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Simulation metamodelling with neural networks: an experimental
investigation

IHSAN SABUNCUOGLUy* and SOUHEYL TOUHAMIz

Arti®cial neural networks are often proposed as an alternative approach for
formalizing various quantitative and qualitative aspects of complex systems.
This paper examines the robustness of using neural networks as a simulation
metamodel to estimate manufacturing system performances. Simulation models
of a job shop system are developed for various con®gurations to train neural
network metamodels. Extensive computational tests are carried out with the
proposed models at various factor levels (study horizon, system load, initial
system status, stochasticity, system size and error assessment methods) to see
the metamodel accuracy. The results indicate that simulation metamodels with
neural networks can be e� ectively used to estimate the system performances.

1. Introduction
Simulation has been widely accepted by the scienti®c community and practi-

tioners as a ¯exible tool in modelling and analysis of complex systems. It reduces
the cost, time and risks associated with the implementations of new designs.
However, due to its lengthy computational requirements and the trail-and-error
nature of the development process, simulation may not be always the ®rst preferred
tool in solving real-life problems. This issue is particularly important for problems
where the solution space is very large and when the time available for decision-
making is too limited for extensive analysis to be performed (i.e. on-line applica-
tions). Harmonosky and Robohn (1995) stated that CPU requirements appeared to
be a major obstacle for the on-line applications of simulation. Time considerations
are still an important issue, even with the o� -line use of simulation due to the
increasing complexity of the modern production systems. In this paper, it is
argued that the use of simulation metamodels may help alleviate these problems.

A simulation metamodel is a simpler model of the real system. The simulation
model is an abstraction of the real system in which a selected subset of inputs is
considered. The e� ect of the excluded inputs is represented in the model in the form
of the randomness to which the system is subject. As illustrated in ®gure 1, a meta-
model is a further abstraction of the simulation model. Simulation is used to gen-
erate data sets, which in turn are used to build the metamodel. A simulation
metamodel with neural networks is a neural network whose training is provided
by a simulation model. In general, a metamodel takes a fewer number of inputs
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and is usually simpler than the simulation model. These savings result in lower
running times, but at the expense of a reduction of the accuracy of the metamodel
with respect to the original system.

Research in metamodelling is maturing. Since the late 1980s, the literature reveals
a resurgence of interest in metamodelling in general and speci®cally in neural net-
work-based metamodels. In this study, we develop and test simulation metamodels
with back propagation arti®cial neural networks for the purpose of estimating
system performance measures in job-shop scheduling environments. Extensive com-
putational experiments are also carried out to identify the critical factors that a� ect
the estimation process and accuracy of metamodels. The results provide important
insights into the e� ective use of the simulation metamodels with neural networks.

The paper is organized as follows. Section 2 gives the research background and
motivation behind the study. The details of the proposed study and the experimental
settings are given in Section 3. The results are presented in Section 4, where the
performances of the metamodels are also discussed. Concluding remarks and future
research directions are given in Section 5.

2. Research Background
The metamodels are used to reduce the computer costs (memory and time) of

simulation while making use of its potential of estimating performance of complex
systems. Blanning (1975) is probably among the ®rst scientists to propose the use of
metamodels to alleviate the problems of simulation. The application of metamodels
for manufacturing systems’ management has increase since then. As pointed out by
Yu and Popplewell (1994), the increases in publications for metamodelling of manu-
facturing systems indicates that the technique is of value in manufacturing systems’
design and analysis. The related bibliography of metamodeling is as follows.

Friedman and Pressman (1988) explored the advantages of metamodelling. These
included model simpli®cation, enhanced exploration and interpretation of the
model, generalization to other models of the same type, sensitivity analysis, answer-
ing inverse questions and a better understanding of the studied system and the
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Figure 1. Metamodelling concept.
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interrelationships of system variables. Barton (1992) provided a review on general-
purpose mathematical approximations to simulation input±output functions.
According to him, one of the major issues in the design of the mathematical approx-
imation is the choice of a functional form for the output function. The metamodel-
ling candidate approaches include Taguchi models, generalized linear models, radial
basis functions, Kernel methods, spatial correlation models, frequency domain
approximations and robust regression methods. Barton concluded that while some
approaches cannot provide a global ®t to smooth response functions of arbitrary
shape, the others are computationally intensive and in some cases estimation prob-
lems are numerically ill-conditioned. Despite these potential drawbacks, these
approaches produced satisfactory results. See McHaney and Douglas (1990) and
Watson et al. (1994) for sample success stories with regression-based metamodels.
A methodology for ®tting and validating regression-based metamodels were dis-
cussed in detail by Kleijnen and Sargent (2000). There are also metamodels devel-
oped by using rule-based expert systems (Pierreval 1995).

