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Abstract:   The aim of this work is to illustrate the suitability of Quasi-Birth-

Death Processes (QBDs) for stochastic modeling of production lines.  With this end in 

mind, first, an introduction to QBDs is made, so that the reader who may not be 

acquainted with this aspect of stochastic modeling may be introduced to the basics of 

the topic.  Then, a formal definition of QBD is given and the QBDs are contrasted 

with the traditional birth-death processes.  Later, examples of QBD models pertaining 

to production lines are presented.   The rational of this exposition is to show how 

QBDs present themselves within the context of production lines and to show the kind 

of work that needs to be performed to fully specify the corresponding QBD.  By 

compiling the aforementioned models, the strength of QBDs in modeling production 

lines is demonstrated.  

 

 

1 Introduction to Quasi-Birth-Death Processes: 

The study of Quasi-Birth-Death Processes (QBDs) goes back to R. V. Evans 

[1] and to V. Wallace [2].  In fact, Wallace coined the term “Quasi-Birth-Death 

Process”.  Yet, the most comprehensive study is by Neuts [3].  Since all the following 

research refers to Neuts for the basics of the field, it is appropriate to give his 

definition: 

A QBD is a Markov process on the state space }1,0),,{( mjijiE ≤≤≥= , 

with the infinitesimal generator Q , given by 
~
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where 011111111 00 =++=++=+ TTTTTTTT CBACBACB . 

The QBD, as defined, is a generalization of the birth-death process. Birth-

death processes are stochastic processes of Markov type where each state can be 

associated with an element of a counting set, which effectively means that the states 

can be ordered in a linear fashion.  Once the correct ordering is established, transitions 

should occur only to neighboring states: that means given that the process is in state n, 

it can have a transition only to state n+1 or state n-1.  And the transition times are 

exponentially distributed which allows their classification under the general category 

of Markov processes.  As with any Markov process, a state transition diagram (Figure 

1) can be used to represent it. 
 

1 2 3    .  .  . N N+1 .  .  .

                        .          

 Figure 1 Basic birth-death process model 

In the case of the QBD, instead of one state corresponding to an element of the 

counting set, there is a group of states corresponding to it.  Thus, from a given group 

of states, the process can have transitions to the group of states corresponding to the 

previous element of the counting set or to the group of states corresponding to the 

next element of the counting set.  This kind of Markov process yields a state transition 

diagram of the form shown in Figure 2.  
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 Figure 2   Representation of a QBD ( The dashed lines represent a collection 

of transitions originating from a state in one group and terminate in a state in another 

group.) 

According to Neuts’ definition, a QBD is defined by a generator matrix that 

has a block nested tridiagonal structure in which the same blocks are repeated 

infinitely many times except for the initial states.  For this to occur, one would need to 

have the same number of states corresponding to each counting set element.  

Moreover, the same kind of transitions with the same transition rates should be 

present in between these states.  Thus all literature that adopts the definition of Neuts 

really relates to state-homogeneous quasi-birth-death processes.  

Within the framework defined for QBDs, it is most appropriate to define the 

state space as the Kroenicker product of two sets, one of which is the counting set.  

Thus, the other set is used to distinguish all possible things that can happen at a given 

counting set level.  The same things should be possible at all counting set levels and 

the way the process goes from one of them to another should be independent of the 

level. 

The QBDs that Neuts investigates differ in one way from the ones that are the 

subject of this study.  The counting set is infinite, in other words the counting set is 

the set of natural numbers for Neuts’ case.  A finite counting set is used here, since no 

production system is likely to have infinite buffers.  This means that instead of having 

only one boundary there are two boundaries for these QBDs. 

A formal definition for the kind of QBD used here is: 

A QBD is a Markov process on the state space 

, with the transition rate matrix –or the infinitesimal 

generator-- 

}1,0),,{( njMijiE ≤≤≤≤=

R , given by 
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where 011111110 =+=++=+ T
M

TTTTTT BACBACB . 

