
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 2, FEBRUARY 2001 381

Fast Computation of the Ambiguity Function and the
Wigner Distribution on Arbitrary Line Segments
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Abstract—By using the fractional Fourier transformation of the
time-domain signals, closed-form expressions for the projections of
their auto or cross ambiguity functions are derived. Based on a sim-
ilar formulation for the projections of the auto and cross Wigner
distributions and the well known two-dimensional (2-D) Fourier
transformation relationship between the ambiguity and Wigner
domains, closed-form expressions are obtained for the slices of both
the Wigner distribution and the ambiguity function. By using dis-
cretization of the obtained analytical expressions, efficient algo-
rithms are proposed to compute uniformly spaced samples of the
Wigner distribution and the ambiguity function located on arbi-
trary line segments. With repeated use of the proposed algorithms,
samples in the Wigner or ambiguity domains can be computed on
non-Cartesian sampling grids, such as polar grids.

Index Terms—Ambiguity function, fast computation, fractional
Fourier transformation, Wigner distribution.

I. INTRODUCTION

T IME-FREQUENCY signal processing is one of the fun-
damental research areas in signal processing. The Wigner

distribution (WD) plays a central role in the theory and prac-
tice of time-frequency signal processing [1]–[10]. Likewise, the
ambiguity function (AF), which is the two-dimensional (2-D)
Fourier transform of the Wigner distribution, plays a central role
in time-frequency signal analysis [11]–[13] and radar and sonar
signal processing [14]–[17].

Because of the availability of efficient computational algo-
rithms, both the WD and AF are usually computed on Cartesian
grids [1], [18], [19]. In this paper, by using the fractional
Fourier transformation of the time-domain signals, closed-form
expressions for the projections of their auto or cross ambiguity
functions are derived. Based on a similar formulation for the
projections of the auto and cross Wigner distributions [20]
and the well-known 2-D Fourier transformation relationship
between the ambiguity and Wigner domains, novel closed-form
expressions are obtained for the slices of both the WD and the
AF. By using discretization of the obtained analytical expres-
sions, efficient algorithms are proposed to compute uniformly
spaced samples of the WD and the AF located on arbitrary
line segments. With repeated use of these algorithms, it is
possible to obtain samples of the WD and AF on non-Cartesian
grids, such as polar grids that are the natural sampling grids
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of chirp-like signals. The ability of obtaining WD and AF
samples over polar grids is potentially very useful in various
important application areas including time-frequency domain
kernel design, multicomponent signal analysis, time-frequency
domain signal detection, and particle location analysis in
Fresnel holograms [21]–[28].

The organization of the paper is in accordance with the dual
nature of the ambiguity function and Wigner distribution. We
first provide some preliminaries on these important concepts.
In Section III, by using the Radon-Wigner transformation, an-
alytical expressions are derived for the slices of the auto am-
biguity functions. Then, by discretizing the obtained analytical
expressions, efficient algorithms are presented for the computa-
tion of slices of the ambiguity function. In Section IV, we follow
a similar development, leading to novel closed-form expressions
for the Radon-ambiguity function, and present efficient algo-
rithms for the computation of slices of the Wigner distribution.
In Section V, both the analytical and computational results are
extended to thecrossAF and WD. In Section VI, we provide
results of simulated applications of the proposed algorithms. Fi-
nally, the paper is concluded in Section VII.

II. PRELIMINARIES ON THE WIGNER DISTRIBUTION AND THE

AMBIGUITY FUNCTION

Discrete time-frequency analysis is the primary investiga-
tion tool in the synthesis, characterization, and filtering of
time-varying signals. Among the alternative time-frequency
analysis algorithms, those belonging to the Cohen’s class are
the most commonly utilized ones. In this class, the time-fre-
quency distributions of a signal are given by1

TF

(1)

where the function is called the kernel [4], [29]. Recent
research on the time–frequency signal analysis has revealed that
signal dependent choice of the kernel helps in localization of the
time-frequency components of the signals [11], [21]–[24]. By
choosing , the most commonly used member of the
Cohen’s class (the Wigner distribution) is obtained

(2)

Because of its nice energy localization properties, the WD has
found important application areas. Definition (2) has been gen-

1All integrals are from�1 to+1 unless otherwise stated.
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eralized to define the cross-Wigner distribution of two signals
and as

(3)

The properties of the cross-Wigner distribution have been inves-
tigated in detail [1], [2]. Note that holds.

