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Abstract
Non-autonomous Svinolupov–Jordan KdV systems are considered. The
integrability criteria of such systems are associated with the existence of
recursion operators. A new non-autonomous KdV system and its recursion
operator is obtained for all N . The examples for N = 2 and 3 are studied in
detail. Some possible transformations which map some systems to autonomous
ones are also discussed.

PACS numbers: 0230I, 0220, 0230J

There has recently been an increasing interest in the study of integrable nonlinear partial
differential equations on associative and non-associative algebras [1] and in their recursion
operators [2, 3]. It is well known that one class of integrable autonomous multi-component
KdV equations (Korteweg–de Vries), associated with a Jordan algebra J (commutative and
non-associative),

qit = qixxx + sijkq
jqkx sijk = sikj i, j, k = 1, 2, . . . , N (1)

has been considered by Svinolupov [4] where qi are real and depend on the variables x and t .
The constant parameters sijk are structure constants, with respect to some basis ei , of a Jordan
algebra J defined by

ei ◦ ej = skij ek (2)

and satisfy the Jordan identities

skp rF
i
ljk + skj rF

i
lpk + skj pF

i
lrk = 0 (3)

where

F iplj = sij ks
k
l p − sil ks

k
j p (4)

is the associator of the Jordan algebra [4]. The integrability criteria of the multi-component
Jordan KdV system (JKdV)(1) are associated with the existence of higher symmetries and the
corresponding recursion operator.
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Theorem 1 (Svinolupov). Let sijk be the structure constants of a Jordan algebra, i.e., satisfy
the identities (3). The system (1) possesses a recursion operator of the form

Ri
j = δijD

2 + 2
3 s

i
jk q

k + 1
3 s

i
jk q

k
x D

−1 + 1
9 (s

i
jms

m
kl − sikms

m
jl) q

l D−1 qk D−1. (5)

We only need to prove that R satisfies the integrability condition [5]

Ri
j,t = K ′ i

k Rk
j − Ri

k K
′ k
j (6)

with respect to (3) where K ′ i
k is the Fréchet derivative of system (1). Therefore, the existence

of the recursion operator ensures that system (1) possesses an infinite series of symmetries.
Svinolupov established a one-to-one correspondence between Jordan algebras and the

subsystems (reducible, irreducible, completely reducible) of system (1).

Definition 1. A system of type (1) is called reducible (triangular) if it decouples into the form

Uit = F i(Uk, Ukx , U
k
xxx) i, k = 1, 2, . . . , K 0 < K < N (7)

V at = Ga(Ub, Ubx , V
b, V bx , V

b
xxx) a, b = 1, 2, . . . , N −K (8)

under a certain linear transformation which leaves the system (1) invariant. If not, it is
irreducible. A system is called completely reducible if the second equation given above does
not contain the dynamical variables Ui and Uix .

Example 1. ForN = 2, the complete classification, with respect to Jordan algebra, was given
by Svinolupov [6]:

ut = uxxx + 2c0uux vt = vxxx + c0(uv)x (9)

ut = uxxx + c0uux vt = vxxx + c0(uv)x (10)

ut = uxxx vt = vxxx + c0 uux (11)

where c0 is an arbitrary constant. The reducible systems (9) and (10) correspond to the JKdV
and trivially JKdV (associator is zero) respectively. The last system is completely reducible
system.

Example 2. For N = 3.
(i) The system

ut = uxxx − c0(u
2 − v2 − w2)x

vt = vxxx − c0(uv)x

wt = wxxx − c0(uw)x

(12)

is the only irreducible JKdV system [6, 7].
(ii) A reducible JKdV system is

ut = uxxx − 2c0uux

vt = vxxx − c0(uv)x

wt = wxxx − c0(uw)x.

