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T H E  P A R A M E T E R S  OF N O N L I N E A R  T I M E  S E R I E S  

V. V. A n i s i m o v  a and Kh. S. K e i b a k h  b UDC 519.21 

Asymptotic properties of nonlinear time series parameter estimators constructed on trajectories of 

stochastic systems under stationary and transient conditions are studied with the use of the 

least-squares method. The investigation method is based on the study of asymptotic properties of 

extremal sets of random functions. 
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INTRODUCTION 

In real models, data, as a rule, arise in observations in trajectories of stochastic systems and are basically 

interdependent and nonstationary in time. Therefore, generally, methods of classical data analysis are not applicable to the 

analysis'of properties of estimates in such situations. 

In many models, estimates can be presented as points (sets) of extrema of random functions that are constructed as 

additive functionals on the trajectories of observed systems. 

Let us consider a rather general model of a time series for which data are constructed from observations in a trajectory 

of a stochastic system. 

Let S(t), t > O, be a trajectory of some (random or determinate) system with values in a space X. and t I < t 2 < . . .  be 

the instants of observations on the interval [0, T]. They can be some determinate or random instants, for example, instants of 

chan,,es of the surroundin,,s mode switchin~s, etc. 

Denote s k =S(t  k +0), k >0._ Assume that the followin,,= quantities are observed: 

z k = g ( O o . s k ) + e  k, O < k < v ( T ) ,  

where the function g(O,s) is given, 0 0 is an unknown parameter, the quantities e k =e(s k) are random noise. 
:[. 

E[e k ~ski=O, E[eke  k/sk]<oo, k>O, and v(T) specifies the number of observations on the interval [0, T]. 

Put vl T) 

F ( O . T ) = T  -I ~ ( z k - g ( 0 ,  Sk)) 2. 
k=l (1) 

Then the least-squares method estimate of an unknown parameter is the set of minima of the function F (0. T) in 0 

{0 T } =argminF(O, T) .  
0 

This example shows that an analysis of the problem of asymptotic study of observation-parameter estimates 

constructed in the trajectory of a stochastic system necessitates studies of the following classes of problems: 

(i) study of asymptotic properties of extremal sets of random functions: 

(ii) asymptotic analysis of additive functionals of special types in the trajectories of stochastic systems. 
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The results in the theory of asymptotic estimation are mainly devoted to the analysis of independent observations [ 1] 

or are based on martingale techniq, 12.3]. Various estimates of parameters of random processes were obtained in [4] using 

constructive app_~oaches. A numbt .  ~,l estimates of  parameters in trajectories of random processes satisfying averaging-type 

conditions are presented in [5-91. 

A new approach to statistical-parameter estimation from observations in trajectories of random processes is proposed 

in the present study. The essence of this approach is as follows: a~ estimate is represented by a point (set) of the extremum of 

some additive functional in the trajectory of a stochastic system, and then, using the solution of both problems, the behavior 

of the desired estimate is investigated. 

Here, this approach is realized in analyzing nonlinear estimates of the parameters of r:~,nlinear time series with 

dependent observations constructed in the trajectory of some stochastic system that satisfies certain general averaging-type 

assumptions. Note that the properties of nonlinear estimates of the least-squares method (consistency and asymptotic 

normality) were investigated in [10] in the case of independent observations. 

Some results in this subject area were u0tained in [2, 7] using the asymptotic properties of  solutions of stochastic 

equations. 

E X T R E M A L  P R O B L E M S  FOR R A N D O M  F U N C T I O N S  

First, let us present general results on the asymptotic behavior of extremal sets of random functions (see [ 11 ]). These 

results are used hereafter for analysis of the behavior of estimates. 

Let for each n >_ 0 F n (0), 0~ |  2 r  be a random function with values inR,  | be a bounded closed set, and n be the 

parameter of a series. 

Let us define F ( 0 )  as F ( 0 ) = l i m  inf F(O') for any function F(O). If the function F(O) is random, then the limit is 
0 " ~ 0  

being determined for each realization of F(O). Assume that {0, } = a r g m i n  F n (0).  Here, {0 n } is the set of  global minima of 

the function F n (0). "--~-) 
Let us study the conditions of convergence of {0,z } when the sequence of functions F ,  (0) converges in some sense to 

a limiting (.random or nonrandom) function Fo(O) as n --~ ,,o and let us also study the conditions of weak convergence of the 

sequence of vectors v,t ( 0 ,  - 0 I) ). where 0,t is a subsequence of local minima F, (0). and v ,  is a normalizing factor. 