This will be the definition of QBD in this paper.  An interesting observation is 

that the structure of equation (2) has been already shown to be of great use in the 

modeling of production lines in the seminal work by Yeralan and Muth [4].  Three 

works following this lead, Tan [5], Yeralan and Tan [6], Fadiloglu and Yeralan [7] 

exploit this structure in finding the steady-state probabilities by applying a matrix-

polynomial solution procedure.  The computational effort in the procedure is 

independent of the cardinality of the counting set of the QBD.   Thus, the QBD 

models have the additional advantage of being amenable to an efficient solution 

procedure. Furthermore, the spectral theory based on the procedure carries the 

prospect of furthering the understanding of the behavior modeled systems manifest.     

 

2 QBD Models for Production Lines 

Although the QBD platform is quite general and can be used for many 

stochastic models that pertain to different areas, in this paper, examples of QBD 

models pertaining to production lines are examined.  A similar effort can be 

conducted for other areas, which give rise to QBDs, but the scope of the present 

research is limited to the models of production lines, which have been studied 

extensively by many scholars due to the importance of the subject [8]. 

In this section production line models are presented in a natural progression.  

First, basic models, and then, more complex models that mimic further behavior of 

real production systems are introduced.  The submatrices that define the QBD for 

each model will be specified.  Once these are produced, the models are ready for 

application of the matrix polynomial procedure. 
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Model 1: Exponential Server with Limited Buffer  

A graphical representation for the model is given in Figure 3.  This is most 

probably the first model to be encountered in any queuing theory book, the 

quintessential M/M/1 model.  Here, the only deviation from this basic model is that 

the buffer–or the queue–has a limited size, M.  Usually this is named M/M/1/M, with 

the last M representing the size of the queue.  In this model, parts arrive to the server 

as a Poisson process with a mean rate of λ , and they are serviced with exponential 

service times with mean µ . 

 

λ
µM

  

Figure 3 Exponential server with limited buffer and its relevant parameters 

One can obtain the Markov chain diagram shown in Figure 4 using this 

description for the model. As one can observe from the diagram, this model is actually 

a simple birth-death process.  But since QBD is a generalization of birth-death process 

this model still qualifies for the name QBD.  Actually it forms one of the simplest 

QBDs possible.  One can easily write the steady-state equations for this model by 

looking at the diagram: 

0)1()0( =+− PP µλ  

110)1()1()()( −≤≤=−++++− MiforiPiPiP λµµλ  

0)1()( =−+− MPMP λµ  
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Figure 4  Markov transition diagram of Model 1 

One can obtain the following transition rate matrix from the preceding 

equations: 
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Clearly, transition rate matrix fits the QBD platform as defined.  By 

comparing this transition rate matrix with the generic transition rate matrix defined by 

equation (2), one can give the specific values of the submatrices used in the formal 

definition: 

λµλµ =+−== CBA ,)(,  

µλ −=−= MBB ,0  

It is easy to observe that for this model the submatrices in the definition of the 

QBD manifest themselves as simple scalars.  Although the application of the matrix 

polynomial method for this case is overkill, it is helpful to understand basic 

mechanisms of the procedure. 

Model 2: Exponential Server with Breakdown and Repair, Limited Buffer 

A graphical representation for the model is given in Figure 5.  This model 

builds on Model 1 by incorporating breakdown and repair capability.  If the server is 
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operating, it breaks down with a time to breakdown distribution that is exponential 

with parameter α .  Once the breakdown occurs, the repair starts.  The time to the end 

of repair is also exponentially distributed with parameter β .  During the breakdown, 

the part that was being processed at the time breakdown occurred is not processed.  

Processing starts on the same part after the repair. 

 

λ
µM

On/Off
)/( βα

 

Figure 5 Exponential server with breakdown and repair and its relevant 

parameters.  

For the described process the Markov transition diagram is given in Figure 6.  

It is clear that the state space is the Kroenicker product of the counting set with a set 

of two elements {W,R}.  W corresponds to the states for which the server is working 

and R corresponds to the states for which the station is broken and the repair is taking 

place.     

