
Using Unknowns to Prevent Discovery of Association Rules

Yi.icel Saygm 1, Vassilios S. Verykios 2, Chris Clifton 3

1Department of Computer Engineering, Bilkent University, Turkey
2College of Information Science and Technology, Drexel University, USA

3Computer Sciences Department, Purdue University, USA

A b s t r a c t

Data mining technology has given us new capabili-
ties to identify correlations in large data sets. This
introduces risks when the data is to be made pub-
lic, but the correlations are private. We introduce
a method for selectively removing individual values
from a database to prevent the discovery of a set
of rules, while preserving the data for other appli-
cations. The efficacy and complexity of this method
are discussed. We also present an experiment show-
ing an example of this methodology.

1 M o t i v a t i o n

The proliferation of new data mining techniques have
increased privacy risks because now it is possible to
efficiently combine and interrogate enormous data
stores, available on the web, in the search of previ-
ously unknown hidden patterns. In order to make a
publicly available system secure, we must ensure not
only that private sensitive data have been trimmed
out, but also to make sure that certain inference chan-
nels have been blocked. In other words it is not only
the data, but the hidden knowledge in this data, that
should be made secure. Moreover, the need for mak-
ing our system as open as possible - to the degree that
data sensitivity is not jeopardized - asks for various
techniques that account for the disclosure control of
sensitive data.

This is not the same as the typical data privacy
problem. We are not concerned with protecting indi-
vidual entities - it is assumed that they are already
cleared for release. Our concern is with rules that can
be learned from that data. In particular, we have a
specific set of rules that we wish to protect. This is
related to inference protection [7], but the problem

*Portions of this paper appeared in the ~00~ Conference
on Research Issues in Data Engineering. The discussion of
the efficacy of the method (Section 5.4) is completely new.

now extents to non-strict inferences - rules that hold
with only some level of support and confidence.

The technique presented here applies to applica-
tions where it is necessary to store imprecise or un-
known values for some attributes, such as when actual
values are confidential or not available. We propose
an innovative technique for hiding rules (i.e., knowl-
edge) from a data set, by replacing select attr ibute
values with unknowns. This is similar to previous
proposals that replace select values with "false" val-
ues [9]. However, sometimes false values can have
bad consequences. Consider a medical institution
that will make some of its data public, and the data
is sanitized by replacing actual attr ibute values by
false values. Researchers may use this data, but ob-
tain misleading results (for example, by using data
mining tools to learn rules). In the worst case, such
misleading rules could be used for critical purposes
(like diagnosis) and jeopardize patients' lives. There-
fore, for many situations it is safer if the sanitization
process place unknown values instead of false values.
This obscures the sensitive rules, while protecting the
user of the data from learning "false" rules.

The goal of the algorithms presented here are to ob-
scure a given set of sensitive rules by replacing known
values with unknowns, while minimizing the side ef-
fects on non-sensitive rules. This work is in early
stages; we do not prove either claim. However, we
do give arguments as to the difficulty of recovering
sensitive rules, and experiments that test the side ef-
fects on non-sensitive rules. We see this as a starting
point, and encourage others to address this problem.

The rest of the paper is organized as follows. In
Section 2 we present some background information
and the notation used in the rest of the paper. In Sec-
tion 3 we introduce new metrics required for dealing
with sensitive association rules. Section 4 provides an
outline of the rule hiding process and demonstrates it
by using an example. In Section 5, we present three
algorithms that we developed for rule hiding and we
comment on their performance and efficacy. Section

S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001 45

6 presents some initial results from experiments that
we have performed by using real data sets. Section
7 summariges the related work in the area of privacy
preserving data mining rules. Finally, we conclude
our discussion in Section 8.

2 Background

This work is based on the "classical" definitions of as-
sociation rules using support and confidence, defined
as follows: Let I = {il, ..,in} be a set of literals,
called items. Let D be a database of transactions,
where each transaction T is an itemset such that
T C I . A unique identifier, that we call a TID, is as-
sociated with each transaction. We say that a trans-
action T supports X, a set of items in I , if X C T.

An association rule is an implication of the form
X ~ Y , w h e r e X C I, Y C I a n d X N Y = O . We
say that the rule X ~ Y holds in the database D with
confidence c if ~ > c (where IA[is the number of
occurrences of the set of items A in the set of transac-
tions D). We also say that the rule X ~ Y has sup-
port s if ~ > s. Note that while the support is a
measure of the frequency of a rule, the confidence is
a measure of the strength of the relation between sets
of items. Because the number of itemsets and associ-
ation rules increases exponentially with the number
of items in the database, we only consider association
rules that have support and confidence higher than
two user specified thresholds: the Minimum Support
Threshold MST and Minimum Confidence Threshold
MCT.