For an arbitrary function f (0) ,  0~  | we introduce the modulus of continuity 

A u(C, f(.)) = sup If(O l ) - f ( O  2 )1. 
101 -021 <c 0t~O, 02~O 

Let us formulate some necessary definitions. 

Definition 1. Let G,, be a sequence of random sets in | We say that the sequence G,t converges in probability to 

P 
some (random or nonrandom) point g0 if p(go,Gi,) --> 0, where p(g,G)= sup I I - - g l l .  

z~(; 
P 

Denote this converuence by G ,  ~ ,, ,. o() �9 

Definition 2. Let G,t be a sequence of random sets in | We say that the sequence G,t weakly conver,.es= . to some 

random variable Y0 if g.  weakly conver,.es= to Yo tot any sequence g .  such that P{;,.. ~ G . } = I .  

Denote this convergence by G .  ~ Yo- 

Definition 3. Let us assume that the sequence of functions F .  (0 )U-converges  to a random or nonrandom function 

FI~(0) in a set O if 

(i) for any k = 1.2 . . . .  and for any 01 , 0 2 . . . . .  0/, s O. the distribution of the vector (F .  (0i)- i = 1. k) weakly converges 

to that of the vector (Ft~(0i). i = 1, k); 

(ii) for any e > 0  lira l imsup P ( A u ( c ,  F .  (-) > e} = 0 .  
c--->+() I1 --.-)oo 

Now. in accordance with [11]. we present two theorems on convergence of a sequence of the sets {0. }. 



T H E O R E M  1. Let F,~(0) be a sequence of random functions, and the following conditions hold: 

(i) there exists a continuous random function Fo(O) such that F,, (O) U-converges to FI)(0): 

(ii) the following separability condition holds: FI)(O~))< Ft)(O')with unit probability for any random variable 0' given 

on the same probability space and such that 0 ' s  0t) with unit probability, where 0 t ) = a r g m i n  FI)(O). 
14' 

Then {0,, ) ==> 0 II- 

Further. let us study the behavior of the normalized deviation for the quantity {0,, }. Let us introduce the random 
a 1 

function A,(z )=v  n (F,,(OI) + ~ z ) -  Fn(O{~)) as a function of a new argument -e  ~ " .  
U n 

T H E O R E M  2. Let the conditions of Theorem 1 be satisfied, and there be a nonrandom sequence v,, --+ oo and cz > 0 

such that for any L > 0 the sequence of functions A,(z) U-converges to some random function A~)(z) in the domain Izl _< L. 

Assume also that the point tel) = arg min A 0 (z) is a proper random variable and satisfies the separability condition with unit 

probability. 

Then there exists a subsequence of local minima O n of the function F n(O) such that v ,  (0 ,  - 0 0 ) = ~  x 0. 

Example  1. Let the function Ao(z) have the form Ao(z)=q + ( ~ ( a , B 2 ) ,  z)+Cz, z), where r/is an arbitrary random 

variable, the vector : u  2) has a normal distribution with mean a and covariance matrix B 2 and C is some matrix such 

that the matrix C + C *  is invertible. 

Then x 0 = - ( C  +C*) - I~ 'Y(a ,B2) .  

T H E  A S Y M P T O T I C  P R O P E R T I E S  OF E S T I M A T E S  
OF T H E  L E A S T - S Q U A R E S  M E T H O D  

Let us consider applications of Theorems l. 2 in the analysis of the asymptotic behavior of estimates of the 

least-squares method constructed from observations in the trajectory of some stochastic system. 

Homogeneous  Case. We will first consider the homogeneous case as an illustration of the technique of the analysis. 

Let g(O), 0e  |  :,u be some vector-valued function with values in 7r and ~l,  ~2 . . . .  be independent equally distributed 

random vectors in 7e m such that 
~:~ =G 2 E~: 1 = 0 ,  F_~l~i . (2) 

Assume that we have the quantities 

-k = g ( 0 o )  + ~ k ,  0 < k < n .  (3) 

Let us examine the asymptotic properties of estimates of the least-squares method. Denote 

I H "~ 

F,,(0) = - -  y~ (z k - ~(0))-. 
It k = l  

As is well known, an estimate of the least-squares method is determined by the relation { 0,, } = arg rain F,, (0). 
0 

T H E O R E M  3. Let a function g(O) be continuous and bounded in the domain | and 

g(O) ~: g(0 o ) for 0 ~: 0 II. 

