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Abstract—In this paper, a novel inverse halftoning method is
proposed to restore a continuous tone image from a given half-tone
image. A set theoretic formulation is used where three sets are de-
fined using the prior information about the problem. A new space-
domain projection is introduced assuming the halftoning is per-
formed using error diffusion, and the error diffusion filter kernel is
known. The space-domain, frequency-domain, and space-scale do-
main projections are used alternately to obtain a feasible solution
for the inverse halftoning problem which does not have a unique
solution.

Index Terms—Error diffusion, inverse error diffusion, inverse
halftoning, projection onto convex sets (POCS), restoration.

I. INTRODUCTION

I NVERSE halftoning is the problem of recovering a contin-
uous tone (contone) image from a given half-tone image.

Contone images are needed in many practical applications.
However, inverse halftoning problem is ill-posed because
halftoning is a many-to-one mapping, and does not a have a
unique solution [1]. Therefore, incorporation of all available
information significantly improves the quality of the solution
and this leads to the fact that a set theoretic formulation is
ideally suitable for the inverse halftoning problem that has
many feasible solutions.

The previous inverse halftoning methods employ space-do-
main operations, frequency-domain operations, or both, or only
space-scale domain operations [1]–[8]. The simplest approach
is low-pass filtering the half-tone image to remove the high-fre-
quency components where the halftoning noise is mostly con-
centrated. Different low-pass filters have been used, such as
half-band low-pass in [1], Gaussian low-pass, and low-pass fil-
tering based on singular value decomposition (SVD) [2]. How-
ever, low-pass filtering alone does not work well as this also
destroys high-frequency information of the original image.

A projection algorithm, based on the maximum a posteriori
probability (MAP) projection is proposed in [1]. A similar MAP
estimation method is also proposed in [3] where a constrained
optimization is solved using iterative techniques.

Xiong et al. [4] proposed an inverse halftoning scheme
using wavelets. The idea behind the wavelet decomposition of
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a half-tone image is to selectively choose useful information
from each subband. This approach is a space-scale domain
method and no prior knowledge about the halftoning process is
assumed.

The method of projection onto convex sets (POCS) is used
in [5], [2], [6], where information known about the problem is
expressed in the form of two constraint sets. In [2], [5], and [6],
the halftoning process is assumed to be knowna priori. Based
on this information and the smoothness of most natural images,
convex sets are defined. The iterative restoration algorithm is
developed by making successive projections onto the convex
sets. The first set is the set of all contone images when half-
toned produce the observed half-tone image, and the second is
the set of all images bandlimited to a certain low-pass band. The
computational cost of the space-domain projection in [2] turns
out to be very high.

In this paper, we define a new family of sets , repre-
senting the space-domain information. It turns out that the in-
tersection of the sets , is the set originally defined in
[2]. The use of the sets , leads to a computationally more
efficient reconstruction algorithm because, in each iteration of
the POCS algorithm we do not update the entire image as in [2]
but we modify only the pixels that do not meet the requirements.
We also take advantage of the frequency, and space-scale (or
wavelet) domain projections which represent the prior knowl-
edge about the error diffusion filter kernel, and the relatively
smooth character of the natural images.

The theory and simulation results are presented in Sections II
and III, respectively, and it is experimentally observed that
higher quality images can be obtained compared to [2], [1], [4].

II. A SET THEORETICINVERSEHALFTONING

The block diagram of an error diffusion encoder is given in
Fig. 1. The inverse halftoning problem can be stated as follows.
Given the half-toned image and the two–dimen-
sional (2-D) finite-impulse response (FIR) error diffusion filter
kernel , estimate the original image . In this
section, we first introduce the POCS-based framework and then
define the space, frequency, and the space-scale sets that is used
in the reconstruction algorithm.

Let and be the th pixels of the images
and , respectively [in error diffusion, images are scanned row-
wise or colomnwise therefore we also represent images using a
single index ]. Corresponding to each ob-
served pixel, , a space-domain set ,

(number of pixels) is defined as follows. The set
contains all contone images that result in the observed error
diffused pixel at index . The intersection of these sets
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Fig. 1. Block diagram of error diffusion method.