In the context of the current work, we assume that
an association rule (and its corresponding large item-
set thereof) is also characterized by yet another met-
ric that we call the sensitivity level. The sensitivity
level of a rule denotes whether the rule is sensitive
or not. For the sake of this presentation, we assume
that a rule whose support and confidence is below the
MST and MCT is not sensitive. In other words, the
sensitivity depends entirely on these two other met-
rics. In a general framework of sensitivity analysis, we
consider that other factors affect the sensitivity of the
rule (i.e., the rule refers to products of third parties).
In our previous work [3, 9, 6] we have demonstrated
how to hide a certain set of association rules that
are considered sensitive from the database by using
the support and the confidence of these rules. It is
straightforward that if we turn to 0 the 1-values that
provide support to a large itemset, then the support
of the corresponding rule decreases, and consequently
the rule is not sensitive any more.

3 Privacy Preserving Associa-
tion Rules

In order to extend the idea of association rule dis-
covery to privacy preserving association rule mining,
we need to make some modifications to the origi-
nal setting. To allow us to introduce unknowns into
the database, we will use an alternate b i tmap rep-
resentation for transactions. Given a set of literals
I = {il, ...,i,~}, a transaction T C I can also be rep-
resented as a bi tmap vector (tl, ..., tn), where tj = 1
if and only if ij 6 T. Using this representation for
transactions and itemsets, we can compute if a trans-
action T supports an itemset X (X C T) by testing
i f X A T = X .

The reason for introducing this representation is
that it allows us to represent an unknown value by re-
placing the bi tmap vector with a three-valued vector
such that tj =? if the presence of ij E T is unknown.

With the new approach that involves unknowns,
the definition of support is modified. Instead of a
single value for the support of an itemset A, we have a
support interval [minsup(A), raaxsup(A)] where the
actual support of itemset A can be any value between
rainsup(A) and maxsup(A). The minsup(A) is the
percentage of the transactions that contain ls for all
the items in A and maxsup(A) is the percentage of
the transactions that contain either 1 or ? for all the
items in A.

The confidence formula is also modified since it
will also have a degree of uncertainty. Instead of
a single value for the confidence of a rule A =~.
B, we have a confidence interval [minconf(A
B),maxconf(A ~ B)], where the actual confi-
dence of a rule A ~ B can be any value between
minconf(A =-~ B) and maxconf(A ~ B). Given the
minimum and maximum support values of itemsets
A U B and A, the minimum confidence value for a
rule A ~ B is, minconf(A ~ B) = minsup(A W
B) x lO0/maxsup(A), and the maximum confidence
value is maxconf(A ~ B) = maxsup(A tJ B) ×
lO0/minsup(A).

When there are no unknown values (i.e., ?) then
minimum and maximum values for the support and
confidence will be MST and the MCT correspond-
ingly. During the sanitization process, when we start
placing ?s, the minimum and maximum values will
start to set apart, and in this way, the degree of un-
certainty for the rule, will increase.

46 S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001

4 S e n s i t i v e A s s o c i a t i o n R u l e

H i d i n g

In order to hide a rule A ~ B, we can either decrease
the support of the itemset A U B below the minimum
support threshold, or we can decrease the confidence
of the rule below the minimum confidence threshold.
This can be accomplished by placing ?s in place of the
actual values to increase the uncertainty of the sup-
port and confidence of the rules (i.e., length of the
support and confidence intervals). Considering the
support interval and the minimum support thresh-
old (MST), we may have the following cases for an
itemset A containing a sensitive association rule:

• A remains sensitive when minsup(A) > MST,

• A is not sensitive when maxsup(A) is smaller
than MST,

• A is sensitive with a degree of uncertainty when
minsup(A) _< MST < maxsup(A)

The same reasoning applies to the confidence inter-
val and the minimum confidence threshold (MCT).
Note that it is possible for the support of a rule to
be above the MST, and for the confidence to have a
degree of uncertainty and vice versa. Also, both the
confidence and the support may be above the thresh-
old.

We consider a sensitive rule to be hidden when
it is sensitive with a degree of uncertainty, i.e.
minsup(A) < MST < maxsup(A) or minconf(A =~
B) < MCT < maxconf(A =~ B).

From a rule hiding point of view, in order to hide a
rule A ~ B by decreasing its support, the only way
is to replace ls by ?s for the items in A U B. In this
way, we will only change the minimum support value
while the maximum support value will be the same.
As we replace ls by ?s marks for the items in A U B,
the minimum support value of A ~ B will decrease
and after some point it will go below the minimum
support threshold.

We can hide a rule A ~ B by decreasing its con-
fidence by replacing both ls and 0s by ?s. The
confidence interval of A =~ B is [minconf(A =~
B),maxconf(A ~ B)] and our aim is to de-
crease the minconf(A ~ B) below the MCT. Re-
call that minconf(A ~ B) = minsup(A U B) ×
lO0/maxsup(A). So we should decrease minsup(A U
B) and/or increase maxsup(A). The minsup(A U B)
can be decreased by either placing a ? in place of a
1 in either A or B. If we place a ? in place of A then
rninsup(A) will also decrease, causing an increase in
the maximum confidence value, since maxconf(A

Table 1: Sample Database of Transactions

TID A B C D
Ti 1 1 0 1
T2 0 1 0 0
Ts 1 0 1 1
Ta 1 1 0 0
T5 1 1 0 1

Table 2: Sample Database of Transactions with Un-
known Attribute Values

TID A B C D
T1 ? 1 0 1
T2 0 1 0 0
T3 1 0 1 ?
T4 1 ? 0 0
T5 1 ? 0 1

B) = maxsup(A U B) x lO0/minsup(A). For rule
hiding, it would be desirable to keep the maximum
confidence as low as possible, and for this reason, it
is better to place a ? for an item in B. To increase
maxsup(A), we should replace the 0 values for the
items in A with a ?.