The use of neural networks is another approach for metamodelling that has
recently emerged. This study aims at investigating the robustness of neural net-
work-based simulation metamodels. Speci®cally, it employs back propagation
neural networks that belong to the supervised learning category. The major distin-
guishing feature of back propagation neural networks is learning the underlying
mappings between the input and output variables from examples (Dayho� 1990).
In a traditional computer program, the programmer speci®es every step in advance.
The neural network, in contrast, would by itself build the mapping describing the
input±output relationship and no programming is required. This is achieved through
the learning process. Another important feature of neural networks is generalization .
Although learning is based only on a limited set of examples, when it comes to
applying the neural network model, the network should be able to extend its knowl-
edge to outside this set of examples.

Neural networks have a wide range of applications. Zhang and Huang (1995)
discussed the applications of neural networks in general. Burke and Ignozio (1992)
reviewed the application of neural networks in operations research. Sabuncuoglu
(1998) presented the theory and applications of neural networks in production sched-
uling. It appears that the interest in neural networks that mainly started from 1987
corresponds to the same time for which a resurgence of interest was noted for the use
of metamodelling in manufacturing environments.

Even though neural networks have many success stories, one must recognize that
metamodelling with neural networks has some shortcomings (Madey et al. 1990).
First, constructing a neural network is time consuming since the process requires
generating a training set, and empirically selecting an appropriate architecture.
Second, the accuracy of the network outputs depends on the regularity of the behav-
iour of the system under study (by regularity, we mean that the system is subject to
the same set of exogenous and uncontrollable factors). This implies that the time
horizon of the study must be carefully selected. Third, the validity of the results also
depends on the degree of aggregation selected for the input data. Aggregation of
data is needed to reduce the size of the neural network and the e� ort required at
generating the examples. This would have a negative impact on the precision of the
neural network results. The disadvantages mentioned so far are common to most
metamodelling techniques. Another more speci®c problem related to metamodelling
with neural networks is the di� culty of making interpretations and analysis of the
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input±output relationship. As mentioned above, the neural network generates its
own rules but does not provide them explicitly to the user. To get an insight into
the input±output relationship, one needs to analyse the weights of the connections
between the processing units. This is not an easy task, and it is time consuming.
Thus, providing a formal method to analyse the neural network may strengthen its
value as a metamodelling approach. A brief summary of neural network applications
to metamodelling is as follows.

Chryssolouris et al. (1990) used a neural network metamodel to reduce the com-
putational e� orts required in the long trial process associated with using simulation
alone for the design of a manufacturing system. Chryssolouris et al. (1991) deter-
mined the parameters of the operational policy required to achieve some given levels
system performances for their neural network metamodel. Mollaghasemi (1998)
developed a neural network-based metamodel for the system design problem.
Hurrion (1992) employed a neural network to estimate con®dence intervals for the
performance of an inventory depot. Hurrion (1997) combined the neural metamodel
with simulation to speed up the search process in simulation. In a recent study,
Hurrion (1998) proposed the visual interactive metasimulation using neural network.

Pierreval (1993) employed neural networks to rank dispatching rules in a stoch-
astic ¯ow shop. In the follow-up study, Pierreval (1996) investigated the ability of
neural networks to estimate mean machine utilization of a deterministic small-sized
problem. Philipoom et al. (1994) employed the neural networks as a simulation
metamodel to assign due dates for jobs based on system characteristics and system
status when jobs enter system. Badiru and Sieger (1998) proposed neural networks as
a simulation metamodel in economic analysis of risky projects. Kilmer et al. (1999)
use supervised neural networks as a metamodelling technique for discrete-event,
stochastic simulation. The authors translated an (s; S) inventory simulation into a
metamodel and estimated the expected total and its variance. They formed con-
®dence intervals from both metamodels and the simulation model. The results indi-
cate that the neural network metamodel is quite competitive in accuracy when
compared with the simulation itself. They also showed that one neural network
metamodels are trained, they can operate nearly in real-time. Huang et al. (1999)
employed neural networks for the performance prediction system to help in identify-
ing abnormalities in the system. Finally, Aussem and Hill (2000) proposed the use of
neural networks as a metamodelling technique to reduce the computational burden
of stochastic simulations. The proposed metamodel was successfully used to predict
the propagation of the green alga in the Mediterranean.

