2
sign

(
�+

g√
2
W0−

)
:

The e�ective action has the form

�2S− =
∫ �

0

∫ �

0

{[
1
2
( �̇ww − �wẇ)− ! �ww

]
�(�− �) + 1

2
sign

(
�+

g√
2
W0−

)

× g2t2

2E20 sinh �E0
cosh 2E0

(
�
2
− |�− �|

)

× ( �w(�) + w(�))( �w(�) + w(�))} d� d� ; (A.2)

where E0 =
√
t2 + (�+ (g=

√
2)W0+)2. The calculation of the functional determinant,

which is de�ned by the second variations can be performed with Fourier representation
for the paths w; �w [14].

S− = �
{
−! �w0w0 +

g2t2

4E30
(w0w0 + �w0 �w0 + 2 �w0w0)

}

+�
∞∑
n=1

{i!n( �wnwn − �w−nw−n)− !( �wnwn + �w−nw−n)

+
2g2t2

E0(!2n + 4E
2
0)
(wnw−n + �wn �w−n + �wnwn + �w−nw−n)

}
: (A.3)
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The action (A.3) in Fourier representation can be represented as

S− = �
{
−! �w0w0 +

g2t2

4E30
(w0w0 + �w0 �w0 + 2 �w0w0)

}
+ �

∞∑
n=1

( �wnw−n)

×
(
i!n − !+ K=(!2n + 4E20) K=(!2n + 4E

2
0)

K=(!2n + 4E
2
0) −i!n − !+ K=(!2n + 4E20)

)(
wn
�w−n

)
;

(A.4)

where K = 2g2t2=E0, !n = 2�n=�. We calculate the ratio Zw−(g)=Zw−(g= 0):

Zw−(g)=Zw−(g= 0)

=

∫
dw0 d �w0 exp[− (!− K=(4E20)) �w0w0 + ((K=2)=(4E20))(w0w0 + �w0 �w0)]∫

dw0 d �w0 exp[− ! �w0w0]

×
∞∏
n=1

!2n + ((K=!
2
n + 4E

2
0)− !)2 − (K2=(!2n + 4E20)2)
!2n + !2

=
sinh �E0 sinh (�!=2)

sinh (�!1=2) sinh (�!2=2)
: (A.5)
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