0W

0 R

α β

1W

1 R

α β

2W

2 R
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α β             .  .  .
λ

λ λ

λ

λ λ

λ λ
µµµµ

 

Figure 6  Markov transition diagram of Model 2. 
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The steady-state equations for the process are 

0),1(),0(),0()( =+++− WPRPWP µβλα   

0),0(),0()( =++− WPRP αλβ  

110),1(),1(),(),()( −≤≤=++−++++− MiforWiPWiPRiPWiP µλβµλα  

110),1(),(),()( −≤≤=−+++− MiforRiPWiPRiP λαµλ  

0),1(),(),()( =−+++− WMPRMPWMP λβµα  

0),1(),(),( =−++− RMPWMPRMP λαβ  

One can obtain the following transition rate matrix from the preceding 

equations: 
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Clearly, this transition rate matrix conforms to the definition of a QBD as 

stated.  The dimension of the submatrices is 2x2 and the submatrices can be easily 

extracted: 
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Model 3: Server With Erlang-2 Service Times, Limited Buffer 

The only difference between this model, depicted in Figure 7, and Model 1 is 

the statistical distribution of the service times.  In the M/M/1 model the distribution is 

exponential, whereas here it is Erlang which is the sum of two exponential 

distributions with the same rate.  In order to accommodate for this non-exponential 
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distribution, one needs to incorporate an additional state for each counting level.  

When this idea is applied, one gets the Markov transition diagram shown in Figure 8. 

 

λ
),2( µErlangM

 

 Figure 7 Server with Erlang-2 service times, limited buffer and its relevant 

parameters. 

The state space is the Kroenicker product of the counting set and the set {1,2}, 

which keeps track of the Erlang stage in the processing of parts.  Here, only one state 

corresponds to the element 0 of the counting set.  Consequently, this element cannot 

be incorporated in the QBD and has to be handled separately.  The QBD starts from 

element 1.  This has to be taken into account while applying the matrix polynomial 

solution procedure. 

 

(0) (1,1)

(1,2)

(2,1)

(2,2)

(3,1)

(3,2)

(M,1)

(M,2)

          .   .   .
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 Figure 8 Markov transition diagram of Model 3 

The steady-state equations for the process are 

0)2,1()0( =+− PP µλ  

0)2,2()0()1,1()( =+++− PPP µλµλ  

0)2,1()1,1()( =++− PP µµλ  

0)2,1()1,1()1,()( =++−++− iPiPiP µλµλ    12 −≤≤ Mifor

0)1,()2,1()2,()( =+−++− iPiPiP µλµλ     12 −≤≤ Mifor

0)1,1()1,( =−+− MPMP λµ  
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0)1,()2,1()2,( =+−+− MPMPMP µλµ  

After substituting the value of  obtained from the first equation into the 

second equation, one can obtain the following transition rate matrix from the 

preceding equations: 

)0(P
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Clearly, this transition rate matrix conforms to the definition of a QBD as 

stated.  The dimension of the submatrices is 2x2 and the submatrices can be easily 

extracted: 
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Model 4: Server With Erlang-2 Service Times, Breakdown and Repair, Limited 

Buffer 

This model, depicted in Figure 9, combines the characteristics of Model 2 and 

Model 3.  There is breakdown and repair mechanism just as in Model 2.  However, 

the production times are distributed with Erlang-2 distribution as the case is in Model 

3.   To accommodate for these, one needs three states corresponding to each counting 

set level.  The Markov transition diagram for the process is given in Figure 10. 
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 Figure 9 Server with Erlang-2 service times, breakdown and repair, limited 

buffer and its relevant parameters. 

This time the state space is the Kroenicker product of the counting set and the 

set {1,2,B}.  This second set is to specify the Erlang stage in the processing while the 

machine is up or to specify that the machine is broken.  But only two states 

correspond to the element zero of the counting set.  This element has to be handled 

separately and the QBD starts from element 1. 

