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Abstract

The method of reconstruction for ann-dimensional system from observations is to form vectors ofm consecutive
observations, which form > 2n, is generically an embedding. This is Takens’ result. Our analytical examples show that it
is possible to obtainspuriousLyapunov exponents that are even larger than the largest Lyapunov exponent of the original
system. Therefore, we present examples where the largest Lyapunov exponent may not be preserved under Takens’ embedding
theorem. 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Lyapunov exponents measure the rate of diver-
gence or convergence of two nearby initial points of
a dynamical system. A positive Lyapunov exponent
measures the average exponential divergence of two
nearby trajectories whereas a negative Lyapunov expo-
nent measures exponential convergence of two nearby
trajectories. If a discrete nonlinear system is dissipa-
tive, a positive Lyapunov exponent quantifies a mea-
sure of chaos.

The introduction of Lyapunov exponents to eco-
nomics was in [1]. Brock and Sayers [2] note that the
Wolf [3] algorithm is sensitive to the number of ob-
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servations as well as to the degree of measurement
or system noise in the observations. This observation
started a search for new algorithmic designs with im-
proved finite sample properties. The search for an al-
gorithm to calculate Lyapunov exponents with desir-
able finite sample properties has gained momentum
in the last few years. Abarbanel et al. [4–6], Ellner et
al. [7], McCaffrey et al. [8], Gençay and Dechert [9]
and Dechert and Gençay [10] came up with improved
algorithms for the calculation of the Lyapunov expo-
nents from observed data. Gençay [11] worked on the
calculation of the Lyapunov exponents with noisy data
when feedforward networks were used as the estima-
tion technique.

The main algorithmic design in all papers above is
to embed the observations in anm-dimensional space,
then by theorems of Mañé [12] and Takens [13] the ob-
servations are used to reconstruct the dynamics on the
attractor. The Jacobian of the reconstructed dynamics
as demonstrated in [14,15] is then used to calculate the
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Lyapunov exponents of the unknown dynamics. The
method of reconstruction for an-dimensional system
from observations is to form vectors ofm consecu-
tive observations, which form> 2n is generically an
embedding. The Jacobian methods for Lyapunov ex-
ponents utilize a function ofm variables to model the
data and the Jacobian matrix is constructed at each
point in the orbit of the data. When embedding occurs
at dimensionm= n, then the Lyapunov exponents of
the reconstructed dynamics are the Lyapunov expo-
nents of the original dynamics. However, if embedding
only occurs for anm > n, then the Jacobian method
yieldsm Lyapunov exponents, onlyn of which are the
Lyapunov exponents of the original system. The prob-
lem is that as currently used, the Jacobian method is
applied to the fullm-dimensional space of the recon-
struction, and not just to then-dimensional manifold
that is the image of the embedding map. Our examples
show that it is possible to getspuriousLyapunov ex-
ponents that are even larger than the largest Lyapunov
exponent of the original system.

2. The Jacobian algorithm

The Lyapunov exponents for a dynamical system,
f :Rn → Rn, with the trajectory,xt+1 = f (xt), t =
0,1,2, . . . , are measures of the average rate of di-
vergence or convergence of a typical trajectory.1 For
ann-dimensional system as above, there aren expo-
nents which are customarily ranked from largest to
smallestλ1> λ2> · · ·> λn.

It is a consequence of Oseledec’s [16] theorem
that the Lyapunov exponents exist for a broad class
of functions.2 The additional properties of Lyapunov
exponents and a formal definition are given in [20].

In practice one rarely has the advantage of observ-
ing the state of the system,xt , let alone knowing the
actual functional formf which generates the dynam-
ics. The model which is widely used is that associ-
ated with the dynamical system there is an observer

1 The trajectory is also written in terms of the iterates off . With
the convention thatf 0 is the identity map, andf t+1= f ◦ f t , then
we also write,xt = f t (x0). A trajectory is also called an orbit in the
dynamical system literature.

2 Also see [17–19] for precise conditions and proofs of the
theorem.

functionh :Rn→R which generates the observations,
yt = h(xt ). It is assumed that all that is available to
the researcher is the sequence{yt }. For notational pur-
poses, let

(1)ymt = (yt , yt+1, . . . , yt+m−1).

