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Fast Computation of the Ambiguity Function and the
Wigner Distribution on Arbitrary Line Segments
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Abstract—By using the fractional Fourier transformation ofthe  of chirp-like signals. The ability of obtaining WD and AF
time-domain signals, closed-form expressions for the projections of samples over polar grids is potentially very useful in various
their auto or cross ambiguity functions are derived. Based on a sim- important application areas including time-frequency domain

ilar formulation for the projections of the auto and cross Wigner . . - L
distributions and the well known two-dimensional (2-D) Fourier <€'nel design, multicomponent signal analysis, time-frequency

transformation relationship between the ambiguity and Wigner domain signal detection, and particle location analysis in
domains, closed-form expressions are obtained for the slices of both Fresnel holograms [21]-[28].

the Wigner distribution and the ambiguity function. By using dis- The organization of the paper is in accordance with the dual
cretization of the obtained analytical expressions, efficient algo- nature of the ambiguity function and Wigner distribution. We

rithms are proposed to compute uniformly spaced samples of the first id liminari th . tant t
Wigner distribution and the ambiguity function located on arbi- ISt provide some prefiminaries on these important concepts.

trary line segments. With repeated use of the proposed algorithms, 1N Section Ill, by using the Radon-Wigner transformation, an-
samples in the Wigner or ambiguity domains can be computed on alytical expressions are derived for the slices of the auto am-

non-Cartesian sampling grids, such as polar grids. biguity functions. Then, by discretizing the obtained analytical
Index Terms—Ambiguity function, fast computation, fractional ~ €xpressions, efficient algorithms are presented for the computa-
Fourier transformation, Wigner distribution. tion of slices of the ambiguity function. In Section IV, we follow

a similar development, leading to novel closed-form expressions

for the Radon-ambiguity function, and present efficient algo-

rithms for the computation of slices of the Wigner distribution.
IME-FREQUENCY signal processing is one of the funin Section V, both the analytical and computational results are
damental research areas in signal processing. The Wigegtended to therossAF and WD. In Section VI, we provide

distribution (WD) plays a central role in the theory and pragesults of simulated applications of the proposed algorithms. Fi-

tice of time-frequency signal processing [1]-[10]. Likewise, theally, the paper is concluded in Section VILI.

ambiguity function (AF), which is the two-dimensional (2-D)

Fourier transform of the Wigner distribution, plays a central rolg|, PRELIMINARIES ON THE WIGNER DISTRIBUTION AND THE

in time-frequency signal analysis [11]-[13] and radar and sonar AMBIGUITY FUNCTION

signal processing [14]—-[17].

Because of the availability of efficient computational algo-
rithms, both the WD and AF are usually computed on Cartesig
grids [1], [18], [19]. In this paper, by using the fractionafI
Fourier transformation of the time-domain signals, closed-for
expressions for the projections of their auto or cross ambigu {Ie
functions are derived. Based on a similar formulation for th&'©
projections of the auto and cross Wigner distributions [20]
and the well-known 2-D Fourier transformation relationship TR (¢, /) = /// r(v, T)a(u +7/2)x"(u —7/2)
between the ambiguity and Wigner domains, novel closed-form  p2ru—vt=Tf) g o (1)
expressions are obtained for the slices of both the WD and the

AF. By using discretization of the obtained analytical expregyhere the functiom(r, 7) is called the kernel [4], [29]. Recent
sions, efficient algorithms are proposed to compute uniformpgsearch on the time—frequency signal analysis has revealed that
spaced samples of the WD and the AF located on arbitragignal dependent choice of the kernel helps in localization of the
line segments. With repeated use of these algorithms, ittime-frequency components of the signals [11], [21]-[24]. By
possible to obtain samples of the WD and AF on non-CartesigRoosings: (1, 7) = 1, the most commonly used member of the
grids, such as polar grids that are the natural sampling gridghen’s class (the Wigner distribution) is obtained

. INTRODUCTION

Discrete time-frequency analysis is the primary investiga-
an tool in the synthesis, characterization, and filtering of
me-varying signals. Among the alternative time-frequency

alysis algorithms, those belonging to the Cohen’s class are
most commonly utilized ones. In this class, the time-fre-
ncy distributions of a signal¢) are given by
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eralized to define the cross-Wigner distribution of two signals f Wy 1)
z(t) andy(t) as

Warlts )2 [[altt #1207 #2200 dt. @) ‘

The properties of the cross-Wigner distribution have been inves- 2

tigated in detail [1], [2]. Note tha®V,... (¢, f) = W..(¢, f) holds. . q’\\ t
The 2-D inverse Fourier transform (FT) of the WD is called \

the (symmetric) ambiguity function, and it has found important

application areas including time-frequency signal analysis and

radar signal processing

, Path of integration

Au(v,7) 2 / / Wt £)e D) g gf (4a)