Then P 

{0,, } ~ 00 �9 

Further, assume that there exists fl > 0 such that as h--~ 0 it is uniform in each bounded domain l lzll< L 

h-fl(g(O() + hz) - g(0()))---~ a(z), 

where the function a(z) is continuous, and the equation 

(4) 

(5) 

(6) 

(7) 
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a(:)  = v (8) 

has a unique solution for any y~ Wm. 

Then there exists a sequence of local minima 0 ,  of  the function F , ( 0 )  such that 

w -1 "~ (9) 
n ~/2/:r (0,, -- 0 ~)) ~ a ( ~  (0, G - )), 

where  a - l ( - )  is an inverse function, and the vector X (0 ,G 2) has a multidimensional normal distribution with mean 0 

and covariance matrix G 2. 

Proof.  Using (3), we present the function F,, (0) in the form 

F,, (0) = II g(0) - g( 0 0 ) 112 
1 n 

_2 ( g ( O )  - ~ ( 0  o ) , ,  . ~ k ) + -  ~ II ~'/c I I 2 . 
t t  k = 0  n k = 0  

(10) 

According to the law of large numbers, we have 

P 1 ~ 2 P 12 
1 ~/,. ---~0, II~kl l  + EII~II . 
n if=O n k ={) 

(11) 

Since the function g(O) is bounded, it follows from relations (10). (11). that the sequence of random functions 

F,, (0) U-converges to the function II g(O) - g(O o)112. 

Condition (5) is the separability condition for this function; therefore, the first part of  the theorem follows from 

Theorem I. 

Further. we use Theorem 2. Put v ,  = n  I/2k3 and a = 2 f l .  Then the function An(-_)  can  be presented as 

2/3 I -, 2 2fl ~" 1 
An(z)  = v  n Jig(0() + ~ z ) - g ( •  - - - v n  ~.~ (g(Ot) + ~ : ) - g ( 0 0 ) ' g / ,  )" (12) 

~) I1 I t  k :::() U l! 

According to (7). the first term converges to the quantity Ila(-)ll 2 uniformly in each bounded domain I1-11~ L. and for 

v~ = ~ the second term has the form 

1 I ',~ ~ 
- 2,v,'t3 (g (O I) + ~ :)  - g (O  o )),  ~ k ). 

U t! 4t~ ) 

According to the central limiting theorem and condition (7). this term. as the function of -. U-converges in each 

bounded domain I zl < L to the function - 2(a(z), X (0, G 2 )). 

Finally, the sequence of the functions A,, ( - )U-converges  to the function q (z )= l la ( - ) l l  2 -2 (a (z ) ,  V (0. G 2)) in each 

bounded domain Ilzll< L. Since for each v, there is the representation Ilall 2 - 2 ( a ,  y) = Ila - yll 2 - I I  vii 2, and this ft':lc,ion 

has a minimum for a = v, the function q(-) has a minimum when a(z) = JY(0. G 2). i.e., - = a  - i  (Y (0, G 2)). This finally 

proves Theorem 3. 

Let us consider some examples. 

Example  2. Let O = [a, hi, 0() ~ (a, b), 

{ (~1(0 - 01) ). i f  0 o < 0 < _ b ,  
g(0) = 

( z 2 ( 0 - 0 o ) ,  if a_<0<_01), 

E~I 2 ' where czj ,(z 2 >0.  Let also the quantities ~1,~2 . . . .  take values in 7e, E~z =0, =or - .  

Let us consider the same model of observations (3). 

As can be easily seen, in our case condition (5) is satisfied, whence relation (6) follows. 
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Further. note that despite the fact that the function g(O) is nondifferentiable, relation (7) is satisfied for/3 = 1 with the 

function 
a(:)  = / (xl: for : > O, 

t (z2: for : < 0 .  

Clearly. a solution of Eq. (8) exists and is unique. 

,-.,. 14' 3 ") '3 

Then 4'~n (0,, - 0 i ) ) : :>  ~. where ?,=cz I Y ( O , o - ) Z ( ? ( ( O . o - ) > O ) +  (z2 .~ (0. o - ) z ( ( O . o - ) < O ) .  In this example. 

there is a nonclassical limitin,, law even in the case of a homoeeneous model  of observations. 