The 2-D inverse Fourier transform (FT) of the WD is called
the (symmetric) ambiguity function, and it has found important
application areas including time-frequency signal analysis and
radar signal processing

(4a)

(4b)

Similar to the cross-Wigner distribution, the cross-ambiguity
function of two signals is defined as

(5)

As in (4a), the cross-ambiguity function is related to the cross-
Wigner distribution through the 2-D inverse Fourier transforma-
tion

(6)

III. FAST COMPUTATION OF THEAMBIGUITY FUNCTION ON

ARBITRARY LINE SEGMENTS

In this section, an efficient algorithm to compute the ambi-
guity function on uniformly spaced samples along an arbitrary
line segment is provided. For the sake of simplicity, a gradual
method of presentation is used where we first consider obtaining
uniformly spaced samples of the AF on a line segment centered
at the origin. Then, we extend this approach to obtain samples
on a line segment positioned radially. Finally, we consider the
case of an arbitrary line segment. The presentation of the pro-
posed approach will be as follows: First, the well-known pro-
jection-slice relationship between the WD and the AF domains
will be given. Then, the projections in the WD domain will be
related to the fractional Fourier transformation of the signals in-
volved. Finally, the obtained continuous-time relationship will
be discretized to allow the use of a fast fractional Fourier trans-
formation algorithm.

A. Radon–Wigner Transform

The Radon–Wigner transform (RWT) or Radon transforma-
tion of the Wigner distribution has been introduced for the anal-
ysis and classification of multicomponent chirp signals in noise.
Several authors investigated RWT and some of its applications
in multicomponent signal analysis, time-varying filtering, and
adaptive kernel design [25], [30]–[33]. The RWT of a function

is defined as the Radon transform of its WD. Using the ge-
ometry in Fig. 1, RWT can be written as

(7)

Fig. 1. Radon transform geometry for the RWT.

where are the transform domain variables in polar format.
With this definition, the RWT can be viewed as the family of the
projections . The projection-slice the-
orem [34] establishes an important link between the projections
of the WD and the slices of the AF. The 1-D inverse Fourier
transform of the projection with respect to the radial
variable is the radial slice of the ambiguity function at the
angle

(8a)

(8b)

where is the polar representa-
tion of the AF. Therefore, once we have the projection ,
we can use the fast Fourier transform (FFT) algorithm to effi-
ciently approximate the samples on the radial slice of the AF.
However, to have a practically useful algorithm, we have to ob-
tain the RWT efficiently as well. Fortunately, as it has been
shown in [35], the radial slices of the RWT [ ] can be
computed directly from the time signal by using the frac-
tional Fourier transformation (FrFT)

for (9)

where is the -Radon projection of the WD given by
(7), and is the th-order FrFT of the signal as given in
Appendix A. Combining (8) and (9), we obtain the following
relation between the AF and the FrFT of a signal:

(10)

Thus, the ordinary 1-D inverse Fourier transform of the mag-
nitude squaredth-order FrFT of a signal is equal to the radial
slice of its ambiguity function that makes an angle of with
respect to the axis in the – plane.

