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Bose}Einstein condensation of noninteracting charged Bose gas
in the presence of external potentials
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Abstract

We investigate thermodynamic properties of noninteracting charged bosons in the presence of externally applied
electric and magnetic "elds. Using the semiclassical density of states, we obtain the condensate fraction, chemical
potential, total energy, and speci"c heat of a system of "nite number of charged Bose particles. We conclude that
Bose}Einstein condensation of the charged Bose gas occurs in the crossed electric and magnetic "elds. ( 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The recent observations of Bose}Einstein con-
densation (BEC) in trapped atomic gases [1}6]
have renewed interest in bosonic systems [7}9].
The condensate clouds obtained in the experiments
consist of a "nite number of atoms (ranging from
several thousands to several millions), and are con-
"ned in externally applied trapping potentials. The
ground state properties of the condensed gases,
including the "nite size e!ects on the temperature
dependence of the condensate fraction, are of pri-
mary interest. BEC is characterized by a macro-
scopic occupation of the ground state for ¹(¹

#
,

where ¹
#

depends on the system parameters.
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From a theoretical standpoint BEC has been
extensively studied as a possible explanation of the
super#uid [10] transition in 4He and a plausible
theory of the conventional (low-temperature)
superconductors [11]. Although condensation of a
charged Bose gas (CBG) is not a correct picture of
superconductivity in metals, the CBG has recently
been studied to understand the high-temperature
superconductivity in cuprates [12,13].

Many years ago Schafroth [11] pointed out that
the CBG does not condense at any "nite temper-
ature in the presence of a homogeneous magnetic
"eld. Later, the charged Bose system in a magnetic
"eld was studied by various groups [14}18]. Re-
cently, Rojas [19] has discussed the possibility of
obtaining BEC for CBG under a constant magnetic
"eld. Standen and Toms [20] have shown that
three-dimensional CBG does not have phase
transition for any value of the magnetic "eld. CBG
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in the presence of a harmonic trapping potential
and a constant magnetic "eld was studied within
path-integral formalism [21].

The aim of this paper is to study the e!ects of
the externally applied electric and magnetic
"elds on BEC of the CBG. The long-range interac-
tions between the charged bosons are neglected,
with the assumption that screening e!ects some-
how render them short ranged. We use a model
density of states which takes the "nite sample
size into account to calculate the thermodynamic
quantities [22]. The importance of constructing
an accurate density of states has been recognized
in various works [23}29]. We obtain quanti-
ties such as condensate fraction, chemical potential,
total energy, and speci"c heat of the system
using the semiclassical density of states. We "rst
concentrate on the CBG in the homogeneous elec-
tric "eld only. We then investigate the possibility
for achieving BEC in three-dimensional nonin-
teracting CBG under the crossed electric and
magnetic "elds.

2. Theory

We consider N particles of a charged Bose gas in
an external "eld F which is described by a mono-
tonic potential <(x) and trapped by two in"nite
barriers at x"0 and ¸. Using the semiclassical
(WKB) approximation, the quantization condition
for the energy e

n
is given by [30,22]

J2mP
xn

0

Je
n
!<(x) dx"+p(n#//4#u/2), (1)

where n"0, 1, 2,2 and the classical turning
point x

n
and the phase factors / and u are given by

<(x
n
)"e

n
, /"1 and u"1 for e

n
(<(¸), while

x
n
"¸, /"2 and u"1 for e

n
*<(¸). For large

values of ¸, e
n
becomes a quasi-continuous function

of n and the semiclassical approximation is identi-
cal to the exact results (see Ref. [30]). The density of
states (DOS) can be calculated from the trace for-
mula

o(E)"Tr d(E!HK ), (2)

where HK is the Hamiltonian of the system. The total
number of particles is implicitly related to the
chemical potential k by

N"N
0
#Po(E)n(E) dE, (3)

where N
0

is the number of the particles in the
ground state and n(E)"
(exp[(E!k)/k

B
¹]!1)~1. The critical temper-

ature ¹
#

can be determined from Eq. (3) by taking
N

0
"0 and k"0 at ¹"¹

#
. For ¹(¹

#
, the

condensate fraction N
0
/N can be determined from

Eq. (3) and total energy of the system is given by

E
T
(¹)"P

Eo(E) dE

exp(E/k
B
¹)!1

. (4)

For ¹'¹
#
, after "nding k from Eq. (3) (N

0
"0),

total energy is calculated from

E
T
(¹)"PEo(E)n(E) dE. (5)

The speci"c heat of the system C
V
(¹)"RE

T
(¹)/R¹

can be shown to be

C
V
(¹)"

1

k
B
¹PEo(E)n(E)2

]Ck@(¹)#
E!k
¹ DexpA

E!k
k
B
¹ BdE, (6)

where k@(¹)"Rk(¹)/R¹. The discontinuity in the
speci"c heat at ¹

#
is given by [23,24]

*C
V
(¹

#
)"C

V
(¹~

#
)!C

V
(¹`

#
)

"

1

k
B
¹2

#

[:Eo(E)n(E)2exp(E/k
B
¹

#
) dE]2

:o(E)n(E)2exp(E/k
B
¹

#
) dE

.