To the best of our knowledge, there is not much work reported to compare the
di� erent metamodelling approaches. Among a few studies, Philipoom et al. (1994)
compared the regression models and neural network models on the task of selected
due date assignment rules. Their results showed a great success for neural networks
compared with the regression models. Hurrion and Birgil (1999) compared two
forms of experimental design methods (full factorial designs and random designs)
used for the development of regression and neural network simulation metamodels.
Their results showed that the neural network metamodel outperform conventional
regression metamodels, especially when data sets based on randomized simulation
experimental designs are used to produce the metamodels rather than data sets from
similar-sized full-factorial experimental designs.

Raaymakers and Weijters (2000) used neural networks to estimate makespan in
batch-processing industries. The results of their simulation experiments indicated
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that the estimation quality of the neural network models is signi®cantly better than
the quality of regression models. There are also opposite results in the literature. For
example, Fishwick (1989) found that a neural network model performs poorly when
compared with a linear regression model and a surface response model applied to a
ballistic system when measuring the horizontal distance covered by a projectile. We
believe that both neural networks and regression models are good scienti®c tools in
dealing with estimation problems. They have their own di� erent characteristics that
should be studied further in various problem domains. There even may be areas in
which both can be used in a complementary fashion to enhance the solution quality.
This requires further investigation by researchers. Unfortunately, this is not within
the scope of this paper.

In all the papers discussed above, neural network-based metamodels achieve
reasonably good results. Several of the experiments report a percentage error of
µ 6. In these studies, the researchers showed that neural networks are very promising
tools for predicting system measures. However, all these case studies deal with
systems of reduced complexities or ones of a deterministic nature and do not
allow us to generalize on the estimation capabilities of neural networks. In this
study, in fact, we investigate how such factors a� ect the precision of the neural
metamodels. The objective of this experimental investigation is to determine
system characteristics for which the use of neural metamodels can be expected to
produce an acceptable level of accuracy.

3. Proposed study
This study considers a job shop manufacturing system. Simulation models and

neural metamodels are developed for the purpose of estimating system performance
measures under various system con®gurations. Three sets of experiments are con-
sidered. The ®rst is conducted to estimate the mean machine utilization for a system
in steady-state. This is referred to as estimating long-term mean machine utilization.
The second set of experiments is similar to the ®rst, except that long-term mean job
tardiness is estimated. In these two sets of experiments, the following factors are
examined.

. System complexity: simple versus complex.

. Stochasticity: deterministic system, system with stochastic job interarrival
times only, system with stochastic job processing times only, or system with
both variables being stochastic.

. System load: low, medium or high demand.

. Metamodel error assessment criteria: mean average deviation (MAD) versus
percentage error (%error).

. Degradation in precision on test data set relative to the training data set.

The third set of experiments focuses on the short-term (or transient) state per-
formance of the system. It is important to distinguish between long- and short-term
system performances. The analysis of the transient state of a system is especially
relevant if the system is terminating or if there is no steady-state behaviour due to
continuous changes and interruptions in the system operation. In such cases, the
time horizon of the analysis is too short for the system to reach an equilibrium state.
In this set of experiments, the objective of the metamodels is to estimate mean job
tardiness. In addition to the factors listed above, this set of experiments also exam-
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ines the e� ect of initial system status. This is an important factor because system
performance is signi®cantly a� ected by the starting conditions for short time hor-
izons.

3.1. Experimental settings
This study considers a job shop system with two levels of complexity: simple and

complex. The simple system is the one used by Pierreval (1996). It consists of three
job types, four machines and three free transporters. The complex system is an
extension of the simple one. It consists of three additional job types and three
additional machines. Each job type has a ®xed routing in the system with ®xed
travel distances between machines. Jobs wait in queues according a waiting disci-
pline: shortest processing time (SPT), earliest due date (EDD) or modi®ed operation
due date (MODD). At their arrival to the system, jobs are assigned due dates
according to the total work content method (Sabuncuoglu and Hommertzheim
1995). This method assigns a ¯ow allowance for each job equal to the total pro-
cessing time multiplied by a tightness factor.