B. Efficient Computation of the Ambiguity Function Samples
Along Radial Slices of the Ambiguity Plane

In this section, we provide the details of a fast algorithm for
computing radial samples of the ambiguity function. As it will
be shown in detail, for an input sequence of length, it is pos-
sible to compute the samples of AF on an arbitrary line segment
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centered at the origin in flops.2 We start with the
approximation of the integral in (10) with its uniform Riemann
summation. For an equally valid approximation at all angles,
in the rest of this paper, we assume that prior to obtaining its
samples, is scaled so that its Wigner domain support is ap-
proximately confined into a circle with radius centered at
the origin. In other words, anyth-order FrFT of , including
the signal itself and its ordinary Fourier transform, has negli-
gible energy outside the symmetric interval .
For a signal with approximate time and frequency supports
of and , respectively, the required scaling is , where

[36].
After the scaling, the double-sided bandwidth of is

. Therefore, its inverse FT given in (10) can be expressed
in terms of its uniformly obtained samples at a rate using
the following discrete-time inverse Fourier transform relation:3

(11)
where is an arbitrary integer that is greater than ,
which is the time-bandwidth product of , and

is the th sample of the FrFT .
To obtain equally spaced radial samples of , we
substitute in the above equation:

(12)

After the discretization, the obtained form lends itself for an
efficient digital computation since the required samples of the
FrFT [ ] can be computed
using the recently developed fast computation algorithm [36] in

flops. The summation in (12) can be recast into a
-point discrete Fourier transformation (DFT), which can be

computed in flops using the fast Fourier transform
algorithm. Therefore, the overall cost of computing the samples
of the AF along any radial slice is flops.

Note that the relationship in (12) is discrete in the radial vari-
able and continuous in the angular variable. By discretizing
the angular variable, the samples of the AF along several radial
lines can be computed. For instance, if this algorithm is used for
a uniformly distributed set of angles

, covering the range , then the samples of the AF lo-
cated on a polar grid can be computed in flops.
In Fig. 3(a), we illustrate the shape of a polar grid on which the
samples of the AF can be computed by using this al-
gorithm.

2Complex multiplication and addition.
3From this observation, we deduce the following fact: If the WD ofx(t) is

confined into a circle with radius� =2 in the Wigner plane, then its AF is
confined into a circle with radius� in the ambiguity plane.

Fig. 2. Nonradial slice of the ambiguity function.

Fig. 3. Some grids on which the AF and/or WD of a signal can be computed.
(a) Full polar grid. (b) Partial polar grid with nonuniform grid density. (c)
Arbitrary line segment. (d) Parallelogram.

C. Computation of the Ambiguity Function along the Segments
of the Radial Slices

In order to compute the samples of the AF on an arbitrarily
positioned segment of a radial slice, the chirp-transform (CZT)
algorithm [37] can be used. Here, we will use a special version
of this algorithm (which is also called the chirp transform algo-
rithm) to compute uniformly spaced samples of a radial slice

on the interval for arbitrary values of
the parameters and .

To obtain the required samples, we substitute
in (11), where the sampling interval of the

frequency variable is . After the
rearrangement of the summation as

(13a)



384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 2, FEBRUARY 2001

(13b)

where and are defined as

(14)

(15)

we use the identity in (13b)
and obtain an alternative but equivalent expression for

(16)

In this expression, can be interpreted as
the convolution of the chirp-modulated signal and the
chirp multiplied with another chirp . Since
the convolution can be computed efficiently by using the FFT
algorithm, for the usual case of , the uniformly spaced
samples of the radial slice located in the segment

can be obtained in flops. In
Fig. 3(b), we illustrate the shape of a partial polar grid, on
which the samples of the AF can be computed by
using the algorithm of the previous section combined with the
CZT algorithm. In this plot, the polar grid has denser samples
in the middle region. The samples on the radial slices that pass
through both the denser and nondenser parts of the grid can
be obtained by using the CZT algorithm three times: once to
compute the samples in the denser region and twice to compute
the samples in the nondenser regions.