I N H O M O G E N E O U S  CASE OF T R A J E C T O R Y  OB S ER VATIONS  

Let us consider a more general model of observations. Assume that a random or nonrandom sequence x,t,., k >_ 0, is 

given with values in X, which corresponds to the sequence of states of  a system. Let a family of functions 

g(0 ,x) ,  0 ~ |  x~  X, be given, with values in _~m and families of random vectors {~/.(x), .r~ X}, k >0 ,  independent in 

the aggregate and of the sequence .r,k, with values in 2 m .  

Assume for the sake of simplicity that the distributions of the quantities ~ k (x) do not depend on the index k > 0. Then 

the model of observations has the form 

z,,k = g(O O, x nk ) + ~ k (X,,k). k = 0, 1 . . . . .  n. (13) 

Denote 

F n(O)= 1 s II-,,k g(O.xn/.)ll 2 ~ . 

t t  k =11 (14) 

Let us assume that the sequence x,,k satisfies the averaging condition" (A) there exists a continuous function x(u) such 

that for any continuous bounded function f (x ) ,  . re  X, 

n p 1 

It k = (1  (1 
(15) 

Remark  1. Note that Condition (A) is oriented to nonstationary situations. It can be verified, for example, in the case 

where .r,, k is a recurrent semi-Markovian-type process (see [12, 13]). 

T H E O R E M  4. Let the function g (0 ,x )  be uniformly continuous in |  For any .re X 

g(O, x) ~: g(0 (}..r) tbr 0 ~: 0 o, (16) 

E~el(x) --0. Ebel(.v)~l(x) * =R(x)  2, (17) 

condition (A) holds and the Lindeber,, condition in the followin,, form is satisfied: 

lim sup Ell~l(.r)ll 2 z ( l l ~ i ( x ) i i > L ) = O .  (18) 
L ---> oo x~X 

Then 
P 

{0,, } --~ 0 0. (19) 

Proof. We will present the function F/, C0) in the form 

F,, (0) 1 &')_~ - -  ] lg(0.Xnk) - g ( 0 l ) , X n k )  112 
tl k =1) 

s 's _2 (g(O..v,,k) _ ~ (01}, _ V n k , ,  ), ~k (.vn k )) + _ i i ~k (Xnk)112 . 
l l k  = 11 I1 k = () 

The quantities ~e k(x,,k), k =0 ,  1 . . . . .  are conditionally independent tbr a fixed trajectory .r,, k 

(20) 

2()7 



E~ k (x ,,k ) = 0. E[ ~ k (.r ,,k )'~ k (x ,,k )* / x ,,k ] = R (x ,,k ) 2 

and the Lindeberg condi t ion is satisfied. Then. by virtue of the boundedness  of the function g((-).x), the quantities 
r/k (x/,/,- 7 = (g(0. x/,/,- ) - g( 0 I~. x i,/,- )- s e/,- (.r,,k 7) also satisfy the Lindeberg condit ion and 

E[r/(.r i,/,- ) /.v,,kl 2 = (R(.r 1,/,- ) - ( g (0 . . r , / . )  - g(0 t), x,,/, )). g(0,  .V,k ) - g(0 t). x,,k 77. 

"~ I1 "~ & 14' 

Denote R,7 ~ Er/(x,,k )-  By the central limit theorem 1 = . ~ ~ r / k ( . v , , k )~  V (O, l). Since by virtue of Condition (A) 
k = ( )  R ~t k =() 

-, p 1 

1 RT, ~ I (R(r(tl))~ - - ( g (  o .  :.: ( t , ) )  - ( g (  o o .  -v ( . ) ) ) ,  
/l () 

o 
g(0,  x(u)) - g(0  I), x(u)))du = cr ", (21) 

1 & w ., 
have ---f )_~ q k ( . r . / ~ ) ~  Y (0, a "  ). Then for any fixed 0 w e  

k=l} 

p 

1 ( g ( 0 ,  x,,k ) ~,,(0 o .r,,k )- '~ k (.r,,k)) ~ 0. a a t .  , 
II k = ( )  

Moreover,  by virtue of  the law of larc, e= numbers  

1 P 
! 

I1 

II~k (.~,,k )11" f - " - +  [ 3 ( x ( u ) ) d u ,  
n k = 0 () 

(22) 

where f l ( . r )=EI l~ l (x ) l l  2, and in accordance with Condi t ion CA) 

I s [[g(O V n k ) - m O  )112 P i -- . ,,, (),.v,d ,. ~ IIg((-). .r(u))-g(Oo,.v(u))ll- du. 
t l  k = 11 {} 