When the objective is to measure the long-term steady-state system performance
of the system, statistics are cleared for an initial transient period. In the case where
the objective is to measure the short-term performance, statistics are collected for a
given time period without deleting any data points. In the deterministic system
con®guration, all jobs of the same job type enter the system at constant interarrival
times and stay on the machines for constant processing time. In the stochastic case,
the interarrival times are sampled from an exponential distribution. The mean of the
exponential distribution is equal to the value of the constant interarrival time used
under the deterministic con®guration. Similarly, the mean of the exponential pro-
cessing time distribution is set equal that of the deterministic case.

For each system con®guration, both the training and test data sets required for
the neural networks are obtained by running the simulation models with di� erent
levels of the input variables: the due date tightness factor, the average job interarrival
time and the queue waiting discipline. The values for these inputs are randomly
generated from a uniform distribution. For instance, if we consider the complex
system under general demand conditions, for each example in the data set, the
mean interarrival time of each job type is randomly generated from the interval
[20..100]. In addition, the due date tightness factor is randomly generated from
within [2..9], and the queuing rule is randomly selected in the set {SPT, EDD,
MODD}. For a complete list of the input ranges used for the di� erent input vari-
ables, see http://alcor.concordia.ca/¹souheyl/MThesis, where a copy of the thesis,
from which this paper is extracted, is available.

For each input combination, the simulation model is then run and the system
performance (mean machine utilization, mean job tardiness and mean job ¯ow time)
is recorded. For each experiment, the simulation model was run 1000 times: 70% of
the simulation output data are used for training data set and 30% are used for the
test data set.

The neural network architecture is varied according to the problem underconsi-
deration. Figure 2 shows the general architecture used. The inputs presented to the
network at the input layer are the average job interarrival time, the due date tight-
ness factor and the queue waiting discipline. The outputs of the network would be
the system performance measure of interest. The number of hidden layers and the
number of nodes at each layer are varied empirically according to the problem at

2488 I. Sabuncuoglu and S. Touhami

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
3:

01
 1

3 
N

ov
em

be
r 

20
17

 



hand. Note that too many nodes in hidden layers cause the network to memorize
rather than to learn. By the same token, too few nodes result in no learning. Hence,
the size of the hidden layer is determined as a result of pilot runs. For example, for
estimating the mean job tardiness for a simple deterministic system, three network
architectures were tested and the best result was considered. These architectures were
5-6-7-6-3 , 5-8-9-8-3 and 5-55-3 (where the ®rst digit represents the number of nodes
in the input layer, the last digit represents the number nodes in the output layer and
the digits in between represent the number of nodes per hidden layer). For the
complex system con®guration, the network sizes where increased to 8-12-14-12-6 ,
8-15-19-15-6 and 8-45-6.

In the experiments, three network architectures were implemented and the best
one was selected for comparison. The back propagation networks operate with a
learning coe� cient and a momentum term, which are both empirically set. These
coe� cients remain constant throughout the training session, which has a length of
500 000 input±output combinations (the available data set is presented a multiple
number of times). For simplicity, no bias has been introduced to the networks.

An essential aspect of metamodelling is to evaluate the quality of the estimate of
the system performance measure (produced by the neural network metamodel) as
compared with the true value (produced by the simulation models). For estimating
mean machine utilization, two criteria are used: mean absolute deviation (MAD) and
percentage error (%error). MAD consists of computing the absolute di� erence
between each estimate and the true value and these di� erences are then averaged
across all the output nodes and all the examples in the data set. The percentage error
approach is the classic one where the absolute di� erence is divided by the true value.

2489Metamodelling with neural networks
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For estimating mean job tardiness, the classic percentage error approach cannot be
used (since tardiness can have a zero value). For this reason, another error assess-
ment criterion is employed in the experiments. We divide the di� erence by the ¯ow
allowance (as assigned when setting the due dates). This will be denoted as FA.

4. Results of the experiments
4.1. Estimating long-term machine utilization

The ®rst set of experiments is designed to measure metamodel accuracy in esti-
mating long-term machine utilization. The results are depicted in ®gures 3±6. Figures
3 and 4 display the errors obtained on the training set for a system with medium
demand level. Figures 5 and 6 show the increase in the error levels of the metamodels
when the test data sets are used, i.e. graphs plot the error on the test data set minus
error on training data set.