The steady-state equations for the process are 

0)2,1(),0(),0()( =+++− PBPWP µβλα  

0),0(),0()( =++− WPBP αλβ  

0)2,2(),1(),0()1,1()( =+++++− PBPWPP µβλµλα  

0)1,1()2,1()( =+++− PP µµλα  

0)2,1()1,1(),0(),1()( =++++− PPBPBP ααλλβ  

0)2,1(),()1,1()1,()( =+++−+++− iPBiPiPiP µβλµλα 12 −≤≤ Mifor  

0)1,()2,1()2,()( =+−+++− iPiPiP µλµλα    12 −≤≤ Mifor

0)2,()1,(),1(),()( =++−++− iPiPBiPBiP ααλλβ   12 −≤≤ Mifor

0),()1,1()1,()( =+−++− BMPMPMP βλµα  

0)1,()2,1()2,()( =+−++− MPMPMP µλµα  

0)2,()1,(),1(),( =++−+− MPMPBMPBMP ααλβ  
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After substituting the values of  and obtained from the first 

two equations into the third and fifth equations, one can obtain the transition rate 

matrix which is of the form given in Equation (2).  The submatrices should be defined 

as 
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Model 5: Two Exponential Servers with One Intermediate Limited Buffer 

In this model shown in Figure 11, two exponential servers are present and the 

buffer is placed between the servers.  The typical two-server model in the literature 

assumes an infinite source for the server, which is the stochastic equivalent of Model 

1.  The input is a Poisson process.  One can assume that there is a second buffer at the 

input of the system.  But the size of this buffer would be limited to one.  In following 

models, the difficulties faced when a generic sized second buffer is incorporated in 

the models are illustrated.  The Markov transition diagram for the process is given in 

Figure 12. 
                                                 

λ 1µ M 2µ

 

 Figure 11 Two exponential servers with one intermediate limited buffer and its 

relevant parameters. 
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The state space is the Kroenicker product of the counting set and the set {0,1}.  

The counting set relates to the buffer level as usual.  The set {0,1} can be considered 

as the level of an imaginary first buffer whose size is one; in other words it tells 

whether there is a part being processed in server one. 
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Figure 12 Markov transition diagram of Model 5 

The steady-state equations for the process are 

0)0,1()0,0( 2 =+− PP µλ  

0)1,1()0,0()1,0( 21 =++− PPP µλµ  

0)0,1()1,1()0,()( 212 =++−++− iPiPiP µµµλ    11 −≤≤ Mifor

0)1,1()0,()1,()( 221 =++++− iPiPiP µλµµ    11 −≤≤ Mifor

0)1,1()0,()( 12 =−++− MPMP µµλ  

0)0,()1,(2 =+− MPMP λµ  

This process conforms to the definition of a QBD as stated.  Thus all one has 

to do for formally defining the QBD is to state the relevant submatrices whose sizes 

are 2x2: 
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Model 6: Two Exponential Servers With One Intermediate Limited Buffer,        

Breakdown and Repair 

This model depicted in Figure 13 is an extension of Model 4.  The breakdown 

and repair mechanisms are added to two basic servers of Model 4.  Both servers 

become non-operational when a breakdown occurs at the server, up to the time that 

the repair ends.  Thus, the production process is hindered by these occurrences.  These 

breakdowns and repairs occur independently in both servers.  The modeling of this 

system requires a large number of states for each intermediate buffer level as 

illustrated in the Markov transition diagram of the process in Figure 14. 