Both processes can have side effects, either reduc-
ing the minimum support for other rules (where ls
are replaced by ?s), or increasing the maximum sup-
port (where 0s are replaced by ?s).

A sample database of transactions is shown in
Table 1. The database consists of 5 transactions
whose items are drawn from the set (A, B, C, D}.
For this database, when we set the minimum sup-
port threshold to 50% and the minimum confidence
threshold to 70%, the frequent (large) items are A,
B, and D with supports 80%, 80%, and 60%, re-
spectively. Frequent itemsets of size 2 are the AB,
and AD with support 60%. The rules obtained
from these large itemsets are A =~ B, and A
D both having 75% confidence. Table 2 shows a
database with unknown attribute values. In case of
unknown attribute values, we previously defined the
concepts of minimum support and maximum support,
as well as the minimum confidence and maximum
confidence. For example, minsup(A) = 60%, and
maxsup(A) = 80%. When we set the minimum sup-
port threshold to 50%, we see that both minsup(A)
and maxsup(A) are above the minimum support
threshold. However, for item B, minsup(B) = 40%,

S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001 47

and maxsup(B) = 80%, and minsup(B) is below the
threshold while maxsup(B) is above the threshold.
Among the itemsets of size 2, minsup(AB) = 0%,
and maxsup(AB) = 80%. By observing the rules,
we note that mincon f (A =~ B) = minsup(AB) x
lO0/maxsup(A) = 0%, and maxcon f (A ~ B) =
maxsup(AB) × lO0/minsup(A) = 100% 1

5 Algor i thms for Rule Hiding

We have built two algorithms for rule hiding. The
first one focuses on hiding the rules by reducing
the minimum support of the itemsets that generated
these rules (i.e., generating itemsets). The second
one focuses on reducing the minimum confidence of
the rules. Based on the concepts of interval support
and interwl confidence that we introduced, we would
like to reduce either the minimum support or min-
imum confidence values below MST orMCT by a
certain safety margin SM. So, for a rule A ~ B,
after the hiding process one of the following inequal-
ities should hold; minsup(A ~ B) _< M S T - SM,
ormincon/(A ~ B) < M C T - SM.

5 .1 R u l e H i d i n g b y R e d u c i n g t h e S u p -

p o r t

This algorithm (GIH) hides sensitive rules by decreas-
ing the minimum support of their generating itemsets
until the minimum support is below the MST by SM.
The item with the largest minimum support is hidden
from the minimum length transaction. The generat-
ing itemsets of the rules in Rh (set of sensitive rules)
are considered for hiding. The generating itemsets of
the rules in Rh are stored in Lh (set of large item-
sets) and they are hidden one by one by decreasing
their minimum support. The itemsets in Lh a r e first
sorted in descending order of their size and minimum
support. Then, they are hidden starting from the
largest itemset. If there are more than one itemsets
of ma~ximum size, then the one with the highest min-
imum support is selected for hiding. The algorithm
works like follows: Let Z be the next itemset to be
hidden. Algorithm hides Z by decreasing its support.
The algorithm first sorts the items in Z in descend-
ing order of their minimum support, and sorts the
transactions in Tz (transactions that support Z) in
ascending order of their size. The size of a transac-
tion is determined by the number of items it contains.
At each step the item i E Z, with highest minimum

1Note that we may have division by 0. When this occurs,
the rule A =:~ B has minimum support 0, and is thus already
hidden.

support is selected and a ? is placed for that item in
the transaction with minimum size. The execution
stops after the support of the current rule to be hid-
den goes below the M S T by SM. An overview of
this algorithm is shown in Figure 1 where the gener-
ating itemsets of all the rules specified to be hidden
is stored in Lb. After hiding an item from a trans-
action, the algorithm updates the minimum support
of the remaining itemsets in Lh together with the list
of transactions that support them. The algorithm
chooses the item with highest minimum support for
removal with the intention that an item of high min-
imum support will have less side effects since it has
many more transactions that support it compared to
an item of low minimum support. The idea behind
choosing the shortest transaction for removal is that,
a short transaction will possibly have less side effects
on the other itemsets than a long transaction.