In general, the neural network metamodels perform well to estimate mean
machine utilization (note that utilization is measure on a scale of 1). It appears
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that the metamodel accuracy decreases as system complexity increases both on the
training and test data sets. It is also noted that the accuracy decreases as a result of

adding stochasticity to the system. An interesting result is that the stochastic factors
examined in this study yield similar error levels as illustrated by the almost ¯at
middle portion in ®gures 3±6. When both variables (interarrival times and processing
time) are stochastic, the error increases relative to when only one of them is stoch-
astic (®gure 3 and 4). However, the deterioration in metamodel accuracy is almost
the same when either one of the variables stochastic (®gures 5 and 6).

We also examine the e� ect of variation in the demand levels on metamodel
accuracy. The complex deterministic system is considered with three levels of
demand. Tables 1a and b shows the error achieved by the metamodels for both
error assessment criteria. It appears that increasing demand levels result in reduced
metamodel accuracy both on the training and test data sets. However, this deterio-
ration in metamodel accuracy is very small compared with the deterioration due to
the added system complexity or stochasticity.

The ability of the metamodel to estimate machine utilization when inputs are
outside the range of the training data set is interesting to observe. At this stage, the
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simple deterministic system was considered. Table 2 shows the metamodel accuracy

on three test data sets. The ®rst set (®rst row) corresponds to data set with inputs

generated from the same range as the training data set (job interarrival times gen-

erated from interval [10,85]). The second data set corresponds to input generated

from a range adjacent to the training range (job interarrival times generated from
[85,100]) . Similarly, the third data set corresponds to inputs generated from a range

adjacent to the range of the second data set (job interarrival times are generated from
[100,120]. These ranges correspond to testing a neural metamodel built for a system

with low demand levels and that is required to extrapolate on higher demand levels.

As table 2 shows the metamodel accuracy has a slow degradation outside the train-

ing range. This indicates that neural metamodels are robust to changes in operating

conditions.
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Training Test No. of Interarrival time Processing Due date
MOD set set job No of time tightness
no. no. no. types mach Nature Range range factor Scheduling rule

1 1 1 6 7 deterministic [20..100] deterministic [2..9] SPT, MODD

or EDD

2 2 2 6 7 deterministic [20..40] deterministic [2..9] SPT, MODD

or EDD

3 3 3 6 7 deterministic [40..70] deterministic [2..9] SPT, MODD

or EDD

4 4 4 6 7 deterministic [70..100] deterministic [2..9] SPT, MODD

or EDD

5 5 5 6 7 deterministic [20..100] deterministic [2..9] SPT, MODD

or EDD

*machine utilization < 98%

6 6 6 6 7 stochastic mean in deterministic [2..9] SPT, MODD

(exponential) [40..100] or EDD

7 7 7 6 7 deterministic [40..100] stochastic [2..9] SPT, MODD

(exponential) or EDD

8 8 8 6 7 stochastic mean in stochastic [2..9] SPT, MODD

(exponential) [40..100] (exponential) or EDD

Table 1(a). E� ect of demand on the system.

Training data Deterioration on test data

Demand level MAD % Error MAD % Error

High 0.0036 0.4 0.0008 0.1
Medium 0.0027 0.4 0.0002 0.0
Low 0.0009 0.5 0.0010 0.0

Table 1(b). E� ect of demand on the system.

Set MAD Mean % error

1 0.006 1.4
2 0.04 3.8
3 0.06 5.3

Table 2. Generalization outside
the experiment range.
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We also observe both error assessment criteria produced consistent results in the
experiments. In other words, the di� erent models would rank similarly for each
criterion. This consistency is a good point as it con®rms the conclusions made so
far. In short, the results indicated that neural network metamodels designed to
estimate long-term mean machine utilization are quite successful and can handle
system stochasticity and complexity.

4.2. Estimating long-term job tardiness
This section examines the capability of neural networks to estimate long-term job

tardiness at two levels of system complexity. MAD and FA are used to assess net-
work accuracy. Recall that due date related criteria are commonly used in practice to
measure the system performances and the mean tardiness is the popular one in the
literature.