Finally, according to relations (20), (22). we obtain that 

p ! 1 

F,, (0) --, ~ ~ ~-(0,.,-(,,)) - g ( o o  ..,.(,,))~2 d,, + ~ 3(.,.( ,, ) )d,, = F(O)  

0 () 

and the point 0() is the unique point of min imum of the function F(O). 
Let us now prove the U-convergence  of  the sequence of functions F,,(O) to the function F(O). Note that 

II g (0 l  ,.v,, k ) - ~ (0 tl, a,,/. ) 1 1 " , ,  - - II g(0,_,  .v,, k ) - ~,,(0 II, .v,,/. )11"- = ( g (  01 , X nk ) 

Denote D = sup II g ( 0 ,  x)l l  
0 .  A" 

Then 

Since 

- g ( 0  2 ,  x,,k ), g( 0 1 ,  X,,k ) + g ( 0  2,  x,,k ) - 2 ( 0  0 ,  x,,k ))- 

Au(c )  = s u p  sup I I g ( O l , x ) - g ( O 2 , x ) l .  
.v II 01 --0., II < c 

A t / ( c , F , ( . ) ) <  4 D A u ( c )  + 2At / ( c ) - I  s Ii~k (.v,/, " )11. 
/t k = ( )  

1 I I ~k (X,k)11 --4 (Z(X(ll))dlt, 
11 k = 0  (1 

(237 

where (z(x)-Ell~l( .r)l l ,  f rom (23) it follows that for any e > 0  
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lim lira sup P{Au(c,  F,,(-))> g} =0, 
( ' " - + + ( )  t t ----~ oo 

and since the function g(0.x)  is uniformly continuous in a closed bounded domain. A u ( c ) - +  0 as c - - )0 .  This finally 
proves statement (19). 

Now. we will examine the behavior of the normalized deviation 0,, - 0  t)- Let us consider the case where the function 

g(0. x) is twice continuously differentiable with respect to 0. Let us introduce the matrices 

i 

f t �9 Q-  = go (O~).x(u))go(O~,x(tt))dtt" 
d 
(1 

B 2 
1 

I g~ (0() x(u))*R(x(u))2 , = , go (01~ ,.r(u))du, 

0 

where g{') is a matrix whose elements are partial derivatives with respect to the components of the vector 0 of the 

elements of the vector g(O,x). 
T H E O R E M  5. Let Condition (A) hold, the function g(O,x)  be twice continuously differentiable with respect to O. the 

function g'o(O,x) be uniformly continuous in (0, x), and the second partial derivatives of the elements of the function g(0, x) 

be bounded. 

Then there exists a sequence O n of local minima of the function Fn(O) such that 

N W ,~ "~.t -- I 
4~n(0 n -0~)):=, 2(Q- + Q -  ) B;V(0,1). 

(24) 

1 
Proof. Let us consider the random function A,, (:) = n(F n (0 o + ~ -) - F n (0o)). Then 

4 n  

A,, (z) 1 ~'~__, 1 
= ,, + -, ) g(O .r )112 -- nll~(01~ ~ x,tk - ~.  ,d,- 

I1 k =1) 4 n  

1 
2 .,f~n(g(O~ + - x ) g(O x ).~k(x,,k)) 

47;,, - o ,  ,,k 

_- _1 (",'0,_ (00.-r,,/,-) (go (00 ,.r,k )- z)+O 1 
I7 k = O  

1 !1 

- 2 ~ Z (g0  (0" ' - r , ,k ) : '~k  (.,c,,~:)) 
k=t)  

2s 
(g (0 o, :,.r,,k ), '~ k (X,,k)), 

/ t  k =  1) 

where the vector ~ ( 0 , -  .r,, k) can be written in terms of the second derivatives of the function g(O,.v) with respect to 0 

and is bounded by condition, and 

I [ g ( 0  0 , 21 , . v )  - g ( 0 ( ) ,  2 2  , A')[[  _< 1121 - -  - 2 1 1 .  ( 2 5 )  

By analogy with the proof of Theorem 3. it tbllows from these relations that the function A,,(z) U-converges to the 

function A(z) =(Q2_ z ) - 2 ( B  Y(0, 1), z) in each bounded domain II/til< L. From here. according to Example 1, we obtain the 

statement of Theorem 5. 

As an illustration, we will consider the case where 

g(0, .v) = (g(0), f(.v)), (26) 

where g(O) and f(.v) are some vector-valued functions. 
Assume for the sake of simplicity that the quantities ~k(.v) are one-dimensional random variables, E,~k (.r) =0 ,  

D~k (x) =R(x)  2. 