 

λ M

On/OffOn/Off
)/( 11 βα

1µ 2µ

)/( 22 βα
 

 Figure 13 Two exponential servers with one intermediate limited buffer, 

breakdown and repair and its relevant parameters 

 

The state space for this model is the Kroenicker product of four sets: the 

counting set C–which appears in all the QBDs–modeling the intermediate buffer 

level, the set    S1 = {W,R} modeling the repair status of the first server, the set L1 = 

{0,1} modeling number of parts in server one, and the set S2 = {W,R} modeling the 

repair status of the second server. 
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The steady-state equations for the process are 

0),0,,1(),0,,0(),0,,0(),0,,0()( 22121 =+++++− WWPWRPRWPWWP µββααλ  

0),0,,1(),0,,0(),0,,0(),0,,0()( 22122 =+++++− RWPRRPWWPRWP µβαβαλ  

0),1,,1(),1,,0(
),1,,0(),0,,0(),1,,0()(

22

1121

=++
++++−

WWPWRP
RWPWWPWWP

µβ
βλµαα

 

0),1,,1(),1,,0(
),1,,0(),0,,0(),1,,0()(

22

112

=++
+++−

RWPRRP
WWPRWPRWP

µβ
αλβα

 

0),0,,0(),0,,0(),0,,0()( 1221 =++++− RRPWWPWRP βαβαλ  

0),0,,0(),0,,0(),0,,0()( 2121 =++++− RWPWRPRRP ααββλ  

0),1,,0(),1,,0(),0,,0(),1,,0()( 12121 =+++++− RRPWWPWRPWRP βαλµβα  

0),1,,0(),1,,0(),0,,0(),1,,0()( 2121 =++++− RWPWRPRRPRRP ααλββ  

0),1,,1(),0,,1(
),0,,(),0,,(),0,,()(

12

21221

=−+++
+++++−

WWiPWWiP
WRiPRWiPWWiP

µµ
ββµααλ

  11 −≤≤ Mifor

0),0,,1(
),0,,(),0,,(),0,,()(

2
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+++++−
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µ
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+++++−
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βλµµαα

  11 −≤≤ Mifor

0),1,,1(),1,,(
),1,,(),0,,(),1,,()(

22

1212

=+++
++++−

RWiPRRiP
WWiPRWiPRWiP

µβ
αλµβα

    11 −≤≤ Mifor

0),1,,1(
),0,,(),0,,(),0,,()(

1

1221

=−+
++++−

WRiP
RRiPWWiPWRiP

µ
βαβαλ

    11 −≤≤ Mifor

0),0,,(),0,,(),0,,()( 2121 =++++− RWiPWRiPRRiP ααββλ   11 −≤≤ Mifor
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++++−
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0),1,,1(
),0,,(),0,,(),0,,()(
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=−+
+++++−
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WRMPRWMPWWMP

µ
ββµααλ

 

0),0,,(),0,,(),0,,()( 21222 =+++++− RRMPWWMPRWMP βαµβαλ  

0),1,,(
),1,,(),0,,(),1,,()(

2
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=+
++++−
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RWMPWWMPWWMP

β
βλµαα
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0),1,,(

),1,,(),0,,(),1,,()(

2

1212

=+
++++−

RRMP
WWMPRWMPRWMP

β
αλµβα

 

0),1,,1(
),0,,(),0,,(),0,,()(

1

1221

=−+
++++−

WRMP
RRMPWWMPWRMP

µ
βαβαλ

 

0),0,,(),0,,(),0,,()( 2121 =++++− RWMPWRMPRRMP ααββλ  

0),1,,(),1,,(),0,,(),1,,()( 1221 =++++− RRMPWWMPWRMPWRMP βαλβα  

0),1,,(),1,,(),0,,(),1,,()( 2121 =++++− RWMPWRMPRRMPRRMP ααλββ  

This process conforms to the definition of a QBD as defined.  Thus, all one 

has to do for formally defining the QBD is to state the relevant submatrices whose 

sizes are 8x8: 
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Model 7: Server With Erlang-N Service Times, Limited Buffer 

In Model 3, the case when the server has Erlang-2 service times is studied.  In 

this model depicted in Figure 15 this model is extended to Erlang-N service times.  

The number of states in this model increases both with M and N.  Yet the matrix 

polynomial solution procedure does not depend on the size of the counting space 

which is the buffer size here.  But the larger the Erlang parameter is, the larger the 

submatrices are.   Thereby, the computational effort increases with the parameter N.  