D. Computation of the Ambiguity Function Along Arbitrary
Line Segments

In this section, we present a fast computational algorithm that
computes the samples of AF on a nonradial slice. Let us consider
the case of computing the samples of the AF along the
line segment shown in Fig. 2. The following parameteriza-
tion for the line segment will be used in the derivations:

(17)

where is an arbitrary point that lies on , and is the
angle between and the axis. Using this parameterization
of and the definition of the AF, the nonradial slice of the AF
that lies on the line segment can be written as

(18a)

(18b)

where is the cross-ambiguity function of the fol-
lowing time-domain signals and :

(19)

(20)

Thus, the nonradial slice of is equal to the radial slice
of the , where both of the slices are in parallel. Hence,
similar to (8), the projection-slice theorem can be used to ex-
press the slice of the along the line segment as the
1-D inverse FT of the -Radon projection of the corresponding
cross-Wigner distribution

(21)

We note that analogous to (9), the-Radon projections of the
cross WD can be obtained from the following FrFT relation
[20]:

(22)

where is the FrFT order. Then, following the discus-
sions in Sections III–B and C, we obtain the following expres-
sion for the uniformly spaced samples of the AF on the line
segment

(23)

where . As in the last section,
these samples of the AF on the nonradial line segmentcan
be computed using the chirp transform algorithm.

IV. FAST COMPUTATION OF THEWIGNER DISTRIBUTION ON

ARBITRARY LINE SEGMENTS

In the rest of this paper, we will present the dual development
for the Wigner distribution. In the next section, we introduce
the dual of the Radon-Wigner transform: the Radon-ambiguity
function transform (RAFT). Then, we derive the relationship be-
tween the RAFT and FrFT. As in the computation of the AF
samples, this relationship will naturally lead us to the fast com-
putation algorithm for the required WD samples.

A. Radon-Ambiguity Transform

The Radon transformation has been found to be a useful tool
in time–frequency signal processing with applications to detec-
tion of chirp rates [26] and signal-dependent kernel design [24].
As we show in the following sections, the Radon transform of
the ambiguity function itself is also an important tool in the ef-
ficient computation of the WD slices.

Here, we introduce the Radon-ambiguity function transform
of a signal as the Radon transform of its ambiguity function.
The RAFT can be written as

(24)
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where are the polar format variables. Using the projection-
slice theorem, the radial slice of the WD at an anglecan be
written as the FT of with respect to the radial variable

(25a)

(25b)

where is the polar represen-
tation of the WD.

To obtain a fast computational algorithm similar to that in
Section III-B, the samples of the projections have to
be obtained efficiently. In the next section, we investigate the
relationship between the RAFT and the FrFT.

B. Relation Between the Radon-Ambiguity Function
Transformation and the Fractional Fourier Transformation

The relationship of the RWT to the FrFT is well known in the
literature. In this section, we show that a similar relationship ex-
ists between the RAFT and FrFT. We start with the substitution
of (4b) into (24), resulting in the following expression for the
radial slice of the RAFT:

(26a)

(26b)

By making the following change in the integration variables:

(27)

(28)

the integral in (26b) can be written as in the following separable
form:

(29)

By using the definition of given in (56), it follows that
. After substituting this

identity into (29), the separated terms can be written in the
form of FrFT

(30a)

(30b)

(30c)

where is the FrFT order. Thus, com-
bining (25) with (30) and discretizing the obtained relationship,
we obtain an algorithm that can be used to compute the samples
of the WD on polar grids, such as the ones shown in Figs. 3(a)
and (b). In the following section, based on the above relation-
ship, we propose an efficient algorithm to compute samples of
the WD on arbitrary line segments.

C. Computation of the Wigner Distribution along Arbitrary
Line Segments

Suppose that we want to compute samples of the WD of
a waveform along an arbitrary line segment in the
Wigner plane. Since the line segment may not pass through
the origin, we cannot immediately use the results of the pre-
vious section. However, as in Section III-D, we will express the
required nonradial slice as the radial slice of the WD of another
function that allows us to use the results of the previous section.
In the following derivation, we parameterize the line segment

as

(31)

In this expression, is an arbitrary point that lies on ,
and is the angle of with the axis. Using this parameter-
ization of , the nonradial slice of the WD can be expressed
as

(32a)

(32b)

where is the radial slice of the WD of

(33)

Hence, the nonradial slice of the WD of is the same as
the radial slice of the WD of the time-shifted and frequency-
modulated version of it, where both slices are in parallel. By
using the projection-slice theorem given in (25), the nonradial
slice of the WD of can be obtained as

(34)

where is the -Radon projection of the ambiguity func-
tion . Since the required-Radon projection satisfies
the following FrFT relationship:

(35)

where , it can be efficiently computed by using the fast
FrFT algorithm proposed in [36] and given here as Algorithm
1. The steps of the proposed algorithm are given in
Algorithm 3. Note that unlike , which is the -Radon
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Algorithm 1. Fast fractional Fourier transform algorithm proposed in [36].

projection of the WD given by (7), the double-sided bandwidth
of is .