INPUT: a set L of large itemsets, the set Lh of large
itemsets to hide, the database D, MST, and SM

O U T P U T : the database D modified by the deletion
of the large itemsets in Lh

Begin
1. Sort Lh in descending order of size and

minimum support of the large itemsets
Foreach Z in Lh {

2. Sort the transactions in Tz in
ascending order of transaction size

3. N_iterations = ITzl - (MST - SM) x IDI
For k = 1 to N_iterations do {

4. Place a ? mark for the item with the largest
minimum support of Z in the next
transaction in Tz

5. Update the supports of the affected itemsets
6. Update the database, D

}
}

End

Figure 1: Rule Hiding by Support Reduction (Algo-
rithm GIH)

5 .2 R u l e H i d i n g b y R e d u c i n g t h e
C o n f i d e n c e

We propose two approaches for rule hiding using con-
fidence reduction. The first approach is based on re-
placing ls by ?s, while the second approach replaces
0s with ?s.

The first algorithm shown in Figure 2 (CR) hides a
sensitive rule r by decreasing the support of the gen-
erating itemset of r. The difference between this and

48 S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001

the approach presented in Section 5.1 is tha t items in
the consequent of r only, are chosen for hiding. This
is due to the fact tha t by placing a ? for the items in
the antecedent of a rule r will cause the minsup(Ir)
(l~ is the left hand side of the rule r) to decrease, lead-
ing to an increase in the maxconf(r), and this works
against the rule hiding process tha t tries to decrease
confidence values of sensitive rules. The hiding pro-
cess goes on until the minsup(r) or the minconf(r)
goes below the MST and MCT thresholds by SM.
The algorithm first generates the set Tr of transac-
tions tha t support r, and then counts the number
of items supported by each transaction. Tr is then
sorted in ascending order of transaction size. To se-
lect the item in which we are going to place a ?, we
consider the impact on rules other than those to be
hidden. As a heuristic, the algorithm places a ? for
the item with the highest support in the minimum
size transaction because of the same reason as we de-
scribed in Section 5.1.

INPUT: a set Rh of rules to hide, the source
database D, MCT, MST, and SM

O U T P U T : the database D transformed so that
the rules in Rh cannot be mined

Begin
Foreach rule r in R~ do {

1. T~ = {t in DIS fully supports r}
2. for each t in T~ count the number of items in t
3. sort the transactions in T~ in ascending order

of the number of items supported
R e p e a t until (minconf(r) < MOT - SM) {

4. Choose the first transaction t 6 T~
5. Choose the item j in rr with the highest

individual item minsup
6. Place a ? for the place of j in t
7. Recompute the minsup(r)
8. Recompute the rninconf(r)
9. Recompute the minconf of other affected rules
10. remove t from T,.

}
11. Remove r from Rh

}
End

Figure 2: Rule Hiding by Confidence Reduction (Al-
gorithm CR)

The algorithm CR2, shown in Figure 3 hides a
rule r by increasing the rnaxsup(l~) via placing ?s
in the place of the 0 values of items in l~. Increasing
the maxsup(lr) causes the minconf(r) to decrease.
Given a rule r, the algorithm first generates the set
Tit of transactions that partially support lr but tha t

do not support rr (the right hand side of the rule
r). Then the number of items in lr contained in each
transaction is counted. The transaction t tha t con-
tains the highest number of items in lr is selected
for processing, in order to make the minimum im-
pact on the database. The 0 values for the items
of lr tha t are not supported by t are replaced by
?s to increase the maxsup(lr). The confidence of
the rule is recomputed and the algorithm stops when
the minconf(r) goes below MCT by SM. In this
method of rule hiding, we only consider the trans-
actions tha t do not fully support r~. Otherwise, by
replacing 0 values for the items in l~ in the transac-
tions tha t partially support I. and fully support r~,
we will increase the maxsup(r) leading to an unde-
sirable increase in the rnaxconf(r). We choose the
transaction that partially supports Ir while support-
ing the maximum number of items in lr. In the best
case, such a transaction will support Ilrl - 1 of the
items in lr and in this situation only one of the 0 val-
ues will be replaced by a ?, achieving in this way the
desired increase in the confidence while making the
minimum change on the rest of the rules.

I N P U T : a set Rh of rules to hide, the source
database D, MCT, MST, and SM

O U T P U T : the database D transformed so that the
rules in Rh cannot be mined

Begin
Foreach rule r in Rh do {

1. T[. = {t in D/t partially supports l,. and t
does not fully support r .}

2. for each transaction of T[, count the number
of items of I. in it

3. sort the transactions in T[, in descending order
of the calculated counts

R e p e a t until (minconf(r) < MCT - SM or
minsup(r) < MST - SM) {
4. Choose the first transaction t E T[,
5. Place a ? in t for the items in I,

that are not supported by t
6. Recompute the maxsup(l,.)
7. Recompute minconf(r)
8. Recompute the minconf of other affected rules
9. remove t from T[.