The Markov transition diagram of the process is given below: 
 

λ ),( µNErlangM

 

 Figure 15 Server with Erlang-N service times, limited buffer and its relevant 

parameters. 

The state space for this model is the Kroenicker product of two sets: the 

counting set C that corresponds to the buffer level and the Erlang stage set S.  The 

Erlang stage set itself, is also a counting set.  Thus one can have two different matrix 

representations for the QBD: one using the buffer level as the counting set of the 

QBD and one using the Erlang stage set.  But since there is a transition from the 

Erlang stage N to Erlang stage 1, the choice of Erlang stage set would not yield a 

QBD as defined. 

The steady-state equations for the process are 

0),1()0( =+− NPP µλ  
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0),2()0()1,1()( =+++− NPPP µλµλ   

0)1,1(),1()( =−++− jPjP µµλ                         Njfor ≤≤1  

0),()1,1()1,()( =+−++− NiPiPiP µλµλ       12 −≤≤ Mifor

0)1,(),1(),()( =−+−++− jiPjiPjiP µλµλ  

                                                                    NjandMifor ≤≤−≤≤ 212  

0)1,1()1,( =−+− MPMP λµ  

0)1,(),1(),( =−+−+− jMPjMPjMP µλµ             Nj ≤≤2  
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Figure 16 Markov transition diagram of Model 7  

After substituting the value of  obtained from the equations, one can 

obtain the transition rate matrix for this process.  The transition rate matrix conforms 

to the definition of the QBDs as one could expect.  This time the submatrices 

employed are of size NxN: 

)0(P
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MB   

If one wanted to use Erlang stage set as the counting set, he would not get the 

a QDP in the strict sense of the word, but something quite close to it.  And the matrix 

polynomial solution procedure for obtaining the steady-state probabilities would still 

be applicable since the deviation from the QDP definition would only occur in the 

boundary equations.  This is due to the fact that the matrix polynomial solution 

procedure is based on the structure of the inner equations. It does not preclude a 

deviation from the definition in boundary equations.   

The transition rate matrix obtained with such a choice would be of the form 





















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








=

M

M

BAX
CBA

CB

A
BA
CBA

XCB

R

0

0

.

..

..
.

     (3) 

This one is a generalization of the transition rate matrix given in equation (2).  

One can observe that two impurities are allowed at the corners of the matrix.   

Once this transition rate matrix is defined, one can write the transition rate 

matrix of the process with the Erlang stage used as the counting set within this 

platform.  Indeed to define the submatrices in the (3) would suffice: 












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
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
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..)(
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B ,  BB =1
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Model 8: Two Exponential Servers with Two Limited Buffers  

This model depicted in Figure 17 is an extension on the Model 5.  In Model 5, 

the first server does not have a buffer for the arrivals.  Thereby, those arrivals that 

occur while the server is occupied are lost.  In this model, those arrivals are stored in a 

buffer whose size is M1.  This model is quite important because it is a tandem queue, 

which happens to form the basic building block of many models for modern 

production systems.  Yet, a theoretically sound methodology has not developed to 

tackle the stochastic analysis of this queue class up to this point.   

 

λ 1µ 2M
2µ1M

 

Figure 17 Two exponential servers with two limited buffers and their relevant 

parameters 

To perform stochastic analysis of this model, one can generate a Markov chain 

using a large state-space to incorporate the second queue.  Though this is a valid 
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option, it is not viable for many real models since the computational effort increases 

with the size of the state space.  Moreover it is not conducive to obtain parametric 

results from which one can obtain an idea about the behavior of such systems. 

Within the platform of matrix polynomial solution procedure, one can solve 

QBDs with an effort independent of the size of the counting set.  Yet, for the tandem 

queues one does not have only one counting set but many of them.  For this model 

with two tandem queues, there are two counting sets, each corresponding to the buffer 

levels of the two servers. 
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 Figure 18 Markov transition diagram of Model 8 

 

Since the matrix polynomial methodology only allows the exploitation of the 

structure for a single counting set, one cannot make use of the second counting set.  