V. FAST COMPUTATION OF THECROSSAMBIGUITY FUNCTION

AND THE CROSSWIGNER DISTRIBUTION ON ARBITRARY LINE

SEGMENTS

Up to now, our main objective was developing algorithms for
efficient computation of the samples of the AF and WD on arbi-
trary line segments. However, in some applications [14], [38], it
is required to compute the cross AF and the cross WD of a pair
of given signals. As we show below, the same algorithms, with
some slight modifications, can still be used to compute samples
of the cross AF and the cross WD on arbitrary line segments ef-
ficiently.

A. Fast Computation of the Cross Ambiguity Function on
Arbitrary Line Segments

Suppose that we want to compute the samples of the cross AF
of the two signals and on the line segment shown
in Fig. 2. This nonradial slice of the cross AF function is given
as

(36a)

(36b)
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Algorithm 2. Fast computation of the cross-ambiguity function on arbitrary line segments.

Algorithm 3. Fast computation of the cross-Wigner distribution on arbitrary line segments.

where is the radial slice of the cross AF of
the signals and

(37)

(38)

The radial slice of the is the 1-D inverse FT of the
-Radon projection of the

(39)
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where the -Radon projection satisfies the following relation
with the FrFTs of and

(40)

Then, the required nonradial slice of the can be ob-
tained as

(41)
Discretization of this expression yields the fast computational
algorithm.

B. Fast Computation of the Cross Wigner Distribution on
Arbitrary Line Segments

In this section, we derive the algorithm for fast computation
of the samples of the on an arbitrary line segment
as parameterized in (31). This nonradial slice of the cross WD
can be expressed as the radial slice of

(42a)

(42b)

where the signals and are defined as

(43)

(44)

Using the projection-slice theorem, this radial slice of the
can be expressed as the 1-D FT of the-Radon

projection of the

(45)

where the -Radon projection is given in terms of the
th-order FrFTs of the signals and

(46)

Finally, substituting (45) and (46) into (42) gives

(47)

Discretization of this expression as in (23) yields the fast com-
putational algorithm.

VI. SIMULATIONS

In this section, by using simulations, we will investigate
the performance of the proposed algorithms. For this purpose,
we consider the signals with analytically known ambiguity
functions and Wigner distributions. This way, we will be
able to investigate the error due to discretization of the
fractional Fourier transformation on the obtained samples.
First, we will investigate the performance of Algorithm 2,
which computes the samples of the ambiguity function on
arbitrary line segments. In this simulation, we use a linear-fre-
quency modulated chirp signal with a rectangular envelope

rect , where the rect function takes

the value 1 if its argument falls into the range is
the rate of the chirp, andis its initial phase. The corresponding
ambiguity function has the following closed-form expression:

sinc

rect (48)

In the simulation performed here, the values of the parame-
ters are chosen as and . Then, by
sampling at a rate , we obtained uni-
formly spaced samples in the interval . Since
the significant energy of theth-order FrFTs of are con-
fined into this interval, no scaling is applied to the continuous
time signal . In other words, the value of the scaling param-
eter is given as , which is also true for the other simulations
in this section. In Fig. 4(a), Algorithm 2 is used to compute the
AF samples on the full polar grid with the angular spacing of