}
10. Remove r from Rh 2

}
End

Figure 3: Rule Hiding by Confidence Reduction (Al-
gori thm CR2)

SIGMOD Record, gol. 30, No. 4, December 2001 49

5 .3 C o m p l e x i t y o f t h e R u l e H i d i n g A l -

g o r i t h m s

All the algorithms first sort a subset of transactions
in the database with respect to the items they have
or with respect to the particular items they support.
Sorting N numbers is O(NlogN) in the general case,
however in our case the length of the transactions
has an upper bound that is very small compared to
the size of the database. In such a case we can sort
N transactions in O(N). The inner loop of algo-
rithm GIH executes ITzl- (MST-SM) x IDI times,
and the operations in the inner loop can be done in
constant time. The algorithm CR executes its in-
ner loop ITrl × (minconf(r)- MCT+SM) times in
order to reduce the minimum confidence of the sen-
sitive rule r below the MCT by SM. The value of
(minconf(r)-MCTTSM) is the reduction needed in
the minimum confidence represented as fraction. And
this fraction multiplied by the number of the trans-
actions supporting the rule to be hidden gives the
actual number of iterations. For the algorithm CR2,
the inner loop is executed k times until the rninsup(r)
goes below MCT by SM. The rninconf(r) is ini-

tially ~ , and after k iterations the fraction becomes

+k that should be smaller than M C T - SM in

order for the rule r to be hidden. When we isolate k
from this fraction, we obtain k <]Tl~rl - ._._lTzJ__

M C T - S M "
The operations in the inner loops can be performed
in constant time with proper hash structures.

5 . 4 I s t h i s E f f e c t i v e ?

How can we be certain that an adversary would not
be able to reconstruct the unknowns, or (more criti-
cally) reconstruct the rules that were hidden? Clearly
this is a problem if we only use one of the algorithms
- simply replacing all unknowns by either ls (in the
case of the first two algorithms) or 0s (in the case of
the third algorithm) reconstructs the original values.
However, mixing the algorithms (i.e., choosing a dif-
ferent algorithm to hide each rule) can make the task
more difficult.

Let us start with a weak set of assumptions about
what is known by the adversary:

1. The transformed database D'.

2. That the sanitization process may replace both
0s, and Is by ?s.

2To be safe, r can only be removed if it is disjoint with
rules remaining in R h , since its confidence may be increased
as a side effect of hiding remaining rules. We present only the
simplified case here, and in the complexity analysis below.

3. The original database does not contain any un-
known values. (If it does, then the job of the
adversary will be harder.)

We also assume that there is only one sensitive rule
that is hidden (A ~ B)

Analysis of different cases:
The adversary can do the following two trivial

transformations to the sanitized database:

1. convert all ?s to ls, and mine the database,

2. convert all ?s to 0s, and mine the database

with the intention of extracting sensitive rules.
Below we look at the effect of converting a ? to 1 or

0 when an item in A (3 B is replaced in a transaction.
From the perspective of sensitive rule's support:
In case 1, if the support hiding algorithm GIH of

Figure 1 is employed, then the adversary will obtain
a superset of the large itemsets since all the ls that
were converted to ?s by the sanitization process are
converted back to ls. In addition to that, all the 0s
converted to ?s by the sanitization process are con-
verted back to ls which will cause extra large item-
sets to be generated. This way the adversary seems
to be able to see the large itemsets that can generate
sensitive rules. However as we will see later on, the
confidences of the rules will have a different behavior
than their support.

In option 2 the adversary will not be able to recover
the large itemsets that generate the sensitive rules if
GIH were employed. If the the adversary is smart
enough, s/he will know that option 1 makes more
sense.

From the perspective of sensitive rule confidence,
things are a bit more complicated:

In option 1, A ? converted to 1 by the adversary
may have been a 0 or 1 before the sanitization. If
it were a 0, this means that it is replaced by a ? to
hide a sensitive rule A ~ B by the confidence hiding
method described in Figure 3. In this case, converting
a ? to a 1 will cause minsup(A) to increase, leading
to a decrease in maxconf(A =~ B). This can be
seen from the maxconf formula, which is calculated
by maxsup(A ~ B)/minsup(A). Remember that
the algorithm in Figure 3 replaces the items in the
left hand side of the rule (i,.e., items in A for this
case) in transactions that contain A but not A t9 B.
Minconf(A ~ B) will stay the same. This is good
since the maxconf of the sensitive rule will decrease,
minconf will stay the same, so the adversary will not
be able to extract it.

If the ? were 1, then this means that it is replaced
with ? by either the confidence or support hiding al-
gorithms. (Remember "that there were two confidence

50 S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001

hiding algorithms, CR2 that reduces the confidence
by replacing 0 with ?, described in Figure 3, and CR
that replaces 1 with ?, described in Figure 2. So, int
his case, if the adversary replaces ? back to 1, then
the minsup and/or maxconf of the rule A =~ B will
increase which is not desirable. A more naive reason-
ing would be; the adversary is converting the ? value
to its original value, i.e., transforming the database
to the original state where the sensitive rules could
be recovered.

In option 2, the situation will be reversed for the
confidence value, i.e., if the value ? was 0 before the
sanitization, this means that the Ct:t2 has converted
it to ? to reduce the support. Converting ? back to
0 will cause the confidence of (A ~ B) to increase
since adversary is reversing the effect of sanitization
process, if the value ? was 1 before the sanitization,
then CR or GIH has converted it to ?, and replacing
the ? with 0 will cause the maxsup(AB) to decrease,
leading to a decrease in maxconf(A =~ B), which will
allow the adversary to see the sensitive rule.