(7)

In the above formulation of the thermodynamic
properties, the density of states plays an important
role. The e!ects of external potentials are embodied
in the DOS, and the resulting thermodynamic
properties depend crucially on the choice and con-
struction of the DOS. The importance of the DOS
in the BEC of harmonically con"ned systems has
been emphasized by Kirsten and Toms [26].
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Fig. 1. The condensate fraction N
0
/N versus normalized tem-

perature ¹/¹
#

for N"105 and for various values of the trap-
ping potential (electric "eld) <

0
.

3. BEC in an applied electric 5eld

We consider "rst a three-dimensional CBG in
a constant electric "eld E along the x direction. In
this case, trapping potential becomes <(r)"
<
0
x/¸, where <

0
"eE¸ and E¸ is the total voltage

drop across the sample. The semiclassical density of
states, using the method of Kubisa and Zawadzki
[22], can be obtained from Eqs. (1) and (2)

o(E)"G
aE3@2 if E(<

0
,

a[E3@2!(E!<
0
)3@2] if E*<

0
,

(8)

where a"1
3
p2E

0
<

0
, E

0
"+2/2m¸2 and we nor-

malize all energies with E
0
. Note that our expres-

sion for o(E) di!ers from that of Bagnato et al.
[23,24] in that we include the "nite sample size
e!ects. For vanishing electric "eld,<

0
P0, one gets

the well-known result o(E)&E1@2 for homogene-
ous systems. The main e!ect of the applied electric
"eld is to shift the DOS from low to high energies
due to acceleration of particles. In the sequel, we
shall examine the results of this e!ect on the ther-
modynamic quantities.

The critical temperature is determined by solving
the following integral equation:

N"

(k
B
¹

#
)5@2

3p2<
0

[g
5@2

(0)!g
5@2

(!<
0
/k

B
¹

#
)], (9)

where

gl(z)"P
=

0

xl~1dx

exp(x!z)!1
, (10)

is the much-studied Bose function [31]. The tem-
perature dependence of the condensate fraction and
the total energy are given by

N
0
/N"1!

(k
B
¹)5@2

3p2N<
0

[g
5@2

(0)!g
5@2

(!<
0
/k

B
¹)]

(11)

and

E
T
(¹)"

(k
B
¹)7@2

3p2<
0
Cg7@2

(0)!g
7@2

(!<
0
/k

B
¹)

!

<
0

k
B
¹

g
5@2

(!<
0
/k

B
¹)D, (12)

respectively. For ¹'¹
#
, k is determined from

solution of the following equation:

N"

(k
B
¹)5@2

3p2<
0

[g
5@2

(k/k
B
¹)!g

5@2
((k!<

0
)/k

B
¹)].

(13)

Finally, E
T

can be found from

E
T
(¹)"

(k
B
¹)7@2

3p2<
0

[g
7@2

(k/k
B
¹)

!g
7@2

((k!<
0
)/k

B
¹)

!

<
0

k
B
¹

g
5@2

((k!<
0
)/k

B
¹)D. (14)

Fig. 1 displays the temperature dependence of
the condensate fraction N

0
/N for various "eld

strengths or external potential values <
0
. Our re-

sults fall between the two extreme cases. In the case
of a homogeneous system, the temperature depend-
ence of the condensate fraction is given by
N

0
/N"1!(¹/¹

#
)3@2. On the other extreme is the

bosons trapped by a linear potential as discussed
by Bagnato et al. [23,24]. The corresponding de-
pletion of the condensate is given by N

0
/N"

1!(¹/¹
#
)5@2. For small values of <

0
, as the dis-

cussion on the DOS shows, we recover the homo-
geneous system result. As <

0
increases, our results
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Fig. 2. The temperature dependence of the speci"c heat C
V
(¹)

for N"105 and for various values of the trapping potential<
0
.

Inset: (v) symbols show variation of discontinuity in the speci"c
heat *C

V
/k

B
N at ¹

#
with <

0
/¹

#
, (}) is the best "t.

approach the latter case, indicating that the con-
"nement e!ects become important. The speci"c
heat C

V
(¹) as a function of temperature is shown in

Fig. 2. We note that a discontinuity in C
V

at
¹"¹

#
develops as the external (trapping) poten-

tial is increased. Based on the numerical results
shown in the inset of Fig. 2, we estimate the discon-
tinuity in the speci"c heat as *C

V
/Nk

B
&

(<
0
/¹

#
)1@2. As <

0
increases our results approach

that of Bagnato et al. [23,24] and as <
0
P0, we

recover the homogeneous system result with no
discontinuity. The net e!ect of the external electric
"eld in our model is to provide a con"ning poten-
tial to produce BEC in a linear potential.

Strictly speaking, the continuum model of a den-
sity of states should be applicable only in the ther-
modynamic limit, viz. NPR and <PR (< is
the volume of the system) while keeping the average
density o6 "N/< "xed. Thus, our results for "nite
N are more meaningful for cases of large N. For
illustration purposes we have used N"105 in Figs.
1 and 2.