Fig. 2. Kernels for the filtersh andI � h.

is the set of all contone imagesproducing the
observed error diffused image. Clearly, the sets are much
larger than the set and they all contain because any image
in produces the individual pixel after error diffusion thus
it is also in . As goes from 1 to L, all the pixels of are
covered by the family of sets , and the set is formed by
the intersection.

The set which is used in [6] and [2] or the sets
are too large to determine the solution of the reconstruction
problem. One has to assume other constraints on the original
image to estimate the original image. Most natural images are
of low-pass in nature whereas the half-toned image contains a
lot of high-frequency components. Therefore one can assume
that the original image is a member of a set whose mem-
bers are bandlimited images by in both directions. Even if
the original image is not a strictly bandlimited image most of its
energy is concentrated in low frequencies. The errors made in
pixel values by projecting a current iterate onto the setcan
be corrected by subsequent projections onto the sets.

The projection onto the set is equivalent to ideal low-pass
filtering which is simply implemented by an FIR low-pass filter.
The choice of a small may blur the image. On the other hand
a large may not be effective.

In order to preserve the sharpness of the image, the wavelet
transform (WT) extrema information can be used. WT extrema
occur at the edge locations which can be easily estimated from
the half-toned image as the significant edges are clearly visible
in a typical half-toned image. Therefore the set of images
having the same significant WT local extrema as the original
image is a good choice to provide sharpness to the low-pass
filtered image. The set is shown to be convex in [7]–[10].

The POCS-based iterative algorithm starts with an initial es-
timate , which is successively projected onto the sets ,

, and as follows:

(1)

where represents the spatial projection which is described
in the next subsection, represents low-pass filtering which

is the frequency-domain projection, and represents the
wavelet-domain space-scale projection which can be im-
plemented using the algorithm described in [8]. All three
projections, or any two can be used alternately. The algorithm
is globally convergent to a solution which is in the intersection
of all the convex sets regardless of the initial estimate, and the
order of the projections is immaterial [11]. The iterations are
stopped when the difference between the images at successive
iterations become insignificant.

In our iterative algorithm summarized by (1), a projection
cycle is completed by performing orthogonal projections onto
the sets , as the original image is clearly a member of them.

In our inverse halftoning method, we also use nonorthogonal
projections during the reconstruction process. As discussed in
[12] and [13], nonorthogonal projections may not only improve
the speed of convergence but also improve the quality of the
reconstructed image. Orthogonal projections onto a convex set
yields an image at the boundary of the set. On the other hand,
by performing a nonorthogonal projection onto a convex set an
image inside the set is obtained.

A. Projection Onto the Sets

Consider the error diffusion system shown in Fig. 1. Letbe
the image before the quantizer . The error image
and where represents the 2-D convolution. The
image can be expressed in terms of the original image, and
the output image as follows:

(2)

where is the 2-D unit sample sequence. The kernels for the
FIR filters and are given in Fig. 2.

The set is based on the observation that for a given
output pixel , the upper and lower bounds on the pixel
can be determined according to the quantization levels. For ex-
ample, if then for 1-bit error diffusion
with a uniform quantizer. The sets can then be defined as
follows:

(3)

where and are, respectively, the lower and upper
bounds for the nth pixel . Since the
convolution operation is linear, the set is essentially a hy-
perslab (a region bounded by two parallel hyperplanes) and it
is, therefore, a closed and convex set in. For convenience,
we define . Since and are known, one
can easily obtain from or vice versa. Let us represent
in terms of as where the 2-D IIR inverse filter

can be approximated by a causal 2-D FIR filter
using a method described in [14] for inverse filtering for image
restoration. The pixel can be expressed as

, where
are the coefficients of the filter , and is the cor-

responding causal support region. Since the above equation is a
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Fig. 3. Zelda image error-diffused to 1 bpp.

2-D convolution operation, it is a hyperplane in . The con-
straints on given in (3) can be rewritten as

(4)

which is a hyperslab (a region bounded by two parallel hyper-
planes), and therefore it is a closed and convex set in. Since
the upper and lower bounds and , and the kernel

are known, the projection onto the set can be
obtained as follows. Let be the current iterate. The next it-
erate is obtained by solving the optimization problem

subject to (4) (5)

If satisfies the constraints (4), then . Otherwise

(6)

where ; and is either
, if or , if
, and is a relaxation parameter, and if it remains between

zero and two, the convergence of the POCS procedure is assured
[11]. If , then the projection is an orthogonal projection.
When , an image inside the set is obtained
without effecting the convergence process. In fact, the use of
nonorthogonal projections improves the speed of convergence
and the quality of the reconstructed image.