(13)

In this paper we investigate the non-autonomous Svinolupov JKdV systems. For this purpose,
we consider the non-autonomous form of the system (1) as

qit = qixxx + s̃ijk(t)q
jqkx s̃ijk(t) = s̃ikj (t) i, j, k = 1, 2, . . . , N (14)

where s̃ijk(t) are sufficiently differentiable functions. In particular, for N = 1 the system (14)
is the well known cylindrical KdV (cKdV) equation [8]

ut = uxxx +
6√
t
uux (15)
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which possesses a recursion operator [9]

R = tD2 + 4
√
tu + 1

3x + 1
6 (12

√
tux + 1)D−1. (16)

We are now in a position to propose a recursion operator for the integrability of system (14).
Moreover, motivated by the results obtained in [4, 6] and [9–11] we may state the following
theorem.

Theorem 2. Let sijk be the structure constants of a Jordan algebra, i.e. satisfy the identities (3).
System (14) possesses a recursion operator of the form

Ri
j = tδij D

2 + 2
3

√
t sijk q

k + 1
3δ
i
j x + ( 1

3

√
t sijk q

k
x + 1

6δ
i
j )D

−1 + 1
9F

i
lkj q

l D−1 qk D−1. (17)

Proof. We start with the ansatz

Ri
j = zij (t)D

2 + aijk(t) q
k +Hi

j (x, t) + (cijk(t) q
k
x + wij (t))D

−1 + F̃ ilkj (t) q
l D−1 qk D−1

(18)

where zij , a
i
jk(t), c

i
jk(t), F̃

i
lkj (t), w

i
j (t) and Hi

j (x, t) are sufficiently differentiable functions.
By the use of integrability condition (6) with

K ′ i
j = δijD

3 + s̃ij kq
k
x + s̃ik j q

kD (19)

which is the Fréchet derivative of (14), a direct calculation gives

aij l + cij l − ziks̃
k
j l = 0 cij l = 1

3z
i
ks̃
k
j l

zik s̃
k
j l − zkj s̃

i
l k = 0 3aij l + zkj s̃

i
k l − 3ziks̃

k
l j = 0

aij ks̃
k
m l + aik ms̃

k
j l − akj l s̃

i
m k − akj ms̃

i
k l

+cik l s̃
k
j m − ckj l s̃

i
m k − 3F̃ imlj − 3F̃ ilmj = 0

s̃km lF̃
i
kpj − s̃im kF̃

k
lpj − s̃ik l F̃

k
mpj = 0

[aik ms̃
k
l j − akj l s̃

i
m k](l m) = 0 cij k s̃

k
l m − ckj l s̃

i
m k − 3F̃ ilmj = 0

[ 1
2 F̃

i
lkj s̃

k
mp − F̃ kplj s̃

i
m k](l mp) = 0

[ 1
2 F̃

i
pkj s̃

k
m l − F̃ ipmks̃

k
j l](l m) = 0

aij l ,t −Hk
j x s̃

i
l k − wkj s̃

i
l k + wiks̃

k
j l = 0

Hi
j ,2x = 0 Hk

j s̃
i
l k −Hi

k s̃
k
j l = 0 Hi

j ,t −Hi
j ,3x = 0

F̃ iilk ,t = 0 cij l ,t − wkj s̃
i
k l = 0 zij ,t − 3Hi

j ,x = 0, wij ,t = 0

(20)

where the subscript round brackets denote the symmetrization. These equations can be
simplified further:

aij l = 2
3z
i
ks̃
k
j l cij l = 1

3z
i
ks̃
k
j l H i

j = x#ij + βij zij = 3 t #ij
βiks̃

k
l j − βkj s̃

i
l k = 0 #iks̃

k
l j − #kj s̃

i
l k = 0

wij = w0δ
i
j #kj s̃

i
lk − s̃ilkw

k
j − wiks̃

k
j l = 0 sij l,t = −3Mi

kw
k
ps
p

jl

F̃ ilmj = 1
9z
i
k[s̃

k
j ps̃

p

m l − s̃kmps̃
p

j l] s̃kp r F̃
i
ljk + s̃kj r F̃

i
lpk + s̃kj pF̃

i
lrk = 0

(21)

where Mi
kz
k
j = δij , β

i
j and w0 are constants. These equations are the necessary conditions for

system (14) to be integrable. Hence, without loss of generality, we can take w0 = 1
6 , βij = 0

and it follows that

#ij = 1

3
δij s̃ij k = 1√

t
sij k F̃ ilmj = 1

9
F ilmj (22)

where sij k are the structure constants of (1). This completes the proof of the theorem. �

We now give some examples.
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Example 3. For N = 2.
(i) The system

ut = uxxx +
2c0√
t
uux

vt = vxxx +
c0√
t
(uv)x

(23)

is the non-autonomous JKdV where c0 is an arbitrary constant. The recursion operator R for
the above system is

R =
( R0

0 R0
1

R1
0 R1

1

)
(24)

with

R0
0 = tD2 +

1

3
x +

4c0

3

√
tu +

1

6
(4c0

√
tux + 1)D−1

R0
1 = 0

R1
0 = 2c0

3

√
tv +

c0

3

√
tvxD

−1 − c2
0

9
uD−1vD−1

R1
1 = tD2 +

1

3
x +

2c0

3

√
tu +

1

6
(2c0

√
tux + 1)D−1 +

c2
0

9
uD−1uD−1.

(25)

(ii) The non-autonomous reducible JKdV is

ut = uxxx +
c1√
t
uux

vt = vxxx +
c1√
t
(uv)x

(26)

which corresponds to the perturbation system of the cKdV equation [12]. Here c1 is an arbitrary
constant. The recursion operator for this system is

R0
0 = tD2 +

1

3
x +

2c1

3

√
tu +

1

6
(2c1

√
tux + 1)D−1

R0
1 = 0

R1
0 = 2c1

3

√
tv +

c1

3

√
tvxD

−1

R1
1 = tD2 +

1

3
x +

2c1

3

√
tu +

1

6
(2c1

√
tux + 1)D−1.

(27)

Example 4. For N = 3.
(i) The non-autonomous irreducible JKdV system is

ut = uxxx − c0√
t
(u2 − v2 − w2)x

vt = vxxx − c0√
t
(uv)x

wt = wxxx − c0√
t
(uw)x.

(28)

(ii) The non-autonomous reducible JKdV system

ut = uxxx − 2c0√
t
uux

vt = vxxx − c0√
t
(uv)x

wt = wxxx − c0√
t
(uw)x

(29)
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is the extension of (9). The recursion operators for systems (28) and (29) are too long, hence
we do not give them here.

Finally, we establish linear transformations between autonomous and non-autonomous
systems. In the scalar case, the KdV and cKdV equations are equivalent since their solutions
are related by simple Lie-point transformation [13–17].

u(x, t) = t−1/2u′(xt−1/2,−2t−1/2)− 1
12xt

−1/2. (30)

Here we present a generalization of this result to the case of systems of evolution equations.

Definition 2. Two systems of equations

uit = uixxx + f (x, t, ui, uix)
u′i
σ = u′i

ξξξ + g(ξ, σ, u′i , u′i
ξ )

(31)

will be called equivalent if there exists a change of variables of the form

ξ = α(t)x + β(t) σ = γ (t)

ui(x, t) = #(t)u′i (ξ(x, t), σ (x, t)) + η(x, t)
(32)

which is invertible. The first result is given in the following statement.

Proposition 1. The system

ut = uxxx +
c0√
t
uux

vt = vxxx +
c1√
t
(uv)x

(33)

where c0 and c1 arbitrary constants, may be transformed into the autonomous perturbation of
the KdV system

u′
σ = u′

ξξξ + c0u
′u′
ξ

v′
σ = v′

ξξξ + c1(u
′v′)ξ

(34)

through a transformation of the form (32) if and only if c0 = c1.