The results are plotted in ®gures 7±14. It appears that neural network metamo-
dels are better at estimating long-term machine utilization than estimating long-term
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Figure 7. E� ect of complexity and demand (training data).
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Figure 8. E� ect of complexity and demand (training data).
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Figure 9. E� ect of complexity and demand (error on test data ± error on training data).
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Figure 10. E� ect of complexity and demand (error on test data ± error on training data).
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Figure 11. E� ect of stochasticity and complexity (training data).
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Figure 12. E� ect of stochasticity and complexity (training data).
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Figure 13. E� ect of stochasticity (error on test data ± error on training data).
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Figure 14. E� ect of stochasticity (error on test data ± error on training data).
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job tardiness. According to the FA error assessment criteria, the job tardiness is
within 10% of ¯ow allowance (for a system in steady-state) . This could be considered
as acceptable since there is still room to improve metamodel accuracy through
further ®ne-tuning of the metamodel parameters (i.e. by changing network architec-
tures and algorithms’ learning and momentum coe� cients).

The ®rst point of interest was to examine the e� ect of variations in demand levels
on metamodel accuracy. Figures 7 and 8 show the error levels achieved by the
metamodels for four demand levels on the training data set (based on a deterministic
system). Figures 9 and 10 show the degradation in error levels when metamodels are
evaluated based on the test data sets. Low demand levels correspond to a data set
where the mean of the distribution of the interarrival time is large compared with the
case with medium, high or very high demand. Originally, the means of the distribu-
tions of the interarrival times were randomly generated from within a large interval.
To study the e� ect of di� erent demand levels, this interval was divided into four non-
overlapping subintervals , corresponding to low, medium, high and very high
demand levels.

These ®gures illustrate a non-linear deterioration in metamodel accuracy and
generalization capability with the most signi®cant deterioration occurring in the
very high demand case. The impact of increasing demand levels is most signi®cant
for the complex system con®guration. The very high demand case is the case where
the training and test sets contain examples for which the system is not in a steady-
state. In such a situation, long queues build up and several machines become bottle-
necks. As a comparison, in the high demand case, the maximum machine utilization
in the examples included in the data sets is 98%. This indicates that metamodels are
accurate enough as long as the system is in steady-state. However, as illustrated by
®gures 9 and 10, the increased demand levels do not have such a signi®cant impact
on amplifying the error level on the test data sets.

Figures 11 and 12 show the e� ect of stochastic interarrival times and processing
times on metamodel accuracy, and ®gures 13 and 14 show the e� ect of stochasticity
on the error deterioration on test sets. We observe that adding stochastic elements to
the model reduces metamodel accuracy and ampli®es error deterioration. This
impact is further ampli®ed by having more complex system con®guration.

Figures 15 and 16 depict the impact of stochasticity on metamodel accuracy in
more detail. Figures 17 and 18 show the e� ect of di� erent stochastic variables on
degradation in a metamodel error on the test data set. When processing times are
stochastic, the metamodels have achieved slightly higher error levels than when
interarrival times are stochastic. When both variables are stochastic, metamodel
accuracy decreases sharply. Once again, system complexity ampli®es error levels
signi®cantly.

4.2.1. Machine breakdowns
The systems modelled so far are not subject to machine breakdowns. Hence, one

may question the robustness of the metamodels with respect to random breakdown
interruptions (i.e. can a metamodel trained on a system with a 100% e� ciency,
generalize to examples from the same system but subject to machine breakdowns?).

To perform this test, we reduce the machine e� ciency to 92%. Tables 3 and 4
display the results in terms of the level of error achieved by the metamodels on the
test data set both simple and complex systems and for the two error assessment
criteria.
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It appears that the robustness of the metamodels to machine breakdown is highly
dependent on system complexity and the demand on the system and to a lesser extent
on stochasticity. The most signi®cant deterioration is observed at the highest
demand and at the complex system. Analysing the data for this situation indicates
that machine breakdowns cause large queues to form, which in turn does not allow
the system to reach its steady-state equilibrium.

4.3. Estimating short-term job tardiness
This section investigates the potential use of neural network to estimate short-

term performance of the system. In this type of situation, the analyst wants to
estimate the system performance for a certain period given well-de®ned initial con-
ditions, e.g. given the number of jobs and machines with current load, to estimate job
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Figure 15. E� ect of stochasticity, demand and complexity (training data).
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Figure 16. E� ect of stochasticity, demand and complexity (training data).
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Figure 17. E� ect of stochasticity, demand and complexity (error on test data ± error on
training data).
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Figure 18. E� ect of stochasticity, demand and complexity (error on test data ± error on
training data).