The projection operation described in (6) is a local operation
around the pixel (or equivalently

), because the filter is only nonzero in the support
region , whereas the pixel range is from to .

The projection given in (6) is performed pixel by pixel involving
the block defined by the causal support region. During each
iteration, only the pixels defined by are updated.

Equation (6) is essentially the projection onto one of the hy-
perplanes bounding the set . Once an estimate for the image

is obtained, an estimate foris obtained from .
This scheme can be easily extended to the case of multilevel

error-diffusion in which the quantizer is not binary. In the bi-
nary case, the bounds and can take only, 128 and
255, 128 and 255128, respectively, for 8 bit/pel images. In the
multilevel case, the bounds are simply determined according to
the quantization levels.

This space-domain projection is different from the space-do-
main projection described in [2] in two aspects:

1) the convex sets that we define are different from the set
, defined in [2];

2) our method is developed for the widely used Floyd–Stein-
berg error diffusion method, whereas [2] is developed for
a sigma–delta type error diffusion algorithm.

Due to the nature of our convex sets , the projection op-
eration described in (6) is very simple to implement. This leads
to a computationally more efficient reconstruction algorithm be-
cause, in each iteration of the POCS algorithm, we do not update
the entire image as in [2], but we modify only the pixels that do
not meet the requirements.

The computational cost of the projections onto the sets
described in (6) is comparable to the projection operation per-
formed in another domain in [6]. Both projections are essentially
based on the convolution operation. The support regionin
(6) is larger than the support of the filter used in [6]. On the other
hand, filtering is performed over the entire image in [6], whereas
we update only the pixels that do not meet the requirements.

B. Frequency-Domain Projection

An important property of most natural images is smooth-
ness compared to artificial images. This information can be im-
posed into the restoration process in the form of low-pass fil-
tering. Therefore, the frequency-domain projection onto the set

consists of bandlimiting the observed signal in some way.
The simplest approach is to low-pass filter the image in order to
remove the high-frequency content which contains halftoning
noise. For the frequency-domain projection, we either use a
simple Gaussian low-pass filter ,
for , where is a scaling factor used to make
the dc gain of the filter unity. The controls the bandwidth of
the low-pass filter; or we use low-pass filters with passbands of

, ,
or .

C. Space-Scale Domain Projection

The edges in an image produce local WT extrema in the
space-scale domain in wavelet subimages (or in high-low, low-
high, and high-high subimages) [7]. It is proved that the wavelet
extrema information corresponds to convex sets in the set of
square summable images[7]–[9]. Therefore, the edge infor-
mation can be used in the reconstruction algorithm by properly
defining a set corresponding to the significant local extrema
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in the wavelet domain. Let the set , contain all the images
having the same significant WT local extrema as the original
image. The key idea is to estimate the edges of the original
image from the half-toned image by selecting the significant
WT extrema of the half-toned image, and the restored image
is forced to have the same extrema in the wavelet space-scale
domain. This provides sharpness to the restored image by pro-
tecting the significant high-frequency components of the image,
whereas a simple low-pass filtering characterized by setwill
smooth out all of the sharp edges of the original image.

In a typical half-toned or dithered image, edges of the orig-
inal image are clearly visible. In order to highlight the signif-
icant edges, one can manually mark them. Let us assume that

is a local maximum in the wavelet domain. It
can be expressed as

(7)

where is the original image and is a 2-D filter used in
the filterbank structure implementing the WT. If oversampled,
WT is used then the above equation becomes

(8)

which is simply the 2-D convolution evaluated at loca-
tion.This isaconvexset in (thesetof2-Dsquaresummable
sequences), and it also corresponds to a convex set in.

The projection onto this set can be carried out as follows [8]:

(9)

where ; ; is the cur-
rent iterate; and is the projection. In (9), cor-
responds to the orthogonal projection. In order to implement
the above iteration the value of the extremum
must be known. This may not be exactly available in a typ-
ical dithering problem. But this problem can be overcome as
follows. Since is a local maximum

, and this means that

(10)

or

(11)

which is a half-space in . Therefore, it corresponds to
a closed and convex set. The projection onto this set can
be carried out as follows. Let be the current iterate. If

then otherwise

(12)

where ; ; and
.