If the setU is compact manifold then form> 2n+ 1

(2)Jm(x)= (h(x),h(f (x)), . . . , h(fm−1(x)
))

generically is an embedding.3 Form > 2n+ 1 there
exists a functiong :Rm→ Rm such thatymt+1= g(ymt )
whereymt+1= (yt+1, yt+2, . . . , yt+m). But notice that

(3)ymt+1= Jm(xt+1)= Jm
(
f (xt)

)
.

Hence from Eqs. (1) and (3)Jm(f (xt ))= g(Jm(xt )).
The functiong is topologically conjugate tof . This

implies thatg inherits the dynamical properties off .
Dechert and Gençay [10] prove the following theorem
to show thatn of the Lyapunov exponents ofg are the
Lyapunov exponents off .

Theorem 2.1 (Dechert and Gençay [10]).Assume
thatM is a smooth manifold dimensionn, f :M→M

and h :M → R are (at least) C2. DefineJm :M →
Rm by Jm(x) = (h(x),h(f (x)), . . . , h(f m−1(x))).
Let µ1(x) > µ2(x) > · · · > µn(x) be the eigenval-
ues of the symmetric matrix(DJm)′x(DJm)x , and
suppose thatinfx∈M µn(x) > 0, supx∈M µ1(x) <∞.

Letλf1 > λ
f

2 > · · ·> λfn be the Lyapunov exponents of
f andλg1 > λ

g

2 > · · ·> λgm be the Lyapunov exponents
of g, whereg :Jm(M)→ Jm(M) and Jm(f (x)) =
g(Jm(x)) onM. Then generically{λfi } ⊂ {λgi }.

By Theorem 2.1,n of the Lyapunov exponents of
g are the Lyapunov exponents off . The approach of
Gençay and Dechert [9] is to estimate the functiong
based on the data sequence{Jm(xt)}, and to calculate
the Lyapunov exponents ofg.

3 By generic is meant that in every neighborhood off and h
there are functionsf̃ and h̃ so that the functionJm corresponding
to these functions is an embedding of the attractor off̃ and the
image of the image of the attractor underJm . Here 2n + 1 is the
worst-case upper limit.
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From Eq. (1) the mappingg which is to be estimated
may be taken4 to be

(4)g :


yt

yt+1

...

yt+m−1

→


yt+1

yt+2

...

v(yt , yt+1, . . . , yt+m−1)


and this reduces to estimatingyt+m = v(yt , yt+1, . . . ,

yt+m−1). Herev is an unknown map. Linearization of
the mapg yields1ymt+1= (Dg)ymt 1ymt . The solution
can be written as1ymt = (Dgt )ym0 1ym0 .

The Lyapunov exponents can be calculated from
the eigenvalues of the matrix(Dgt )ym0 using QR
decomposition. This method is discussed in [14,15,21]
and a modified version is presented in [6].

3. An example

If x is a fixed point, then the subspacesV jt = V j
do not depend upont . Let us consider the mapping
f (x) at the fixed pointx. ChooseV 1 = R2, V 2 =
span{(0,1)} andV 3= {0}. For |µ1|> |µ2| consider5

(5)Df (x)=
[
µ1 0

0 µ2

]
.

This will satisfy parts (1) and (2) of Definition in [20]
and we will have

λ1= lim
t→∞ t

−1 ln
(∣∣µt1v1+µt2v2

∣∣)= ln |µ1|
for v ∈ V 1\V 2,

λ2= lim
t→∞ t

−1 ln
(∣∣µt1v1+µt2v2

∣∣)= ln |µ2|
for v ∈ V 2\V 3.

This definition mainly generalizes the idea of eigen-
values to give average linearized contraction and ex-
pansion rates on a trajectory. An attractor is a set
of points towards which the trajectories off con-
verge. More precisely,Λ is an attractor if there is
an open setU ⊂Rn with Λ ⊂ U , f (U) ⊂ U and
Λ =⋂t>0f

t (U) whereU is the closure ofU . The
attractorΛ is said to be indecomposable if there is
no proper subset ofΛ which is also an attractor. An

4 Here, the time step is assumed to be equal to the delay time.
5 This example is from Guckenheimer and Holmes [20].

attractor can be chaotic or ordinary (or nonchaotic).
There is more than one definition of a chaotic attractor
in the literature. In practice the presence of a positive
Lyapunov exponent is taken as a signal that the attrac-
tor is chaotic.