Fig. 1. Radon transform geometry for the RWT.
= /x(t +7/2)z*(t — 7/2)*™ dt.  (4b)
where(r, ¢) are the transform domain variables in polar format.
Similar to the cross-Wigner distribution, the cross-ambiguityith this definition, the RWT can be viewed as the family of the
function of two signals:(¢), y(¢) is defined as projections{ P, (r,¢),0 < ¢ < w}. The projection-slice the-
A orem [34] establishes an important link between the projections
Ay (v, 7) = /a:(t +7/2)y"(t — 7/2)e’*™tdt.  (5) of the WD and the slices of the AF. The 1-D inverse Fourier
transform of the projectiod,.(r, ¢) with respect to the radial
As in (4a), the cross-ambiguity function is related to the crosgariabler is the radial slice of the ambiguity function at the
Wigner distribution through the 2-D inverse Fourier transformangle¢
tion .
/ P, (7, $)e?™™ N dr = A, () cos ¢, Asin ) (8a)

Apy(vy7m) = // Wy (2, f)6127r(z/t+‘rf) dt df. (6) — AP\, ¢) (8b)

A o
lll. FAST COMPUTATION OF THEAMBIGUITY FUNCTION ON  WhereAZ(, ¢) = A.(Acos ¢, Asin¢) is the polar representa-
ARBITRARY LINE SEGMENTS tion of the AF. Therefore, once we have the projectiQutr, ¢),

) ) o ) we can use the fast Fourier transform (FFT) algorithm to effi-

In this section, an efficient algorithm to compute the ambienily approximate the samples on the radial slice of the AF.

guity function on uniformly spaced samples along an arbitragy,vever, to have a practically useful algorithm, we have to ob-

line segment is provided. For the sake of simplicity, a gradugliy the RWT efficiently as well. Fortunately, as it has been
method of presentation is used where we first consider obtainiggown in [35], the radial slices of the RWPJ(r, ¢)] can be

uniformly spaced samples of the AF on a line segment Ce”ter&ﬂnputed directly from the time signal(t) by using the frac-
at the origin. Then, we extend this approach to obtain sampigs | Fourier transformation (FrFT)

on a line segment positioned radially. Finally, we consider the
case of an arbitrary line segment. Thg presentation of the pro- Po(r,¢) = [{F*2}(r)|? = |za(r)|?, fora= % Q)
posed approach will be as follows: First, the well-known pro- ' ' 0

jection-slice relationship between the WD and the AF domaighere P, (1, ¢) is the ¢-Radon projection of the WD given by
will be given. Then, the projections in the WD domain will bet7)’ andz,(r) is the ath-order FrET of the signal as given in

related to the fractional Fourier transformation of the signals in‘ppendix A. Combining (8) and (9), we obtain the following
volved. Finally, the obtained continuous-time relationship willg|ation between the AF and the FrET of a signal:

be discretized to allow the use of a fast fractional Fourier trans-
formation algorithm. AP(N, ) = / |$a(7,)|26;2mA dr. (10)
A. Radon-Wigner Transform

i Thus, the ordinary 1-D inverse Fourier transform of the mag-
The Radon-Wigner transform (RWT) or Radon transformajide squaredth-order FrFT of a signal is equal to the radial

tion of the Wigner distribution has been introduced for the anajjice of its ambiguity function that makes an angle:af 2 with
ysis and classification of multicomponent chirp signals in noisgagpect to the axis in thev—r plane.

Several authors investigated RWT and some of its applications

in multicomponent signal analysis, time-varying filtering, an@. Efficient Computation of the Ambiguity Function Samples
adaptive kernel design [25], [30]-[33]. The RWT of a functiom\long Radial Slices of the Ambiguity Plane

x(t) is defined as the Radon transform of its WD. Using the ge-

- ) In this section, we provide the details of a fast algorithm for
ometry in Fig. 1, RWT can be written as P g

computing radial samples of the ambiguity function. As it will
i i . » be shown in detalil, for an input sequence of lenfjthit is pos-
Bo(r,¢) = / Wa(rcosd — ssing,rsing +scosd)ds (7)  gjpleto compute the samples of AF on an arbitrary line segment
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centered at the origin iW(N log N) flops2 We start with the T AT
approximation of the integral in (10) with its uniform Riemann

summation. For an equally valid approximation at all angles ) T
00 /.-

in the rest of this paper, we assume that prior to obtaining its
samplesg(¢) is scaled so that its Wigner domain support is ap- L L
proximately confined into a circle with radius, /2 centered at
the origin. In other words, arsth-order FrFT ofc(¢), including \
the signal itself and its ordinary Fourier transform, has negli-
gible energy outside the symmetric interfalA, /2, A, /2].

For a signalz(¢) with approximate time and frequency supports
of A, andA f, respectively, the required scalingig /s), where

s = /A;]A; [36].

After the scaling, the double-sided bandwidth|ef(r)|? is

2A,. Therefore, its inverse FT given in (10) can be expressed Fig. 2. Nonradial slice of the ambiguity function.
in terms of its uniformly obtained samples at a rate, using
the following discrete-time inverse Fourier transform relation: @

N-1
1 mAn
Agx¢y:5§-§: |Za[n] P B, —Ap <A< A,

n=—N

(11)
where NV is an arbitrary integer that is greater thax?,
which is the time-bandwidth product\? of z,(r), and
Zo[n] 2 zo(n/2A,) is the nth sample of the FrFTz, (r).
To obtain2/N equally spaced radial samples 4£(\, ¢), we
substitutex = (k/N)A,, in the above equation:

TS
S

AP EA ¢ b Jf |z [n][2e? V"
T N T ZAm S a

_N<E<N-1. (12

After the discretization, the obtained form lends itself for a
efficient digital computation since the required samples of tt
FIFT [zq(n/24;), —N < n < N — 1] can be computed _ _ _
using e recenty dovelaped fastcomputation algorim (361 1. e e oo o e
O(N log N) flops. The summation in (12) can be recast into gpitrary line segment. (d) Parallelogram.
2N-point discrete Fourier transformation (DFT), which can be
computed inO(N log N) flops using the fast Fourier transform , o )
algorithm. Therefore, the overall cost of computing the samplEs Computation of the Ambiguity Function along the Segments
of the AF along any radial slice i9(N log V) flops. of the Radial Slices

Note that the relationship in (12) is discrete in the radial vari- In order to compute the samples of the AF on an arbitrarily
ablek and continuous in the angular varialgleBy discretizing positioned segment of a radial slice, the chisfsransform (CZT)
the angular variable, the samples of the AF along several racagdorithm [37] can be used. Here, we will use a special version
lines can be computed. For instance, if this algorithm is used firthis algorithm (which is also called the chirp transform algo-
a uniformly distributed set of angles,, = (v/M)k, 0 < k& < rithm) to computeV’ uniformly spaced samples of a radial slice
M — 1, covering the rangf, 7 ), then the samples of the AF lo- AZ( ), ¢) on the interva[A;, A f]uoa(24, ) for arbitrary values of
cated on a polar grid can be computeditM N log N) flops. the parameterd’’, \;, and ;.

In Fig. 3(a), we illustrate the shape of a polar grid on which the To obtain the required samples, we substitute \; + kA,

samples of the AR, (v, 7) can be computed by using thisal-0 < & < N’ — 1 in (11), where the sampling interval of the

gorithm. frequency variable i€y = (A; — X;)/(IV' — 1). After the
rearrangement of the summation as

Py,
2Complex multiplication and addition. AW ()‘7' thAN, ¢)
SFrom this observation, we deduce the following fact: If the WDr(f) is 1 Nl 9 o Y-S\
confined into a circle with radius\,./2 in the Wigner plane, then its AF is =3 Z (|xa[n]| T, ) T
confined into a circle with radiu& . in the ambiguity plane. 28, ne—N

kn o (13a)
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R where A,_(v,7) is the cross-ambiguity function of the fol-

= Z glnlW™, k=0,1,....N' =1 (13b) lowing time-domain signalg(t) andz(t):

n=—N
y(t) = a(t + 70/2)™" (19)
whereg[n] andW are defined as 2(t) = x(t — 7,/2)e” Pt (20)
gln] = i |a:a[n]|2(z”3_i" (14) Thus, the nonradial slice of,.(v, 7) is_ equal t(_) the radial slice
2 @ of the A,.(v, 7), where both of the slices are in parallel. Hence,
W = 75 (15) similar to (8), the projection-slice theorem can be used to ex-

press the slice of thd . (1, 7) along the line segmeit, as the
we use the identitgn = (1/2)[k? +n? — (k — n)?] in (13b) 1-D inverse FT of the>-Radon projection of the corresponding
and obtain an alternative but equivalent expressioniftfr\; + cross-Wigner distributiofV, . (¢, f):
kA)\v (/)) .
Nl Ay (Vo + Xcos ¢, T, + Asin ¢) = / Py.(r, ¢)e’® ™ dr. (21)
ey . _ k?/2 —(k—n)?/2 n?/2

A +EAN @) =W _z_:NW (g[n]W ) We note that analogous to (9), thkeRadon projections of the

- k=0,1,...,N'—1. (16) Cross WD can be obtained from the following FrFT relation

[20]:
In this expressionA?(A; + kA, ¢) can be interpreted as N a ) a N N
the convolution of the chirp-modulated signglk] and the Pya(r, @) = {F* b OIHF 231" = va(r)ze(r) - (22)
chirp W~*/2 multiplied with another chirpW* /2. Since \yhereq = 24/ is the FrFT order. Then, following the discus-
the convolution can be computed efficiently by using the FFdjons in Sections 111-B and C, we obtain the following expres-

algorithm, for the usual case o’ < V, the uniformly spaced sjon for theV” uniformly spaced samples of the AF on the line
samples of the radial slical! (X, ¢) located in the segment segment. , :

[Mis Aflmoda(2a,) can be obtained inD(Nlog N) flops. In
Fig. 3(b), we illustrate the shape of a partial polar grid, on Ap(Vo + Apcos d, 7, + A sing)

which the samples of the AR, (,7) can be computed by ;] Nt n n .
using the algorithm of the previous section combined with the =3 Z Ya <T> 2z < A ) P e
CZT algorithm. In this plot, the polar grid has denser samples 282 284 28,

in the middle region. The samples on the radial slices that pass E=0,1,...,N =1 (23)
through both the denser and nondenser parts of the grid can

be obtained by using the CZT algorithm three times: once ¥hereh, = A; + k(A — A;)/(N' — 1). Asin the last section,
compute the samples in the denser region and twice to compiltese samples of the AF on the nonradial line segnignéan
the samples in the nondenser regions. be computed using the chirp transform algorithm.