4. BEC in crossed electric and magnetic 5elds

We next consider the CBG in crossed electric
and magnetic "elds. Taking a constant electric "eld

along x-axis and a magnetic "eld along z-axis, one
can "nd the semiclassical density of states [22] for
E(e

n
#<

0
,

o(E)"b+
n

(E!e
n
)1@2 (15)

and for E*e
n
#<

0
,

o(E)"b+
n

[(E!e
n
)1@2!(E!e

n
!<

0
)1@2], (16)

where b"+u
#
/pE

0
<
0
, e

n
"+u

#
(n#1

2
)#c2,

n"0, 1, 2,2 and c"<
0
/+u

#
, u

#
"eB/mc. For

vanishing electric "eld, <
0
P0, one gets the well-

known Landau level singularities o(E)&
(E!e

n
)~1@2, with e

n
"+u

#
(n#1

2
). The sharp diver-

gences at c"0 (zero electric "eld) become "nite
peaks when the electric "eld is turned on. At higher
values of c the density of states exhibits a smooth
dependence on the energy.

The critical temperature in the present case is
obtained from

N"

(k
B
¹

#
)3@2

pc
+
n

[g
3@2

(!e
n
/k

B
¹

#
)

!g
3@2

(!(e
n
#<

0
)/k

B
¹

#
)]. (17)

Note that N and subsequent thermodynamic
quantities not only depend on the ratio of electric
and magnetic "elds, c, but also on the value of <

0
.

The condensate fraction and total energy are
given by

N
0
/N"1!

(k
B
¹)3@2

pcN
+
n

[g
3@2

(!e
n
/k

B
¹)

!g
3@2

(!(e
#
#<

0
)/k

B
¹)] (18)

and

E
T
(¹)"

(k
B
¹)5@2

pc
+
n
Cg5@2(0)#

e
n

k
B
¹

g
3@2

(!e
n
/k

B
¹)

!g
5@2

(!(e
n
#<

0
)/k

B
¹)

!

e
n
#<

0
k
B
¹

g
3@2

(!(e
n
#<

0
)/k

B
¹)D, (19)
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Fig. 3. The condensate fraction N
0
/N versus normalized tem-

perature ¹/¹
0

for N"105 and for various values of the electric
and magnetic "elds.

Fig. 4. The temperature dependence of the speci"c heat C
V
(¹)

for N"105 and for various values of the electric and magnetic
"elds.

respectively. For ¹'¹
#
, k is determined from

N"

(k
B
¹)3@2

pc
+
n

[g
3@2

((k!e
n
)/k

B
¹)

!g
3@2

((k!e
n
!<

0
)/k

B
¹)], (20)

and the total energy is given by

E
T
(¹)"

(k
B
¹)5@2

pc
+
n
Cg5@2(k/k

B
¹)

#

e
n

k
B
¹

g
3@2

((k!e
n
)/k

B
¹)

!g
5@2

((k!e
n
!<

0
)/k

B
¹)

!

e
n
#<

0
k
B
¹

g
3@2

((k!e
n
!<

0
)/k

B
¹)D. (21)

We now present our results for the case of ex-
ternally applied crossed electric and magnetic
"elds. The expressions to be evaluated are slightly
more demanding because of the in"nite sums in the
above equations. Since the system can readily
undergo a BEC in a linear potential, i.e. electric
"eld, we set out to investigate the e!ects of the
external magnetic "eld.

The condensate fraction for various combina-
tions of the crossed electric and magnetic "eld
strengths is shown in Fig. 3. Here the presence of
a magnetic "eld and hence the peaked nature of the
DOS gives rise to a nonmonotone dependence in
terms of various combinations of the parameters
<

0
and E

#
. Finally, the speci"c heat and the discon-

tinuity at ¹
#
are displayed in Fig. 4. In the presence

of the magnetic "eld, the speci"c heat still shows
a discontinuity at the critical temperature. Our
results may be interpreted as indicating the occur-
ance of a BEC in a con"ning potential when the
applied magnetic "eld is not too strong. Previously,
Brosens et al. [21] have predicted the possibility of
BEC in a parabolic con"ning potential and mag-
netic "eld. As shown in Fig. 4, if we decrease the
amplitude of trapping potential <

0
, while keeping

the magnetic "eld constant, the discontinuity in the
speci"c heat decreases. This is in line with the
disappearance of BEC in a magnetic "eld for ho-
mogeneous systems.

5. Conclusion

In this work, we have considered a system of
noninteracting charged bosons and have studied
the BEC phenomenon in the presence of externally
applied electric and magnetic "elds. The external
"elds make the system inhomogeneous and alter
the BEC characteristics compared to the homo-
geneous case. We employ a recently introduced
semiclassical density of states [22] to calculate the
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temperature dependence of the condensate fraction
and the speci"c heat. We "nd that the noninteract-
ing system of charged bosons undergo BEC when
external electric and magnetic "elds are applied.
The density of states which includes "nite sample
size dimension e!ects gives rise to interesting de-
pendencies. The discontinuity in the speci"c heat is
obtained as a function of the external potentials. It
would be interesting to look for experimental veri"-
cations of our predictions. Our results may also
provide a starting point for more involved theories
that take the interaction e!ects into account.
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