T H E O R E M  6. Let condition (A) hold, the functions g(O) , f ( x ) ,  and R(x) be continuous and bounded 

g(0) ~: g(0 o ) for 0 :x 0 ~, (27) 
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the Lindeberg condition r,e satisfied and. for some fl > 0 and any fixed L > (). be uniformly in I zl< L. 

lim h-t~(g(O~ + zh)-g(O(~))=a(z),  
tt ---~ + 11 

(28) 

where the function a ( - ) i s  continuous and such that the equation 

a(:) = v (29) 

has a unique solution - = a  - i (y)  for any v e 7,-'"'. 

Then there exists a sequence 0 n of local minima of the function F, (07 such that 

14' - -  l 

nl/2fl(0,/ -Oi)):=~ k 0 = a  (,~), (30) 

where the vector ~ has  normal distribution with the parameters 

I 

( 0 ,  C -!  f .t.(.r(It))R(A.(lt) ) 2 f( .V(l t))* d t tC*-1  ), 
(~ 

1 

C = I f(.r(u))f(.v(u))* du. 
0 

Proofi Denote v n =n l/2fl and a=2f l .  Then the function An(z )can  be presented in the tbrm 

An (:) 1 ?[3 " 1 =--vTt ~ (g(O0 + ~ - ) - g ( O o ) .  f(.v,,l~)) 2 
/ t  k = 0 V n 

1 
-2(v~(g(Oo + ~ z ) - g ( O o ) ) ,  

V 11 

It 

t___ t( . , ,k  (s,,k )). (31) 

Since tbr any vectors a. b, (a.b)- =(bb a.a), the first term on the right-hand side of (3 I) can be presented as 

" ),  1 t;~ 1 / 1 ~ .f(x,,k)f(.r,.,/. v~(g(Ol~ + :) ~(0o),  (g(O ~ + : ) _ g ( 0 o )  ) 
n k =11 Vn On 

and according to conditions (At and (28), this term uniformly converges to the f,c:,ction (C(a(z),a(-))) in each bounded 
domain II zll < L. 

Further, let us note that the random vectors .f(x)~k(x) have the mean value 0 and 

Ef(.v),~ k (.v)(.t'(.v)~ k (.v))* = . f (x ) f (x )*  R(.v). 

! 

1 s .t.(x k)~(x,,/,.) U-converges to the process I .f(x(/d)R(x(t,))dw(u). It follows from these Then the process 
-vJ~/,- = I) �9 I) 

relations that the function AI,(z) in domain Ilttll<__ L U-converges to the function 

1 

A(z) = (Ca(z), a(z)) - 2(a(z), f f(.v(tt))R(.v(tt))dla'(tt)). 
1) 

According to Example 1, the minimum of this function can be presented in the tbrm 

1 

a(-)  =2(C(t)C(t)" )-1 I f(x(u))R(x(u))dw(u). 
() 
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Since the function j(x)t '(x) ~ is self-adjoint, the statement of Theorem 6 follows from (29). 

Example 3. Let the function x(t), te  [0. T], be continuous, and observations be fulfilled at the points t,, k = k / n. 

k =0,1 . . . . .  [nT], and have the form 

3'/~ =(g(Ot)),f(x(k / n))) + ~et (.v(k / n)), (32) 

where E~k(x)=0,  E,~k(x),~/(x)":=R2(x). Let the vector-valued function g(O) be continuously differentiable, 

G(O)=g" o (0), and the matrices G(O) and C be nondegenerate. 
If the function f(x) is continuous, and Conditions (A) and (27) are satisfied, then the statement of Theorem 5 holds, 

where vn ='~'n, f l = l  (z= ~ 

tc 0 =G(O 0)-1C-I  f f(x(u))R(x(u))dw(tt). 

Proof. Indeed, in this case, 

n 1 

1 E / f .r(.,-(z,))J,. 
I1 k = () () 

in relation (28) a(z)=G(Oi))z, and this statement follows from the result of Theorem 6. 
Remark 2. The results of Theorems 4-6 can be extended in the same way to the case where the sequence x,/. is 

ergodic in the following sense: there exists a probability measure zr(A), As B X, such that for any measurable function 

~o(x),x~X, 1 s P f 
-- 99(x,,/. ) --> 9o(.t-)x(d.t-). 
n k=o x (33) 

Note that condition (33) is satisfied for a wide class of Markovian and stationary sequences. 
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