D. Computation of the Ambiguity Function Along Arbitrary V. FAST COMPUTATION OF THE WIGNER DISTRIBUTION ON
Line Segments ARBITRARY LINE SEGMENTS

In this section, we present a fast computational algorithm thatln the rest of this paper, we will present the dual development
computes the samples of AF on a nonradial slice. Let us consiflar the Wigner distribution. In the next section, we introduce
the case of computing the samples of the AH v, 7) along the the dual of the Radon-Wigner transform: the Radon-ambiguity
line segment. 4 shown in Fig. 2. The following parameteriza-function transform (RAFT). Then, we derive the relationship be-
tion for the line segmenk 4 will be used in the derivations:  tween the RAFT and FrFT. As in the computation of the AF

samples, this relationship will naturally lead us to the fast com-
Ly={(v,7)|v=1,4+Acos¢,T =17, + Asing putation algorithm for the required WD samples.
A S A Af) (17) -
A. Radon-Ambiguity Transform
where(v,, 7,) is an arbitrary point that lies oh,4, and¢ isthe  The Radon transformation has been found to be a useful tool
angle betweerl. 4, and ther axis. Using this parameterizationin time—frequency signal processing with applications to detec-
of L 4 and the definition of the AF, the nonradial slice of the Akjon of chirp rates [26] and signal-dependent kernel design [24].

that lies on the line segmet, can be written as As we show in the following sections, the Radon transform of
the ambiguity function itself is also an important tool in the ef-
Az(Vo + Acos ¢, 7, + Asin ¢) ficient computation of the WD slices.
_ /a: <t 4T + Asind)) Here, we introduce the Radon-ambiguity function transform
2 of a signaly(¢) as the Radon transform of its ambiguity function.

o 2 <t Tt ;\Sin d)) PO gt (18a) The RAFT can be written as

= A,.(Acos ¢, Asin §) (18b) Qulr,¢) = /Ay(TCOS(/)—SSiIl(/),TSiIl(/)—i—SCOS(/))dS (24)
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where(r, ¢) are the polar format variables. Using the projection- - Hy:(a—l)y} (7,/2)} H]:(a—l)y} (_7,/2)} i
slice theorem, the radial slice of the WD at an anglean be

written as the FT o2, (r, ¢) with respect to the radial variable (30D)
r = Ya—1)(7/2)¥(a—1)(=7/2) (30c)

/Qy(r, $)e™2 A dp = W, (Acos ¢, Asing)  (25a) where(a — 1) = (2/n)¢ — 1 is the FrFT order. Thus, com-
bining (25) with (30) and discretizing the obtained relationship,
=Wi(A ) (25b)  we obtain an algorithm that can be used to compute the samples
A ) ] of the WD on polar grids, such as the ones shown in Figs. 3(a)
whereW7 (A, ¢) = Wy(Acos ¢, Asin¢) is the polar represen- 5nq (b). In the following section, based on the above relation-

tation of the WD. _ . o _ship, we propose an efficient algorithm to compute samples of
To obtain a fast computational algorithm similar to that igye \wD on arbitrary line segments.

Section IlI-B, the samples of the projectiof)s (r, ¢) have to

be obtained efficiently. In the next section, we investigate the computation of the Wigner Distribution along Arbitrary
relationship between the RAFT and the FrFT. Line Segments

B. Relation Between the Radon-Ambiguity Function Suppose that we want to compute samples of the WD of

Transformation and the Fractional Fourier Transformation & waveformz(#) along an arbitrary line segmettyy in the
. . . ) Wigner plane. Since the line segmént- may not pass through
The relationship of the RWT to the FrFT is well known in they, o origin, we cannot immediately use the results of the pre-

literature. In this section, we show that a similar relationship e¥;4,s section. However. as in Section I11-D. we will express the

ists between the RAFT and FrET. We start with the substitutiopqired nonradial slice as the radial slice of the WD of another
of (4b) into (24), resulting in the following expression for thg,qtion that allows us to use the results of the previous section.

radial slice of the RAFT: In the following derivation, we parameterize the line segment

Quird) = [ [t +r/2u = r/2) Ly as
, Lw ={(t, f) |t =to + Acos ¢, f = f, + Asin¢
iy %4
X< ‘ ., dhds o (269) A <A< AL (31)
T=rsin ¢+s cos ¢
rsing + scos ¢ In this expression(t,, f,) is an arbitrary point that lies ohyy,
- //y t+ 2 and¢ is the angle ofl.y with thet axis. Using this parameter-
. rsing + scos ¢ ization of Ly, the nonradial slice of the WD can be expressed
Xy (t— S as
% I2m(rcos p—ssind)t gy 1o (26b) Wa(to + Acos ¢, fo + Asin¢)
By making the following change in the integration variables: = /a:(to + Acosp+t/2)x*(t, + Acosp — ¢ /2)
1 — 227 sin ’
t1 _ 1 —i-% coso | |t n 17) in ¢ 1 @7) w =32 (fotAsind)t! gt (32a)
t2 1 —gcosg] |s 2 -1 = W, (A cos ¢, Asin ¢) (32b)
dty dta = | cos ¢| dt ds (28) - ’

the integral in (26b) can be written as in the following separabY\éhereWy()‘ cos ¢, Asin @) is the radial slice of the WD af(#):

form: y(t) = ot +t,)e 2 et (33)