Similarly, . This defines an-
other half-space with boundary

. The projec-
tion operation onto the above half-space can be carried out as in
(12)

Another approach is to use the wavelet-based single step in-
versehalftoningmethod[4].Althoughthismethodcannotbecon-
sideredasanorthogonalprojectiondue to thecross-scalecorrela-
tion operation, it is relatively easy to implement and can be incor-
porated into the iterative restoration procedure. In [4], important
high-frequencyinformationdescribingthesignal,particularly in-
formation in edge regions, are retained by choosing the WT ex-
trema locations selectively from each subband resulting from the
wavelet decomposition of the half-toned image. In our iterative
restorationalgorithm, thismethodisusedasaninitialstep insome
of the simulation results.

III. SIMULATION RESULTS

To demonstrate the performance of our POCS-based in-
verse halftoning method, we present simulation results using

Peppers and Zelda images. We compare the new
method with some state-of-the-art inverse halftoning techniques
in terms of their PSNRs. In the first group of simulations, we
use space-domain and frequency-domain projections alter-
nately. The first estimate of the contone image is obtained by
low-pass filtering the half-toned image with . Then
we perform our spatial projections. After that, we again use
low-pass filtering, and go on in an alternating fashion. A section
of the original 8 bpp Zelda image error-diffused to 1 bpp is
shown in Fig. 3. After low-pass filtering, the resultant image
with dB is shown in Fig. 4(a). This image is
used as an initial estimate and after two sets of iterations, an
image shown in Fig. 4(b) with dB is obtained.
The resulting image is quite sharp, and its visual quality is high.
The details are restored while much of the halftoning noise
existing in the first estimate is removed.

We compare our results with those in [2] in Table I for the
Lena image. The PSNR improvement achieved by the proposed
method is about 0.8 dB higher than the ones in [2], and the image
quality is higher.

Apart from the binary error diffusion coding, we carried out
simulation studies for images error-diffused to 2 bpp, as shown
in Fig. 5 for the Zelda image. We use our method tailored for



1840 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 12, DECEMBER 2001

(a)

(b)

Fig. 4. (a) First estimate (PSNR = 32:85 dB). (b) Restored Zelda image
(PSNR = 33:45 dB).

TABLE I
COMPARISON OFPSNRs (dB)FOR THEINVERSEHALF-TONING METHODS IN

[2], AND OUR METHOD FOR THELENA IMAGE. GLPF, LPF,AND SVD DENOTE

THE TYPE OFFREQUENCY-DOMAIN PROJECTION

the multilevel case. The PSNR improvement over the initial esti-
mate is about 0.6 dB with our POCS-based method after two sets
of iterations, and our restoration results in a sharp and faithful
reproduction, as can be seen in Fig. 5 ( dB).

We can use wavelet-based space-scale domain projection in
[4] as the initial estimate in our method. Let be the restored

(a)

(b)

Fig. 5. (a) Zelda image error-diffused to 2 bpp. (b) Restored Zelda image
(PSNR = 35:39 dB).

Peppers image in [4] and let be the resulting image after
applying our method. The image is obtained after a single
set of iterations, i.e., . The
resulting improvement is about 0.5 dB over the image. The
image is shown in Fig. 6 which has a dB.

Comparison of the POCS-based method with other existing
methods are given in Table II for the Peppers and Lena
images. Our method results in a higher PSNR than the other two
methodsin[1], [4] forbothoftheimages.In[6],aPSNRof32.41is
reportedfora regioncontainingLena’sface.Inthesame
region,wegetaPSNRof32.51. Inorder to reconstruct this image,
westartwithwavelet-basedspace-scaledomainprojection.After
this,weperformfourcyclesoforthogonalandnonorthogonalpro-
jections onto the sets with and . We
low-pass filter the resulting image and then perform another two
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Fig. 6. Restored peppers image (PSNR = 30:90 dB).

TABLE II
COMPARISON OFINVERSEHALF- TONING METHODS. ALL METHODSASSUME

THE ERRORDIFFUSION KERNEL IS KNOWN

cycles of orthogonal and nonorthogonal projections onto the sets
with and .

Sample simulation results of the work presented can be
viewed at http://www4.ncsu.edu/~gbozkur/invhalftone.html.
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