The validity of this proposition allows us to state the following proposition.

Proposition 2. The non-autonomous JKdV system (26) is transformed into the autonomous
JKdV system (10) through the transformation of the form

u(x, t) = t−1/2u′(xt−1/2,−2t−1/2)− 1

2c1
xt−1/2

v(x, t) = t−1/2v′(xt−1/2,−2t−1/2).

(35)

Similar to propositions 1 and 2 we have the following statement.

Proposition 3. The non-autonomous JKdV system (28) is transformed into the autonomous
JKdV system (12) through the transformation

u(x, t) = t−1/2u′(xt−1/2,−2t−1/2) +
1

4c0
xt−1/2

v(x, t) = t−1/2v′(xt−1/2,−2t−1/2)

w(x, t) = t−1/2w′(xt−1/2,−2t−1/2).

(36)

From the above discussions we have the following result.

Proposition 4. The non-autonomous JKdV system (23) (or its extension (29)) cannot be
transformed into the JKdV system (9) (or its extension (13)) through a transformation of
the form (32).
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We have observed that for some special cases of N = 2 and 3 time-dependent systems
transform to time-independent cases. This comes indeed from the type of the Jordan algebra.
For general N we have the following statement.

Proposition 5. A Jordan system (14) is equivalent to an autonomous Jordan system (1) if there
exists an element a of J such that a2 = a and q ◦ a = q for all q ∈ J .

Proof. We write the system of equations (14) in the form qt = qxxx + 1√
t
q ◦ qx , where q takes

values in a Jordan algebra J . Take the point transformation

q(x, t) = t−1/2 v(ξ, τ )− 1
2 xt

−1/2 a

ξ = xt−1/2 τ = −2t−1/2.
(37)

Then equations for v become time independent. �

The transformable case in the N = 2 (example (2.ii)) is the case with a = e1 where
{ei, i = 1, 2} are a basis of J . The example (4.i) in the N = 3 case is also transformable
because the element a = − 1

2c0
e1 satisfies the condition a2 = a.

We would like to remark on the symmetries of (14). The first symmetry is the x-
translational symmetry σ i1 = qix . The next one is the scale symmetry σ i2 = t qit + 1

3 xq
i
x + 1

6 q
i .

The first generalized symmetry is given by σ i3 = Ri
j σ

j

2 , where R is the recursion operator (17)
of the system (14). This symmetry is nonlocal and contains the associator (tensor F ijkl)
of the algebra J . There exists also an additional symmetry, the Galilean symmetry, ηi1 =√
t sijk q

k
x ζ

j + 1
2ζ

i for system (14) satisfying sijk ζ
j = δik . Here we remark also that the

element k = ζ i ei of J satisfies k2 = k. Hence, due to proposition 5 the corresponding
systems are transformable to autonomous KdV systems (1). In the general case, F 
= 0,
σ i = 0ij ζ

j is a symmetry of the non-autonomous JKdV system (14) for all k, where

0ij = 1
3

√
t sijk q

k
x + 1

6 δ
i
j + 1

9 F
i
lkj q

lD−1 qk. (38)

In the case of time-dependent recursion operators (and time-dependent evolution equations)
there is an ambiguity in calculating the higher-order time-dependent symmetries. It is claimed
that the recursion operators do not, in general, map symmetries to symmetries [18]. This
violates the most important property of the recursion operator. We observed that not the
recursion operator but the standard determination of the symmetries must be modified [19].
The time-dependent symmetries of (14) can be obtained from the following equations:

σ in+1 = σ̄ in+1 +0ij

∫ t

dt ′2D2σ jn i, j = 1, 2, . . . , N (39)

where σ̄ in+1 are the symmetries generated by the standard application of the operator
D−1. (i.e. DD−1 = D−1D = 1) and 2 is the projection operator defined in [18] by
2f (t, x, qi, qix, . . .) = f (t, 0, 0, 0, . . .) where f is an arbitrary function.
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