Qy(r,¢) = // y(ty)y* (tp)e™ - (- t2) tanet(tittz)rsecd]  Hence, the nonradial slice of the WD oft) is the same as
1 the radial slice of the WD of the time-shifted and frequency-
X ———— dt; dts. (29) modulated version of it, where both slices are in parallel. By
| cos ¢ using the projection-slice theorem given in (25), the nonradial
By using the definition of4, given in (56), it follows that slice of the WD ofxz(¢) can be obtained as
1/|cos ¢ = |Ag_rjoc 7™/ tane|2_ After substituting this
identity into (29), the separated terms can be written in theWz(t, + Acos ¢, f, + Asing) = / Q,(r, $)e"  (34)
form of FrFT
) ) whereQ, (v, ¢) is the¢-Radon projection of the ambiguity func-
Qu(r,¢) = U Ay jpe?™(Z(r/2) tangdrty seco—ty tang) tion A, (v, 7). Since the require¢-Radon projection satisfies
; the following FrFT relationship:
x y(ti) dt Qy(r,¢) = y(a—l)(7’/2)yza_1)(_7’/2) (35)

x U A¢_W/2e—ﬂ7’((”/2)2 tan ¢4rts sec p+t3 tan ) wherea = 2¢/n, it can be efficiently computed by using the fast
FrFT algorithm proposed in [36] and given here as Algorithm

1. The steps of the proposéd N log N) algorithm are given in

Algorithm 3. Note that unlike”,(r, ¢), which is the¢-Radon

*

X y(t2) dt2_ (30a)
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Object of the algorithm:
Given f(n/A;), —N/2 <n < N/2 -1, to compute f,(m/2A;), —N < m < N — 1, under the assumption
that the WD of f(t) is confined into a circle with diameter A, < v/N.
Steps of the algorithm:
Interpolate the input samples by 2: f(n/A;) — f(n/24,)
@ :=(a+2 mod4)—2 % After the modulo operation, o' € [-2, 2)
% The cases of |a| € [0.5, 1.5] and |a’| ¢ [0.5, 1.5] have to be treated separately.

if |o'| € [0.5, 1.5] then

a =aq
else

a”:=(a’+1 mod4) -2 % After the modulo operation, a” € (0.5, 1.5)
end if
¢’ = %a”
o« = cot g’
B’ = csce”
Ay = exp(—jm S%Zi(si; /<1\>1’/)2/4+j¢”/2)

% Compute the following sequences:

= Il /AT=F" [N)m? for —N<m<N-1

c1[m]

co[m] = I8 (m/2VN)? for -2N <m <2N -1
c3[m] = 67”4&1%("”/1\'*&//@)”2 for —N<m<N-1
g[m] = a[m]f(m/24;) for —N<m<N-1

hor{mf2A,) = %c;;[m](@ xg)m] for —-N<m<N-1
%In the last step FFT is used to compute the convolution in O(N log N) flops.

if |a’| € 0.5, 1.5] then
fa(m/202) := hor(m/204)

else
% Compute samples of the ordinary FT using FFT.
fa(m/204) := {F har }(m/2A4)

end if

Algorithm 1. Fast fractional Fourier transform algorithm proposed in [36].

projection of the WD given by (7), the double-sided bandwidtA. Fast Computation of the Cross Ambiguity Function on

of Q,(r,¢) is A,. Arbitrary Line Segments

V. FAST COMPUTATION OF THE CROSSAMBIGUITY FUNCTION Suppose that we want to compute the samples of the cross AF

AND THE CROSSWIGNER DISTRIBUTION ON ARBITRARY LINE  of the two signalg/(t) andz(t) on the line segment 4 shown
SEGMENTS in Fig. 2. This nonradial slice of the cross AF function is given

Up to now, our main objective was developing algorithms fc#S
efficient computation of the samples of the AF and WD on arbi-
trary line segments. However, in some applications [14], [38],it 4 (1, + Acos ¢, 7, + Asin¢)
is required to compute the cross AF and the cross WD of a pair Y 7o + Asin ¢ 7o + Asin ¢
of given signals. As we show below, the same algorithms, with = /y <t + 0#) z* <t — %)
some slight modifications, can still be used to compute samples 2 (vt A cos &)t
of the cross AF and the cross WD on arbitrary line segments ef- x =T dt (36a)
ficiently. = Agz(Acos @, Asin @) (36b)
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Object of the algorithm:
Given y(n/Ag) and z(n/A,), —N/2 < n < N/2 — 1, to compute N’ samples of the cross AF of y(t) and
z(t) along the line segment L4 as shown in Fig. 2.

Steps of the algorithm:

if a radial slice then

ya[n] = {FyHn/2A,) for —-N<n<N-1 by using Algorithm 1.
zu[n] = {Fz}{n/2A;) for —-N<n<N-1 by using Algorithm 1.
paln] £ Py(n/2A0..¢) := ya[n]zi[n] for —-N<n<N-1

else
7[n] = y(n/Ay + 7o/2)e7™ (M B) for ~N/2<n < N/2-1
Z[n] = z(n/Ay — 7,/2)e T/ A) for —N/2<n< N/2-1
Ta[n] = {F*y}(n/2A,) for —-N<n<N-1 by using Algorithm 1.
Za[n] = {F°z}{n/2A,) for —-N<n<N-1 by using Algorithm 1.
Paln] £ Pys(n/20,, ) = yulnlzj[n] for —-N<n<N-1

end if

| N i
Ay (g, ) = A, Z pa[’n,]ejﬂh‘n for0<k<N -1 by using the CZT Algorithm.

n=—N
where (v, T1) £ (Up 4+ Mg o8 b, Ty + A sind) and A 2N+ k%

Algorithm 2. Fast computation of the cross-ambiguity function on arbitrary line segments.