So what we need to do is to employ Cl:t and Cl:t2
in an interleaved fashion to ensure that the sensitive
rule can not be recovered by the adversary. Assume
that to hide A =~ B, we need to iterate the Cl:t N2
times, and the CI:tA N3 times. Then in order to have
a transformation that is not recoverable by adversary,
we should run CR on rule A ~ B with N2 iterations,
followed by CR2 with N3 iterations. This way when
the adversary replaces all the ?s by ls, then the effect
of CR will be nullified while the effect of CR2 is still
there. Similarly, when adversary replaces all ?s by 0
then the effect of CR2 is nullified while the effect of
CR is still there, which will make the recovery of the
sensitive rule impossible.

Now let us relax our assumption that only a single
rule is hidden, but assume that the sensitive rules
are disjoint. This situation is really not different than
dealing with only a single sensitive rule, since hiding
of a rule has no side effect on other rules provided
that they are disjoint.

Given more knowledge, some other options are
open to the adversary. Assume that the adversary
also knows:

• The algorithms of Sections 5.1 and 5.2.

• The minimum support and confidence thresholds
M S T and MCT, and

• The safety margin SM, and

What can the adversary do to reconstruct the original
values, enabling discovery of the rules in Rh?

One approach would be to at tempt to reconstruct
values on a per-transaction basis. If we take a trans-

action, can we guess if the unknowns are l ' s or O's for
that transaction? The at tempts by algorithms the
first two algorithms to minimize their impact gives a
couple of heuristics:

1. Algorithms GIH, and CR starts with the smallest
transactions supporting a rule, and replaces l ' s
with ?s for the highest support items supporting
the rule.

2. Algorithm CR2 starts with transactions contain-
ing the most items supporting the left hand side
of the rule,, and changes the O's not supporting
the left hand side to ?s.

Could we use this to say that small transactions likely
have l ' s for unknowns, particularly if the unknown
items have high support in other transactions? There
are two flaws with this heuristic. First, the notion of
"small" is relative: If a rule is large, any transaction
supporting the rule will also be large. Thus the notion
of smell and large is relative to the size of the rule
that was hidden. Second, a single transaction may
have had unknowns created to hide different rules, so
some of the unknowns may be O's and others l ' s in
the same transaction.

This leads to an interesting observation - and are
for future study. This technique is more effective
when the same transaction is affected by algorithm
CR2 as well as one of the others, in hiding separate
rules. Currently, this is not taken into account in
the algorithms. What is the probability that this will
happen using the current algorithms? Can the algo-
rithms be used in a way to increase this probability
without significantly increasing the side effects?

Another approach the adversary may take is to
try to reconstruct the rules directly. If the hidden
rules are disjoint, all of the hidden rules have either
mincon] just under MCT-SM, or support just under
MST-SM. If we assume the adversary knows MST,
MCT, and SM, it would be straightforward to search
for rules with support over M S T and confidence just
under M C T - S M , or support just under M S T - S M
and confidence over M C T - SM. Then the adversary
could search for transactions containing unknowns
that could be modified (either by changing all of the
relevant ?s to O's, or to l 's) to raise support and con-
fidence above MST and MCT. There are two things
that could prevent this:

1. The number of potential rules with the right lev-
els of support and confidence could greatly ex-
ceed the number of hidden rules, giving too many
possibilities for reconstructing the unknown val-
ues, and thus ambiguity in knowing which are
the "real" rules.

S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001 51

Table 3: Rules Selected for Hiding

ru le conf idence
18 79 ~ 31 76%
2 168 ~ 4 79%
9 1 0 5 7 ~ 3 3 83%
4 1 9 3 9 ~ 2 7 77%
9 18 47 =~ 19 35 53%

2. The same transaction could be modified in dif-
ferent ways to support different hidden rules -
leading to discovery of hidden rules with too high
support and confidence, and failure to discover
others. This is even more likely if the rules are
not disjoint.

How likely are these conditions in practice? Again,
this is an area for future study.

Perhaps the best way to combat this approach is
to ensure that MST, MCT, and SM are not known
to the adversary. As M S T and MCT are likely fixed
by the problem, the real key is to keep SM secret.

Another way to combat rule/value reconstruction
is to ensure that transactions have multiple unknowns
corresponding to different real values, as discussed
above.

A challenge for the adversary we haven't discussed
is the computational complexity of reconstructing
values. The first strategies (replace all ?s by ls, then
by 0s) are little more complex than finding rules with-
out unknowns. The per-transaction heuristics are
similar - compute support of all items, and one pass
through the transactions with unknowns. The sec-
ond approach is more complex. First, rules with low
support and confidence must be discovered. Then,
for each rule, all transactions have to be tested with
either l ' s or O's to see the potential support and con-
fidence. This is O([D[) per rule. However, a sim-
ple change would greatly increase the complexity -
instead of processing a rule with a single algorithm,
interleave the algorithms between transactions in hid-
ing a single rule (ensuring that CK2 is used as well
as CR or GIH). Thus the adversary couldn't just test
by replacing all transactions with l ' s or O's - all pos-
sible combinations would need to be tried. This now
becomes a 0 (2 [O[) problem. However, the potential
side effects of such a strategy still need to be deter-
mined.