Deterministic system Stochastic system

Low Medium High Low Medium
demand demand demand demand demand

MAD approach with breakdowns 3.3 0.8 104.8 6.1 7.3
without breakdowns 3.0 1.6 15.0 3.6 3.1

FA approach with breakdowns (%) 5.7 0.4 45.7 9.2 3.5
without breakdowns (%) 4.0 2.1 2.7 2.7 2.9

Table 3. Simple system: robustness to machine breakdowns.
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completions or job tardiness. Since the initial system status is now a relevant factor
in the system, new nodes are added to the input layer of the neural networks. The
information about initial system status is incorporated into the model in terms of the
work in progress inventory of each job type waiting before each machine in the
system.

The results of experiments are presented in ®gures 19±22. The curve titled `gen-
eralization’ in these ®gures represents the di� erences between metamodel errors on

test and training sets. As expected, stochasticity and system complexity act nega-
tively on the metamodel performance and its generalization capability. The results
for the complex stochastic system con®guration are not shown because the errors are
very high. It appears that system complexity has a more negative e� ect on the system
performance than stochasticity. This signi®cant increase in error level in stochastic
systems indicated that neural networks might not be suitable for estimating short-
term performance of the systems when the level of variation and stochastic elements

are high.
The e� ect of demand on system performance is displayed ®gures 21 and 22. It

appears that the higher the demand, the better is the metamodel accuracy and gen-
eralization capability. This result was unexpected since for estimating long-term job-
tardiness, we found that increasing demand (or load on the system) resulted in a
decreased accuracy of the metamodels. In this set of experiments, increasing the

2499Metamodelling with neural networks

Deterministic system Stochastic system

Low Medium High Low Medium
demand demand demand demand demand

MAD approach with breakdowns 3.3 36.3 277.0 9.0 55.6
without breakdowns 1.3 5.4 51.8 13.2 13.2

FA approach with breakdowns (%) 2.9 21.2 178.8 7.0 27.5
without breakdowns 1.2 3.7 46.1 8.0 8.0

Table 4. Complex system: robustness to machine breakdowns.
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Figure 19. E� ect of stochasticity and complexity.
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Figure 20. E� ect of stochasticity and complexity.
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Figure 21. E� ect of demand level.
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Figure 22. E� ect of demand level.
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demand resulted in a higher accuracy level. The interpretation made sense at the
time. In estimating short-term job tardiness, the system is not in steady-state, but

there is a degree of how far it is from its steady-state. The interpretation of these

results is that at high demand, the system is nearer to its steady-state than with lower

demand. The idea is that because of the stability of the system, steady-state perform-

ance is easier to predict. We saw in the previous experiments (long-term) that the

more the system is overloaded, the worst the accuracy. Similarly, in this case (short-

term), the more the system is under-loaded, the worse its accuracy. We can view
demand as on a line: in the middle, we have the range of the demand where the

system is in steady-state . In this interval, the metamodel accuracy is good. The more

we move the right or to the left of this interval, the worst is the metamodel accuracy.

The previous experiments showed that the quicker the system can tend towards its

steady-state equilibrium, the better is the metamodel accuracy. However, these

experiments assumed that all machine queues are empty initially.

Next, we investigated the e� ect of the initial system status for variable demand
on system, by ®xing the number of jobs (from each job type) in each queue. The

results are displayed for the cases where demand level is high, medium or both

combined (referred to as general). As seen in ®gures 23 and 24, increasing the initial

number of jobs in the queues results in improving the results until some point then

no improvement is observed. The points at which the error levels level o� correspond

approximately to the average number of jobs in the queue when the system is at

steady-state. Even if this initial number exceeds the average queue size at steady-
state, metamodel performance does not change. The same e� ect of the initial system

status exists when we split the range of the interarrival times to low demand and to

high demand.

The e� ect of initial system status on metamodel generalization capability is

shown in ®gures 25 and 26. As can be seen, the deterioration in error levels does

not have a speci®c pattern.