Now, suppose that the observations come from the
following:

(6)y = h(x)= x1+ x2,

where h :R2→ R. Let us consider a 3-embedding
history generated fromh(x) so that,

(7)J 3(x)=
 1 1
µ1 µ2

µ2
1 µ2

2

x and

(8)J 3 ◦ f (x)=
µ1 µ2

µ2
1 µ2

2

µ3
1 µ3

2

x.
Let

g(y)=
0 1 0

0 0 1

0 −µ1µ2 µ1+µ2

y
for y ∈R3. Then

g ◦ J 3(x)=
µ1 µ2

µ2
1 µ2

2

µ3
1 µ3

2

x = J 3 ◦ f (x).

Therefore, the condition for conjugacy is satisfied.
Also,

(9)(Dg)y =
0 1 0

0 0 1

0 −µ1µ2 µ1+µ2

 .
Let W1 = R3, W2 = span{(1,0,0), (1,µ2,µ

2
2)},

W3= span{(1,0,0)} andW4= {0}. Then

(Dg)y
(
W1)= span

{(
1,µ1,µ

2
1

)
,
(
1,µ2,µ

2
2

)}⊂W1,

(Dg)y
(
W2)= span

{(
1,µ2,µ

2
2

)}⊂W2 and

(Dg)y
(
W3)= {0} ⊂W3.

(Notice that the sets(Dg)yWj can be proper subsets
of Wj . In this example, this comes about since the
dynamics ofg are not of full dimension, which is
immediately apparent from Eq. (9).) Ifv ∈ V 1\V 2
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then

v = α
[

1

0

]
+ β

[
0

1

]
, α 6= 0, and

(
DJ 3)v = α

 1

µ1

µ2
1

+ β
 1

µ2

µ2
2

 .
Here,α 6= 0 implies that(DJ 3)v ∈ W1\W2. If v ∈
V 2\V 3 then

v = β
[

0

1

]
, β 6= 0, and

(
DJ 3)v = β

 1

µ2

µ2
2

 .
Also β 6= 0 implies that(DJ 3)v ∈ W2\W3. If w ∈
W1\W2 then

w = α
 1

µ1

µ2
1

+ β
 1

µ2

µ2
2

+ γ
1

0

0

 , α 6= 0,

and

∣∣(Dg)tyw∣∣=
∣∣∣∣∣∣αµt1

 1

µ1

µ2
1

+ βµt2
 1

µ2

µ2
2

∣∣∣∣∣∣ .
Hence limt→∞ t−1 ln |(Dgt )yw| = ln |µ1|.

If w ∈W2\W3 then

w = β
 1

µ2

µ2
2

+ γ
1

0

0

 , β 6= 0, and

∣∣(Dgt )
y
w
∣∣=

∣∣∣∣∣∣βµt2
 1

µ2

µ2
2

∣∣∣∣∣∣ .
Hence limt→∞ t−1 ln |(Dgt )yw| = ln |µ2|.

If w ∈W3\W4 then

w = γ
1

0

0

 , γ 6= 0

and|(Dgt )yw| = 0. Therefore

lim
t→∞ t

−1 ln
∣∣(Dg)tyw∣∣=−∞.

This example shows Theorem2.1 at work. The two
largest Lyapunov exponents ofg are the Lyapunov
exponents off , and in this example the ‘spurious’
third exponent ofg is−∞.

4. Spurious Lyapunov exponents

In [9,22] the numerical studies demonstrated that
the n Lyapunov exponents off turned out to be the
largestn Lyapunov exponents ofg. These results were
obtained by using an observation function of the form

(10)h(x1, x2, . . . , xn)= x1

which has been widely used in simulation studies of
nonlinear dynamical systems.