Object of the algorithm:
Given y(n/A,) and z(n/A;), —N/2 < n < N/2 —1, to compute N’ samples of the cross WD of y(¢) and
z(t) along the line segment Ly as parameterized in (31).

Steps of the algorithm:

if a radial slice then

Ya-py[n] == {FlNy}(n/2A,) for —-N <n< N -1 by using Algorithm 1.
Z(q-1)[n] = {F=D2 n/2A,) for —-N <n< N -1 by using Algorithm 1.
Q(a—l)[n] £ Qyz(n/Az7¢) = y(a—l)[n]zafl)[_n] for —-N<n<N-1
else
ln] = y(n/Ag + ta)eﬁZWfo(n/Az)
Z[n] = 2(n)Ag + to)e 2 fo(n/Ba)
g(a_l)[n} = {f(“*l)gj}(nﬂAm) for —-N <n <N -1 by using Algorithm 1.
Za-pln] = {FleVz}(n/20,) for —-N <n <N -1 by using Algorithm 1.
ga-nln] £ Quz(n/Ag,¢) = f-n[nlE, [-n] for —-N<n<N-1
end if
N—1
1 —72= \en ; . .
Wy (t, fr) = A Z go—1[n]e 7B for 0<k<N' —1 by using CZT Algorithm.
T
n=—N
where (g, fr) 2 (o + Ak 08 §, fo+ Mg sing) and A, £ \; + k331

Algorithm 3.  Fast computation of the cross-Wigner distribution on arbitrary line segments.

whereAgz (A cos ¢, Asin ¢) is the radial slice of the cross AF of The radial slice of thedyz(v, ) is the 1-D inverse FT of the
the signalgj(t) andz(¢): ¢-Radon projection of th&: (¢, f)

() = y(t +70/2)e™" @7 . 2mAr
#(t) = 2(t — 7o /2)e IVt (38) Agz(Acos ¢, Asing) = / Pyz(r, )/ dr - (39)
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where theg-Radon projection satisfies the following relatiorthe value 1 if its argument falls into the rangel’ /2, T/2], a is
with the FrFTs ofy(¢) and z(¢): the rate of the chirp, anfis its initial phase. The corresponding
2 ambiguity function has the following closed-form expression:
Py(r,¢) = a(r)Z(r), a= 4. (40)

: o As(v, 1) = ™ — |7])sind(v + ar)(T = |7])
;?r?gé tg;a required nonradial slice of thg.(r, r) can be ob- x rect(r/27T). (48)

. _ - 2 A In the simulation performed here, the values of the parame-
Ays(vo +Acos ¢, 7, + Asing) = /ya(T)Za(T)e] dr- ters are chosen @& = 6, a = —1/4, andb = 1. Then, by
(41) samplingz(t) at a rateA, = 14, we obtainedV = 196 uni-
Discretization of this expression yields the fast computation@rmly spaced samples in the intenal A, /2, A, /2). Since
algorithm. the significant energy of theth-order FrFTs of:z(¢) are con-
] ] o fined into this interval, no scaling is applied to the continuous
B. Fast Computation of the Cross Wigner Distribution on  time signalz(¢). In other words, the value of the scaling param-
Arbitrary Line Segments eteris given as = 1, which is also true for the other simulations
In this section, we derive the algorithm for fast computatioin this section. In Fig. 4(a), Algorithm 2 is used to compute the
of the samples of th&,,.(¢, f) on an arbitrary line segmeft;; AF samples on the full polar grid with the angular spacing of
as parameterized in (31). This nonradial slice of the cross Wiy85 rad and radial spacing ak, /210 normalized units. As

can be expressed as the radial slic&gf (¢, f) shown in Fig. 4(b), by using the same algorithm, samples of
. the AF can also be obtained over a partial polar grid with the

Was(to +-Acos, fo + Asin ) same angular and radial sampling intervals. For the display pur-

= /y(to +Acosp+t/2)2"(t, + Acosp — t'/2) pose, the AF of the same signal could also be computed on a

Cartesian grid. In this simulation, the AF is first computed by
(42a) using the algorithm in [18] on the whole Cartesian grid with
= Wyz(Acos ¢, Asin ¢) (42b) Doppler and delay spacings bf A, units. Then, in Fig. 4(c),
real parts of the computed AF samples that reside on a circular
disk with radius 3 are plotted. To investigate the accuracy of
g(t) = y(t +t,)e 7>l (43) the proposed algorithm, we computedXiV log V) flops the
F(t) = 2(t 4 t,)e 12t (44) samples of the ambiguity function of the same chirp pulse over
the radial line segment shown in Fig. 4(d). The real parts of the
gomputed samples and their deviation from the samples com-
puted by using (48) are shown in Fig. 4(e) and (f), respectively.
As it can be seen from this example, the computed samples are