6 Experiments

We used the anonymous Web data from
www.microsoft.com created by Jack S. Breese,
David Heckerman, and Carl M. Kadie from Mi-
crosoft. The data was created by sampling and
processing the www.microsoft.com logs and donated
to the Machine Learning Data Repository stored at
University of California at Irvine Web site [8]. The
Web log data keeps track of the use of Microsoft
Web site by 38000 anonymous, randomly-selected
users. For each user, the data records list all the
areas of the Web sites that the user visited in a one
week time frame. We used the training set only
which has 32711 instances. Each instance represents
an anonymous, randomly selected user of the Web
site and corresponds to the transactions in market
basket data. The number of attributes is 294 where
each attribute is an area of the www.microsoft.com
Web site and each attribute corresponds to an item
in the store in the context of market basket data. We
cleaned the data by removing the instances with less
than or equal to non-zero attribute values and the
resulting data set contained about 22k transactions.

We have implemented the support reduction (GIH)
and the first algorithm for confidence reduction (CR),
using the Perl programming language. We have also
implemented a naive Cyclic Hide (CH) algorithm that
hides a rule by selecting the next transaction that
supports the rule (in no particular order), and ran-
domly replacing a 1 by a ? so the transaction no
longer supports the item. The naive algorithm is used
as a base for comparison with the rule and support
reduction algorithms.

As a first step, we run an Apriori based mining
algorithm on the data with support 0.1%. We then
obtained the rules out of the resulting large itemsets
with 50% minimum confidence. The minimum con-
fidence and support values are chosen with regard
to typical minimum confidence and support thresh-
olds from the literature. We then randomly selected
5 different (not necessarily disjoint) rules to test the
hiding strategies. The selected rule set to be hidden
is provided in Table 3. To assess the performance of
the hiding strategies, we performed experiments on
a 500MHz Pentium III PC with 512 MB of memory
running the Linux operating system.

In this exploratory study, we measured the CPU
time requirement of the hiding strategies for different
confidence values as depicted in Figure 4. As can be
seen from the figure, all the hiding strategies hide the
given rule set successfully in less than a second. That
is considerably less than the time for mining of 57 sec-
onds for 0.1% support. For various confidence values

52 S I G M O D Reco rd , Vol. 30, No. 4, D e c e m b e r 2001

the GIH method (generating itemset support reduc-
tion algorithm Shown in Figure 1) and CH (Cyclic
Hide) perform similarly while the CR (confidence re-
duction algorithm shown in Figure 2) hides the rules
faster. However our main performance criterion of
the different algorithms is the side effects they incur
on the database. We measure the side effects by sum-
ming up the number of rules hidden unintentionally
and the number of newly introduced rules. The per-
formance of the hiding strategies in terms of the side
effects are depicted in Figure 5. As can be observed
from the figure, the CR causes the least number of
side effects followed by GIR. CR and GIR outperform
CH for all confidence values.

CPU Time For Different Hiding Strategies

• , . . > " ~'- : ~: dr---~ GIH
0 . 6 , ~'~'~'~"~'~"~"~"~'-~'~-""-''"-""'~'~'".Z,.....,....~,,....,...,... c:.~.-,..~ ,?. cHCR

~ 0 . 4 ...

~" 0.2 ~!~.

0"010 210 50
i

30
Confidence(%)

Figure 4: CPU Performance Results

750,

~ o
550

450

350 ,,

250

150

Side Effects ol Dilferent Hiding Strategies
........ <,,. •

..... "¢

O

5°1o ' ~o 3'0 ,'o
Confidence (%)

Z~"--'-a~ GIH
6;""~:3 CR
~ - --.C' CH

50

Figure 5: Side-effect Results

7 R e l a t e d W o r k

The problem addressed in this paper is closely re-
lated to the inference problem in "databases and
the privacy preservation problem in data mining.
Chang and Moskowitz [4] consider a solution of the
database inference problem by using a new paradigm
where decision tree analysis is combined with parsi-
monious downgrading. In their scheme, Chang and
Moskowitz, propose that High decides what not to

downgrade based upon the rules that it thinks Low
can infer (i.e., by using decision tree analysis) and
upon the importance of the information that Low
should receive. Their objective then in developing
this paradigm is to assign a penalty function to the
parsimonious downgrading in order to minimize the
amount of information that is not downgraded and to
compare the penalty costs to the extra confidentiality
that is obtained.