rad and radial spacing of normalized units. As
shown in Fig. 4(b), by using the same algorithm, samples of
the AF can also be obtained over a partial polar grid with the
same angular and radial sampling intervals. For the display pur-
pose, the AF of the same signal could also be computed on a
Cartesian grid. In this simulation, the AF is first computed by
using the algorithm in [18] on the whole Cartesian grid with
Doppler and delay spacings of units. Then, in Fig. 4(c),
real parts of the computed AF samples that reside on a circular
disk with radius 3 are plotted. To investigate the accuracy of
the proposed algorithm, we computed in flops the
samples of the ambiguity function of the same chirp pulse over
the radial line segment shown in Fig. 4(d). The real parts of the
computed samples and their deviation from the samples com-
puted by using (48) are shown in Fig. 4(e) and (f), respectively.
As it can be seen from this example, the computed samples are
highly accurate. Alternatively, the samples on the line segment
shown in Fig. 4(d) could be approximated from the computed
AF samples on the Cartesian grid by using a crude interpolator
such as the nearest neighbor interpolator. The result of this al-
ternative approach is shown in Fig. 4(g), where the real parts of
the computed samples are plotted. With the comparison of the
approximation errors in Fig. 4(f) and (h), it becomes apparent
that the new algorithm produces a ten-times more accurate re-
sult for this simulation. Furthermore, when the line segment has
arbitrary orientation with samples on it, the alternative
computation based on the Cartesian grid requires
flops. On the other hand, by using Algorithm 2, the same AF
samples can be computed with ten times more accuracy in only

flops.
Next, we investigate the accuracy of the algorithms in com-

puting the WD of the Gaussian pulse , which
has the Wigner distribution

(49)

By sampling at a rate , we obtained
uniformly spaced samples in the interval .

Fig. 5(a) and (b) are obtained by repeated application of the
Algorithm 3. In (a), the WD is computed over a full, and in
(b), it is computed over a partial polar grid. For the purpose of
comparison, the WD samples are also computed on a Cartesian
grid by using the algorithm in [1] with a sampling interval of
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Fig. 4. Digital computation of the AF of a chirp signal with a rectangular envelope: In the top two plots, the real part of the AF of the pulse is computed on(a)
full and (b) partial polar grid by repeated use of the Algorithm 2. For the purpose of comparison, the AF samples are also computed on a Cartesian grid by using
[18]. In (c), the real parts of these AF samples that lie on a circular disk are plotted. In (d), the support of a radial line segment on which the samples ofthe AF
are computed is shown. The real parts of the actual and computed AF samples on this line segment by using Algorithm 2 are in very good agreement, as shown by
the close overlay in (e). The error in the computation shown in (f) reveals the highly accurate nature of the computational algorithm. In (g), the same AF samples
are approximated from the samples on the Cartesian grid by using nearest neighbor interpolation. The peak approximation error in (h) is approximately ten times
larger than the one in (f).

units both in time and frequency. Then, in Fig. 5(c),
only the WD samples that lie on a circular disk with radius 1
are plotted.

To show the accuracy of the proposed algorithm, we com-
puted, in flops, samples of the Wigner distribu-
tion of the same Gaussian pulse over the nonradial line segment
shown in Fig. 5(d). The obtained samples and the approximation
error are plotted in Fig. 5(e) and (f), respectively. For the purpose

of comparison, the same AF samples are approximated from the
Cartesian grid samples by using nearest neighbor interpolation.
In Fig. 5(g), the approximated and actual AF samples are shown,
and in Fig. 5(h), the computation error is shown. As in the AF
case presented above, not only the accuracy of the computed
samples shown in Fig. 5(h) is significantly less than the accu-
racy obtained by using Algorithm 3, but also the computation of
the Cartesian grid based algorithm requires flops.
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Fig. 5. Digital computation of the WD of a Gaussian pulse. In the top two plots, the WD of the pulse is computed on (a) full and (b) partial polar grid by repeated
use of Algorithm 3. For the purpose of comparison, the WD samples are also computed on a Cartesian grid by using [1]. In (c), only the WD samples that lie
on a circular disk are plotted. In (d), the support of a nonradial line segment on which the samples of the WD are computed is shown. The actual and computed
WD samples on this line segment are in very good agreement, as shown by the close overlay in (e). The error in the computation shown in (f) reveals the highly
accurate nature of the computational algorithm. In (g), the same WD samples are approximated from the samples on the Cartesian grid by using nearest neighbor
interpolation. The error shown in (h) is significantly larger than the one in (f).