W= (Acos ¢, Asin g) = /ng(% P)e AT gy (45) highly accurate. Alternatively, the sz?\mples on the line segment
shown in Fig. 4(d) could be approximated from the computed

% C—]Qﬁ(fo—l—)\ sin )t/ dt/

where the signalg(¢) andz(¢) are defined as

Using the projection-slice theorem, this radial slice of th
Wyz(t, f) can be expressed as the 1-D FT of ihdradon
projectionQ;:z(r, ¢) of the Ay: (v, 7)

where theg-Radon projection is given in terms of tfe — AF samples on the Cartesian grid by using a crude interpolator
1)th-order FrFTs of the signalgt) andz(t) such as the nearest neighbor interpolator. The result of this al-
N ey o . ternative approach is shown in Fig. 4(g), where the real parts of

_ Qyz(f’ d)_) = a-nr /2)2(7*1)( 7/2)_' (46) the computed samples are plotted. With the comparison of the
Finally, substituting (45) and (46) into (42) gives approximation errors in Fig. 4(f) and (h), it becomes apparent
Wy (t, + Acos ¢, f, + Asin @) that the new algorithm produces a ten-times more accurate re-

sult for this simulation. Furthermore, when the line segment has
= / Ua—1)(r/2)7(y_1y(r/2)e™*™dr. (47) arbitrary orientation withD(N) samples on it, the alternative
computation based on the Cartesian grid requiréd’ log N)
r‘ﬂbps. On the other hand, by using Algorithm 2, the same AF
samples can be computed with ten times more accuracy in only
O(Nlog N) flops.
Next, we investigate the accuracy of the algorithms in com-
In this section, by using simulations, we will investigatguting the WD of the Gaussian pulsét) = 21/4c==*", which
the performance of the proposed algorithms. For this purposas the Wigner distribution
¥ve c_on3|der the _S|gnals_ W|_th e_malyucal_ly known amp|gU|ty Wit f) = 9p=2n(t2+1%) (49)
unctions and Wigner distributions. This way, we will be
able to investigate the error due to discretization of thBy samplingz(t) at a rateA, = 10v/2, we obtainedV =
fractional Fourier transformation on the obtained samplez00 uniformly spaced samples in the interyalA, /2, A, /2).
First, we will investigate the performance of Algorithm 2Fig. 5(a) and (b) are obtained by repeated application of the
which computes the samples of the ambiguity function ohlgorithm 3. In (a), the WD is computed over a full, and in
arbitrary line segments. In this simulation, we use a linear-fr@d), it is computed over a partial polar grid. For the purpose of
guency modulated chirp signal with a rectangular envelogemparison, the WD samples are also computed on a Cartesian
z(t) = rect(t/T)eJ’T[”'tsz?“], where the re¢t) function takes grid by using the algorithm in [1] with a sampling interval of

Discretization of this expression as in (23) yields the fast co
putational algorithm.

VI. SIMULATIONS
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Fig. 4. Digital computation of the AF of a chirp signal with a rectangular envelope: In the top two plots, the real part of the AF of the pulse is conf@uted on

full and (b) partial polar grid by repeated use of the Algorithm 2. For the purpose of comparison, the AF samples are also computed on a Cartessamggrid by u
[18]. In (c), the real parts of these AF samples that lie on a circular disk are plotted. In (d), the support of a radial line segment on which the Hzenfiles of

are computed is shown. The real parts of the actual and computed AF samples on this line segment by using Algorithm 2 are in very good agreemegt, as shown b
the close overlay in (e). The error in the computation shown in (f) reveals the highly accurate nature of the computational algorithm. In (g), fheaapieA

are approximated from the samples on the Cartesian grid by using nearest neighbor interpolation. The peak approximation error in (h) is gpenoximesel

larger than the one in (f).

1/(2A,) units both in time and frequency. Then, in Fig. 5(c)of comparison, the same AF samples are approximated from the
only the WD samples that lie on a circular disk with radius Cartesian grid samples by using nearest neighbor interpolation.
are plotted. In Fig. 5(g), the approximated and actual AF samples are shown,

To show the accuracy of the proposed algorithm, we corand in Fig. 5(h), the computation error is shown. As in the AF
puted, inO(N log N) flops, samples of the Wigner distribu-case presented above, not only the accuracy of the computed
tion of the same Gaussian pulse over the nonradial line segmsaunples shown in Fig. 5(h) is significantly less than the accu-
shown in Fig. 5(d). The obtained samples and the approximati@ty obtained by using Algorithm 3, but also the computation of
error are plotted in Fig. 5(e) and (f), respectively. For the purpotiee Cartesian grid based algorithm requitsv?2 log V) flops.
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Fig. 5. Digital computation of the WD of a Gaussian pulse. In the top two plots, the WD of the pulse is computed on (a) full and (b) partial polar gatkly repe

use of Algorithm 3. For the purpose of comparison, the WD samples are also computed on a Cartesian grid by using [1]. In (c), only the WD samples that lie
on a circular disk are plotted. In (d), the support of a nonradial line segment on which the samples of the WD are computed is shown. The actual dnd compute
WD samples on this line segment are in very good agreement, as shown by the close overlay in (e). The error in the computation shown in (f) revigals the high
accurate nature of the computational algorithm. In (g), the same WD samples are approximated from the samples on the Cartesian grid by usigginearest ne
interpolation. The error shown in (h) is significantly larger than the one in (f).