Clifton [5] investigates the techniques to address
the basic problem of using non-sensitive data to in-
fer sensitive data in the context of data mining. His
goal is to accomplish privacy by ensuring that the
data available to the adversary is only a sample of
the data on which the adversary would like the rules
to hold. In addition, Clifton shows that for classifi-
cation purposes, the security officer is able to draw
a relationship between the sample size and the likeli-
hood that the rules are correct.

Agrawal and Srikant [2] investigate the develop-
ment of a data mining technique that incorporates
privacy concerns. In particular, they consider the
concrete case of building a decision tree classifier from
training data in that the values of individual records
have been perturbed. Their goal is to use the per-
turbed data (acquired either by a discretization or
by a value distortion technique) in order to accurately
estimate the original distribution of the data values.
By doing this, they are able to build classifiers whose
accuracy is comparable to the accuracy of classifiers
built with the original data.

Agrawal and Aggarwal [1] improve on the distri-
bution reconstruction technique presented in [2] by
using the Expectation Maximization (EM) method.
The authors claim that EM is more effective than the
currently available technique in terms of the level of
information loss. They also prove that EM converges
to the maximum likelihood estimate of the original
distribution based on the perturbed data and that it
provides robust estimates of the original distribution.
Finally, they propose novel metrics for the quantifi-
cation and measurement of privacy-preserving data
mining algorithms.

A new class of privacy preserving techniques is in-
troduced in [3, 9, 6]. In particular Atallah et. al
[3], Dasseni et. al. [6] and Verykios et. al. [9] have
considered the problem of privacy preserving mining
of association rules. The authors have demonstrated
how certain sensitive rules can be hidden by some
data modification techniques and they have proposed
efficient heuristics for solving this problem since Atal-
lah et. al. [3] proved that the problem is NP-Hard. In
the current work we are considering the same prob-
lem but instead of allowing random data modifica-

S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001 53

tion, we have restricted ourselves to introducing ?
a special symbol that indicates that information is
missing. Some changes to the original association rule
discovery program are necessary for the introduction
of heuristics based on this idea.

8 C o n c l u s i o n s

Sharing of data is often beneficial, but is often pre-
vented because of privacy and security concerns. We
have presented a technique to obscure a specific set
of association rules, while minimizing the effect on
the usefulness of the data for purposes other than
learning those rules.

This work is a first step. Although we have argued
that the rules are truly safe from an attack by an
adversary, we have yet to formally prove that safety.
Our initial results indicate that deterministic algo-
rithms for privacy preserving association rules are a
promising framework for controlling disclosure of sen-
sitive data and knowledge. In the near future, we will
investigate how probabilistic and information theo-
retic techniques can also be applied to this problem.

There are several areas in this field calling out for
additional research. A few examples are:

• More complete analysis of the effectiveness of
these rule obscuring techniques, and formal
study of the problem.

• Other approaches to obscuring rules.

• What happens with interest measures other than
support and confidence? Is it possible that the
sensitive rules are still likely to show up using,
for example, a X 2 test?

• Comparable work on other types of data mining.
For example, what if the goal is to prevent the
adversary from identifying clusters in the data?
Being able to learn to classify data (or to classify
specific subsets of items)?

The grand goal should be to encourage the beneficial
sharing of data, by ensuring that the shared data does
not contain hidden "secrets".

[2] R. Agrawal and R. Srikant. Privacy Preserving
Data Mining. Proceedings of SIGMOD Confer-
ence, pages 45-52, 2000.

[3] M. J. Atallah, E. Bertino, A. K. Elmagarmid,
M. Ibrahim, and V. S. Verykios. Disclosure
Limitation of Sensitive Rules. Proceedings of
IEEE Knolwedge and Data Engineering Work-
shop, pages 45-52, November 1999.

[4] L. Chang and I. S. Moskowitz. Parsimonious
Downgrading and Decision Trees Applied to the
Inference Problem. Proceedings of the Workshop
of New Security Paradigms, pages 82-89, 1999.

[5] C. Clifton. Using Sample Size to Limit Exposure
to Data Mining. Journal of Computer Security,
8(4), 2000.

[6] D. Elena, V. S. Verykios, A. K. Elmagarmid, and
E. Bertino. Hiding Association Rules by using
Confidence and Support. To appear in the Pro-
ceedings of Information Hiding Workshop, 2001.

[7] T. H. Hinke, H. S. Delugach, and R. P. Wolf. Pro-
tecting databases from inference attacks. Com-
puters and Security, 16(8):687-708, 1997.

[8] U. of California at Irvine Ma-
chine Learning Repository.
http://www.ics.uci.edu/-mlearn/MLSummary.html.

[9] V. S. Verykios, A. K. Elmagarmid, B. Elisa,
D. Elena, and Y. Saygin. Association Rule Hid-
ing. IEEE Transactions on Knowledge and Data
Engineering, 2000. Under review.

R e f e r e n c e s

[1] D. Agrawal and C. Aggarwal. On the Deisgn and
Quantification of Privacy Preserving Data Mining
Algorithms. Proceedings of PODS, pages 247-255,
2001.

54 S I G M O D Record , Vol. 30, No. 4, D e c e m b e r 2001