One point to consider is the choice of the principal counting set of the QBD.  The 

logical strategy for this is to choose the one with higher cardinality.  Then, the 

computational effort that relates to the solution decreases. 

The Markov transition diagram pertaining to the model is given in Figure 18.  

One can clearly observe by examining the diagram that the state space is the 

Kroenicker product of two counting sets: the first buffer level set C1 = {1,2,3, …, M1} 

and the second buffer level set C2 = {1,2,3, …, M2}.  The first index of the states is an 
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element of C1 and the second index of C2.  One also observes that there are M1.M2 

states in the model. 

The steady-state equations for the process are 

0)1,0()0,0( 2 =+− PP µλ  

0)1,()0,1()0,()( 21 =+−++− iPiPiP µλµλ               11 1 −≤≤ Mifor

0)1,()0,1()0,( 12111 =+−+− MPMPMP µλµ  

0)1,0()1,1(),0()( 212 =++−++− jPjPjP µµµλ             11 2 −≤≤ Mjfor

0)1,1(),0()( 2122 =−++− MPMP µµλ  

0)1,()1,1(),1(),()( 2121 =++−++−+++− jiPjiPjiPjiP µµλµµλ   

                                                                      1111 21 −≤≤−≤≤ MjMifor  

0)1,1(),1(),()( 21222 =−++−++− MiPMiPMiP µλµλ 11 2 −≤≤ Mjfor  

0)1,(),1(),()( 121121 =++−++− jMPjMPjMP µλµµ   11 2 −≤≤ Mjfor

0),1(),( 21212 =−+− MMPMMP λµ  

Lucidly, this process conforms to the definition of the QBD.  Moreover, one 

has two choices for the counting set.  If the set C1 is elected as the counting set, the 

submatrices that define the QBD are of the dimension M2xM2.  These relevant 

submatrices are 
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If the set C2 is elected as the counting set, the submatrices that define the QBD 

are of the dimension M1xM1.  These relevant submatrices are 
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The interesting phenomena that one should observe is that the block 

tridiagonal structure that is the insignia of the QBD is also exhibited in each of the 

submatrices that has been presented.  Indeed, it is possible to show that this 

phenomenon generalizes for tandem queues having more than two buffers.  For each 

buffer, there would be another level of trigonal structure embedded in the blocks 

belonging to the previous level. 

One can relate this phenomenon to fractals.  The same kind of macro-structure 

appears in the elements of the whole.  As one gets to examine these submatrices, the 

same structure exhibits itself.  And the amount that this self-similarness occurs is the 

number of stations–and thereby the number of buffers–in the tandem queue.  

Although no methodology to fully exploit this marvelous structure -- in order 

to obtain the nullspace of the transition rate matrix—exists at this point, it can still be 

quite useful in generating the transition rate matrix for a given process in an efficient 

fashion.   

 

4 Conclusion 

In this paper, the suitability of QBD platform in the stochastic modeling of the 

production lines is illustrated.  First, an introduction to QBDs is made.  Then, 8 

examples of how production lines with different characteristics can be modeled as 

QBDs, are presented.  It is obvious that it would not be difficult to augment the 

number of these examples by using the same principles.  The more complicated the 

nature of the modeled system is, more states corresponding to each element of the 

counting space would be needed.   

By using the methodology described in the papers by Fadiloglu and Yeralan 

[7], and Yeralan and Tan [6] one can find the steady-state probabilities for these 

models irrespective of the counting set’s cardinality.  In the models, the counting set 
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always corresponds to a buffer of choice.  Yet when more than one buffer exists, one 

comes up with a structure we can call Multi-Dimensional Quasi-Birth-Death Process.  

This process is still a QBD, thus amenable to the same solution methodologies.   Yet, 

there is some additional structure in these processes as has been illustrated in Model 

8.  The exploitation of this structure would be an important addition to this line of 

research. 
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