Next, we consider the digital computation of the WD of dor £ = 1 or2. The WD ofz(¢) can be analytically computed as
multicomponent signat(t), which is composed of two chirp We(t, ) =W.(t —t,, f —at — by)

pulsesz (t) andzs(t): S Wt —to, f — at — by)
+ 2cos(2m(by — b)(t —t,))
X Wo(t —t,, f —at — (b +b3)/2)  (52)
The chirp pulses are chosen as whereW.,.(¢, f) is the WD of the rect/T") function
W.(t, f) =20(1 —2|t|/T) recl(t/T)
ap(t) = mlet=toP +20u =)l recy(t — ¢,)/T)  (51) x sing2(1 — 2t|/T) fT). (53)

2(t) = x21(t) + 22(¢). (50)
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frequency (f)
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Fig. 6. Computation of the WD samples of a multicomponent chirp signal over various parallelogram grids to investigate the (a) whole, (b) autossd (c) ¢
terms. The efficient computation of the highly localized samples of the WD as in plots (b) and (c) has a wide range application areas including anatpsisen
signal detection, and signal extraction for nonstationary signals. As shown in (d), the error in the computed samples of the auto terms is very small.

In (52), the first two terms are the auto terms, and the third otien, multicomponent signal analysis, and data-adaptive kernel

is the cross term. design for time—frequency signal analysis. The locations of the
For the reported simulation here, the parameters(of are peaks in the RWT are related to the rate and initial phase of the
chosenag\, = 30,a = —3,b; = 3, b = —1,¢, = 3,and chirps in (51). When the chirp components are contaminated

T =5+ 1/A,. The WD ofz(t) with these parameters is dig-with additive white Gaussian noise, the locations of the peaks in
itally computed on a grid like the one in Fig. 3(d) by using Althe Radon—Wigner transform provide the maximum likelihood
gorithm 3. The obtained result shown in Fig. 6(a) demonstratestimate of these parameters [32], [39]. Note that the compu-
the agreement with the analytical result in (52). In this plot, weation of the RWT and the RAFT of a signal over a full polar
easily identify the auto terms of the WD as the two lines that ageid requires the computation of the same set of FrFTs of the
closer to the edges, and we identify the cross term as the line thigihal. Hence, when these transforms are to be calculated simul-
is at the middle part of the plot. The cross term is highly oscilldaaneously, significant computational savings can be achieved by
tory because of the cosine modulation in (52). In Fig. 6(b) araoiding any extra computation of the FrFT samples.
(c), computed samples of the auto and cross terms are shown
over highly localized grids of the type given in Fig. 3(d). Fi-
nally, in Fig. 6(d), we provide the approximation error for the
auto terms only. By using the FrFT of the time-domain signals, closed-form
In Fig. 7, the Radon-Wigner transform and Radon-ambiguigxpressions for the projections of their auto or cross ambiguity
function transform of the same multicomponent signal are corfunctions are derived. Based on a similar formulation for the
puted on polar grids by using the FrFT relations (9) and (3Q)rojections of the auto and cross Wigner distributions and the
These transforms have important applications in signal deteeell-known 2-D Fourier transformation relationship between

VII. CONCLUSION
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Digital computation of the (a) Radon-Wigner transform and (b) magnitude of the Radon-ambiguity function transform. In this paper, thgaroafiput

these transforms constitute the intermediate steps in computation of the ambiguity function and the Wigner distribution on polar grids.

the ambiguity and Wigner domains, closed-form expressions are
obtained for the slices of both the Wigner distribution and the (1] T. A. c. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner dis-

ambiguity function. Based on the obtained analytical results, ef-
ficient algorithms are proposed for the computation of the auto

or cross Wigner distribution and ambiguity function samples on
arbitrary line segments. The proposed algorithms make use of

a digital computation algorithm of the FrFT to compiNeuni-

formly spaced samples ifi( N log N) flops. The ability of ob-

(2]

(3]

taining samples on arbitrary line segments provides significant
flexibility in the computational applications involved with the

Wigner distribution and the ambiguity function.

APPENDIX A
FRACTIONAL FOURIER TRANSFORMATION

Theath-order,a € R, 0 < |a| < 2, FrFT of a functionz(z)
is defined as [40]
ralt) = {Foa}(t) 2 / Bu(t,)a(®)df  (54)

where the kernel of the transformatidh, (¢,¢') is

B,(t,t') = Ay exp[jm(t* cot ¢ — 2t csc ¢ + % cot ¢)]

(55)
A, = exp(—jm Sgrrsli(jl;l| i/)/)Q/ 4+7¢/2) (56)
¢ = “7” (57)

The transformation kernel is the complex exponentiaf~tt’
for a = 1, and it approache§(t) for « = 0 and toé(¢t +

[4]

(5]

(6]
(71

(8]

[9]

(10]

(11]

[12]

(23]

(14]

t') for a = +2. Thus, it follows that the first-order FrFT is 15
the ordinary Fourier transform, and the zeroth-order FrFT is thé ]
function itself. The definition of the FrFT is easily extended to[16]

outside the interval—2,2] by noting thatF** is the identity

operator for any integef and the FrFT is additive in the index,

e, FFT = Futoz,

[17

]
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