Next, we consider the digital computation of the WD of a
multicomponent signal , which is composed of two chirp
pulses and

(50)

The chirp pulses are chosen as

rect (51)

for or . The WD of can be analytically computed as

(52)
where is the WD of the rect function

rect

sinc (53)
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Fig. 6. Computation of the WD samples of a multicomponent chirp signal over various parallelogram grids to investigate the (a) whole, (b) auto and (c) cross
terms. The efficient computation of the highly localized samples of the WD as in plots (b) and (c) has a wide range application areas including component analysis,
signal detection, and signal extraction for nonstationary signals. As shown in (d), the error in the computed samples of the auto terms is very small.

In (52), the first two terms are the auto terms, and the third one
is the cross term.

For the reported simulation here, the parameters of are
chosen as and

. The WD of with these parameters is dig-
itally computed on a grid like the one in Fig. 3(d) by using Al-
gorithm 3. The obtained result shown in Fig. 6(a) demonstrates
the agreement with the analytical result in (52). In this plot, we
easily identify the auto terms of the WD as the two lines that are
closer to the edges, and we identify the cross term as the line that
is at the middle part of the plot. The cross term is highly oscilla-
tory because of the cosine modulation in (52). In Fig. 6(b) and
(c), computed samples of the auto and cross terms are shown
over highly localized grids of the type given in Fig. 3(d). Fi-
nally, in Fig. 6(d), we provide the approximation error for the
auto terms only.

In Fig. 7, the Radon-Wigner transform and Radon-ambiguity
function transform of the same multicomponent signal are com-
puted on polar grids by using the FrFT relations (9) and (30).
These transforms have important applications in signal detec-

tion, multicomponent signal analysis, and data-adaptive kernel
design for time–frequency signal analysis. The locations of the
peaks in the RWT are related to the rate and initial phase of the
chirps in (51). When the chirp components are contaminated
with additive white Gaussian noise, the locations of the peaks in
the Radon–Wigner transform provide the maximum likelihood
estimate of these parameters [32], [39]. Note that the compu-
tation of the RWT and the RAFT of a signal over a full polar
grid requires the computation of the same set of FrFTs of the
signal. Hence, when these transforms are to be calculated simul-
taneously, significant computational savings can be achieved by
avoiding any extra computation of the FrFT samples.

VII. CONCLUSION

By using the FrFT of the time-domain signals, closed-form
expressions for the projections of their auto or cross ambiguity
functions are derived. Based on a similar formulation for the
projections of the auto and cross Wigner distributions and the
well-known 2-D Fourier transformation relationship between
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Fig. 7. Digital computation of the (a) Radon–Wigner transform and (b) magnitude of the Radon-ambiguity function transform. In this paper, the computation of
these transforms constitute the intermediate steps in computation of the ambiguity function and the Wigner distribution on polar grids.

the ambiguity and Wigner domains, closed-form expressions are
obtained for the slices of both the Wigner distribution and the
ambiguity function. Based on the obtained analytical results, ef-
ficient algorithms are proposed for the computation of the auto
or cross Wigner distribution and ambiguity function samples on
arbitrary line segments. The proposed algorithms make use of
a digital computation algorithm of the FrFT to computeuni-
formly spaced samples in flops. The ability of ob-
taining samples on arbitrary line segments provides significant
flexibility in the computational applications involved with the
Wigner distribution and the ambiguity function.

APPENDIX A
FRACTIONAL FOURIER TRANSFORMATION

The th-order, , FrFT of a function
is defined as [40]

(54)

where the kernel of the transformation is

(55)

(56)

(57)

The transformation kernel is the complex exponential
for , and it approaches for and to

for . Thus, it follows that the first-order FrFT is
the ordinary Fourier transform, and the zeroth-order FrFT is the
function itself. The definition of the FrFT is easily extended to
outside the interval by noting that is the identity
operator for any integer and the FrFT is additive in the index,
i.e., .
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