Consider the following variation to the example in
the previous section. The dynamics are the same linear
dynamics of Eq. (5) and the observation function is
the same as Eq. (6). From this we obtain the same
embedding equations as (7) and (8). Now however,
consider the following functiong: for anya ∈ R, let

(11)g(y)=
a 1− a(µ−1

1 +µ−1
2

)
aµ−1

1 µ−1
2

0 0 1

0 −µ1µ2 µ1+µ2

y
for y ∈ R3. Notice that this is not in the form of
Eq. (4), however it does satisfy

g ◦ J 3(x)=
µ1 µ2

µ2
1 µ2

2

µ3
1 µ3

2

x = J 3 ◦ f (x)

and therefore the condition for conjugacy is satisfied.6

Also,

(Dg)y =
a 1− a(µ−1

1 +µ−1
2

)
aµ−1

1 µ−1
2

0 0 1

0 −µ1µ2 µ1+µ2

 .
If |µ2| > |a|, let W1 = R3, W2 = span{(1,0,0),
(1,µ2,µ

2
2)}, W3 = span{(1,0,0)} and W4 = {0}.

Then ifa = 0,

(Dg)y
(
W1)= span

{(
1,µ1,µ

2
1

)
,
(
1,µ2,µ

2
2

)}⊂W1,

(Dg)y
(
W2)= span

{(
1,µ2,µ

2
2

)}⊂W2, and

(Dg)y
(
W3)= {0} ⊂W3.

6 This shows that there can be many functions which can
generate the same dynamics. In our case we are interested in
the impact that the observer function has on this multiplicity of
representations,g.
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If a 6= 0 then

(Dg)y
(
W1)=W1, (Dg)y

(
W2)=W2 and

(Dg)y
(
W3)=W3.

If v ∈ V 1\V 2 then

v = α
[

1

0

]
+ β

[
0

1

]
, α 6= 0, and

(
DJ 3)v = α

 1

µ1

µ2
1

+ β
 1

µ2

µ2
2

 .
Here,α 6= 0 implies that(DJ 3)v ∈ W1\W2. If v ∈
V 2\V 3 then

v = β
[

0

1

]
, β 6= 0, and

(
DJ 3)v = β

 1

µ2

µ2
2

 .
Also β 6= 0 implies that(DJ 3)v ∈ W2\W3. If w ∈
W1\W2 then

w = α
 1

µ1

µ2
1

+ β
 1

µ2

µ2
2

+ γ
1

0

0

 , α 6= 0

and

∣∣(Dgt )
y
w
∣∣=

∣∣∣∣∣∣αµt1
 1

µ1

µ2
1

+ βµt2
 1

µ2

µ2
2

+ γ at
1

0

0

∣∣∣∣∣∣ .
Hence limt→∞ t−1 ln |(Dgt )yw| = ln |µ1| .

If w ∈W2\W3 then

w = β
 1

µ2

µ2
2

+ γ
1

0

0

 , β 6= 0, and

∣∣(Dgt )
y
w
∣∣=

∣∣∣∣∣∣βµt2
 1

µ2

µ2
2

+ γ at
1

0

0

∣∣∣∣∣∣ .
Hence limt→∞ t−1 ln |(Dgt )yw| = ln |µ2|.

If w ∈W3\W4 then

w = γ
1

0

0

 , γ 6= 0,

and |(Dgt )yw| = |γ ||a|t . Therefore limt→∞ t−1

ln |(Dg)tyw| = ln |a|. Note that ifa = 0 then this third
‘spurious’ Lyapunov exponent is−∞.

If |µ1| > |a| > |µ2| then the subspaceW3 above
needs to be changed so thatW3 = span{(1,µ2,µ

2
2)}.

Then (Dg)y(W
1) = W1, (Dg)y(W

2) = W2 and
(Dg)y(W

3) = W3. The three Lyapunov exponents
are: ln|µ1|, ln |a|, ln |µ2|. If |a|> |µ1| then change the
subspaces so thatW2= span{(1,µ1,µ

2
1), (1,µ2,µ

2
2)},

W3= span{(1,µ2,µ
2
2)} and again(Dg)y(W1)=W1,

(Dg)y(W
2) = W2 and (Dg)y(W3) = W3 will hold.

The three Lyapunov exponents are: ln|a|, ln |µ1|,
ln |µ2|.

Notice that in all cases the two Lyapunov exponents
of f are two of the Lyapunov exponents ofg.
The third Lyapunov exponent ofg can be of any
magnitude. The problem comes from the fact that the
partial derivatives ofg do not necessarily lie in the
tangent space of the image of the attractor under the
Takens embedding (2). It raises the question of how to
identify then true Lyapunov exponents off from the
m− n spuriousLyapunov exponents that make up the
Lyapunov exponents ofg.