The purpose of using neural metamodels to estimate short-term tardiness was to
investigate their possible use in a real-time decision. One situation frequently

encountered in the real-life scheduling practices is to select the best scheduling rule
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Figure 23. E� ect of initial system status (trainind data).
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Figure 24. E� ect of initial system status (trainind data).
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Figure 25. E� ect of initial system status (error on test data ± error on training data).
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Figure 26. E� ect of initial system status (error on test data ± error on training data).
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or dispatching policy based on the information about the current state of system and
objectives. For that reason, we conducted another sets of experiments to see if one
can make good decisions via neural networks. In other words, we wanted to know if,

based on the metamodel, we would select the same dispatching rule, as we would do
if we base the decision on the simulation model. This test is applied on three general
models, corresponding to deterministic simple system stochastic simple system, and
deterministic complex system. In selecting the dispatching rule (based on the simula-

tion models or on the neural metamodel), several alternatives are available. If the job
types have di� erent weights, then we may select the dispatching rule that minimizes
the tardiness of the job type with highest weight. This may be the case when one job

type is very pro®table or very strategic to the business. Another alternative would be
to select the rule that produces the minimum overall average tardiness (across all the
job types).

Table 5 shows the results of these experiments. Entries represent the percentage
of the example in the test data set for which the correct decision was made by the
metamodel. The columns correspond to di� erent decision criteria. For example, the
®rst column corresponds to the case where the objective is to select the dispatching

rule that best minimizes tardiness for job type 1 (and similarly for columns 2±6). The
last column corresponds to the case where the objective is to select the dispatching
rule that best minimized the overall tardiness.

In the previous experiments, we observed that stochasticity and system complex-
ity have negative e� ects on the accuracy of the metamodel. However, the results in
this section give the opposite indications. The di� erence lies on the how the meta-
model is evaluated. While in the previous experiments, the metamodels were eval-

uated on their capacity to forecast the performance measures of the manufacturing
system, in this section the metamodels were evaluated on their capacity to rank the
performance of di� erent queuing rules, which would allow us to select the best
queuing rule.

If the selection of the queuing rule is based on the overall average tardiness, the
metamodel success rate on the complex deterministic system ranks better than on the
simple stochastic system, which in turn ranks better than on the simple deterministic

system. The reason for this contradiction may be that complexity (whether due to
stochasticity or to system con®guration) acts as to increase the di� erence between the
performances of the di� erent dispatching rules. In other words, the added complex-
ity makes it more di� cult to forecast the value of the performance measures.

However, under these same conditions of added complexity, it is easier to di� erenti-
ate between the performances of the di� erent queuing rules. Thus, it may be easier

2503Metamodelling with neural networks

Job type

System 1 2 3 4 5 6 Average

Simple, stochastic 96 84 49 n.a. n.a. n.a. 91
Simple, deterministic 81 100 79 n.a. n.a. n.a. 79
Complex, deterministic 100 100 71 97 98 100 100

Data are percentages.

n.a., not applicable.

Table 5. Testing capability to select operational policies.
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for the metamodel to compare di� erent queuing rules rather than provide precise
measures of the performance of each rule. This implies that using neural metamodel
is likely to produce good decisions as the system gets more complex. In addition, the
test results show that making the decisions based on di� erent job types leads to
di� erent metamodel performances. It appears that the metamodel performance is
related to the job type characteristics. The results also indicated that di� erent criteria
lead to opposite interpretations or di� erent decisions. Hence, the choice of the
criteria should depend on the objective of the study.

5. Concluding remarks and future research directions
In this paper, we have conducted an initial investigation of the potential use of

neural networks as simulation metamodels for estimating manufacturing system per-
formances. The experiments indicated that application to real-life problems is not
straightforward. We also observed that performance measures, the study horizon,
the system load, the initial system status, stochasticity, complexity and error assess-
ment methods can a� ect metamodel accuracy in di� erent ways. For example,
experiments indicated that metamodel accuracy can decrease rapidly when estimating
short-term job tardiness for terminating type systems in the context of stochastic or
complex systems. However, the metamodels were successful in discriminating between
dispatching policies in this same contexts. Therefore, the success of metamodelling with
neural networks depends on the combination of the system characteristics and the error
assessment criteria, as well as the purpose of simulation applications.

In conclusion, we believe that metamodelling with neural networks is a promising
tool and can be of value for manufacturing systems’ management. To investigate
further the potential of this tool, one can examine the e� ect of system con®guration
(¯ow shop to job shop), system disturbances such as machine break down, applying
di� erent distributions in studying stochasticity, the size of data sets, or estimating
other measures such as the standard deviation of the performance measures.
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