References

[1] W.A. Brock, Distinguishing random and deterministic sys-
tems: abridged version, J. Econ. Theory 40 (1986) 168–195.

[2] W. Brock, C. Sayers, Is the business cycle characterized by
deterministic chaos?, J. Monetary Econ. 22 (1988) 71–90.

[3] A. Wolf, B. Swift, J. Swinney, J. Vastano, Determining
Lyapunov exponents from a time series, Physica D 16 (1985)
285–317.

[4] H.D.I. Abarbanel, R. Brown, M.B. Kennel, Variation of Lya-
punov exponents on a strange attractor, J. Nonlinear Sci. 1
(1991) 175–199.

[5] H.D.I. Abarbanel, R. Brown, M.B. Kennel, Lyapunov expo-
nents in chaotic systems: their importance and their evaluation
using observed data, Int. J. Mod. Phys. B 5 (1991) 1347–1375.

[6] H.D.I. Abarbanel, R. Brown, M.B. Kennel, Local Lyapunov
exponents computed from observed data, J. Nonlinear Sci. 2
(1992) 343–365.

[7] S. Ellner, A.R. Gallant, D.F. McGaffrey, D. Nychka, Conver-
gence rates and data requirements for the Jacobian-based es-
timates of Lyapunov exponents from data, Phys. Lett. A 153
(1991) 357–363.

[8] D. McCaffrey, S. Ellner, A.R. Gallant, D. Nychka, Estimating
Lyapunov exponents with nonparametric regression, J. Am.
Stat. Assoc. 87 (1992) 682–695.

[9] R. Gençay, W.D. Dechert, An algorithm for then Lyapunov
exponents of ann-dimensional unknown dynamical system,
Physica D 59 (1992) 142–157.

[10] W.D. Dechert, R. Gençay, The topological invariance of
Lyapunov exponents in embedded dynamics, Physica D 90
(1996) 40–55.



64 W.D. Dechert, R. Gençay / Physics Letters A 276 (2000) 59–64

[11] R. Gençay, Nonlinear prediction of noisy time series with
feedforward networks, Phys. Lett. A 187 (1994) 397–403.

[12] R. Mañé, On the dimension of the compact invariant sets of
certain nonlinear maps, in: D. Rand, L.S. Young (Eds.), Dy-
namical Systems and Turbulence, Lecture Notes in Mathemat-
ics 898, Springer, Berlin, 1981.

[13] F. Takens, Detecting strange attractors in turbulence, in:
D. Rand, L.S. Young (Eds.), Dynamical Systems and Turbu-
lence, Lecture Notes in Mathematics 898, Springer, Berlin,
1981.

[14] J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange
attractors, Rev. Mod. Phys. 57 (1985) 617–656.

[15] J.-P. Eckmann, S.O. Kamphorst, D. Ruelle, S. Ciliberto,
Lyapunov exponents from time series, Phys. Rev. A 34 (1986)
4971–4979.

[16] V.I. Oseledec, A multiplicative ergodic theorem. Liapunov
characteristic numbers for dynamical system, Trans. Moscow
Math. Soc. 19 (1968) 197–221.

[17] J.E. Cohen, J. Kesten, C.M. Newman, Random Matrices
and Their Application, Contemporary Mathematics, Vol. 50,
American Mathematical Society, Providence, RI, 1986.

[18] M.S. Raghunathan, A proof of Oseledec’s multiplicative er-
godic theorem, Israel J. Math. 32 (1979) 356–362.

[19] D. Ruelle, Ergodic theory of differentiable dynamical systems,
Publ. Math. Inst. Hautes Études Sci. 50 (1979) 27–58.

[20] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynam-
ical Systems and Bifurcations of Vector Fields, Springer-
Verlag, New York, 1983.

[21] M. Sano, Y. Sawada, Measurement of Lyapunov spectrum
from a chaotic time series, Phys. Rev. Lett. 55 (1985) 1082–
1085.

[22] W.D. Dechert, R. Gençay, Lyapunov exponents as a nonpara-
metric diagnostic for stability analysis, J. Appl. Economet-
rics 7 (1992) S41–S60.


