
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 1, JANUARY 2015 107

Accelerated Phase-Cycled SSFP Imaging
With Compressed Sensing

Tolga Çukur, Member, IEEE

Abstract—Balanced steady-state free precession (SSFP) imaging
suffers from irrecoverable signal losses, known as banding arti-
facts, in regions of large B0 field inhomogeneity. A common so-
lution is to acquire multiple phase-cycled images each with a dif-
ferent frequency sensitivity, such that the location of banding arti-
facts are shifted in space. These images are then combined to alle-
viate signal loss across the entire field-of-view. Although high levels
of artifact suppression are viable using a large number of images,
this is a time costly process that limits clinical utility. Here, we pro-
pose to accelerate individual acquisitions such that the overall scan
time is equal to that of a single SSFP acquisition. Aliasing artifacts
and noise are minimized by using a variable-density random sam-
pling pattern in k-space, and by generating disjoint sampling pat-
terns for separate acquisitions. A sparsity-enforcingmethod is then
used for image reconstruction. Demonstrations on realistic brain
phantom images, and in vivo brain and knee images are provided.
In all cases, the proposed technique enables robust SSFP imaging
in the presence of field inhomogeneities without prolonging scan
times.

Index Terms—Banding artifact, compressed sensing, magnetic
resonance imaging (MRI), phase cycling, random undersampling,
steady-state free precession (SSFP), variable density.

I. INTRODUCTION

B ALANCED steady-state free precession (SSFP) se-
quences [1] are utilized for fast imaging in a broad range

of magnetic resonance imaging (MRI) applications including
cardiac imaging [2]–[4], angiography [5], [6], musculoskeletal
imaging [7], [8], interventional imaging [9], [10], cell tracking
[11], [12], and functional imaging [13], [14]. Compared to
gradient or spin-echo sequences, the utility of SSFP in rapid
imaging arises from its relatively short repetition times (TR),
and high signal-to-noise ratios (SNRs) per unit scan time
[15]. However, these advantages come at the cost of an MRI
signal whose magnitude is strongly perturbed by magnetic field
inhomogeneities across the imaging sample. In SSFP images,
field inhomogeneities routinely encountered in practice can
cause characteristic signal voids, known as banding artifacts.
Thus, SSFP sequences suffer from irrecoverable loss of image
information in regions with large off-resonant frequencies [16].
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A number of successful strategies have been proposed to
alleviate banding artifacts [17]–[26], but multiple-acquisition
SSFP imaging is by far the most commonly used method [17].
The multiple-acquisition method collects multiple SSFP images
across which banding artifacts appear in nonoverlapping loca-
tions. The location of banding artifacts are altered by shifting
the frequency response of SSFP acquisitions. This shift can be
implemented either by changing the center frequency directly,
or by altering the radio-frequency (RF) phase-increments be-
tween successive TRs. These methods are generally referred to
as phase cycling. Individual SSFP images are then combined
using an algorithm that retains tissue signals while reducing
banding artifacts [18]–[21], [27]. It is desirable to maximize
the number of SSFP acquisitions in order to increase the level
of artifact suppression. Unfortunately, this also diminishes the
speed advantage of SSFP sequences and increases sensitivity
to motion artifacts.
Here, we propose a new technique that effectively reduces

banding artifacts by combining a relatively large number of
phase-cycled acquisitions. These acquisitions are randomly
undersampled in order to maintain a total scan time equal
to that of a single SSFP acquisition. To minimize aliasing
energy and maximize image resolution, we propose to employ
disjoint sampling patterns across multiple acquisitions as op-
posed to a common pattern. Finally, the undersampled data are
reconstructed using compressed sensing [28]–[30], and later
combined using the p-norm method to achieve near-optimal
banding-artifact reduction and SNR [21].

II. METHODS

To maintain a fixed scan time regardless of the total number
of phase-cycled acquisitions ( ), individual acquisitions must
be accelerated by a factor of . Any reconstruction of such
undersampled data will contain residual aliasing and noise. We
reasoned that if a common sampling pattern is used for all ac-
quisitions, then these residual artifacts will add up coherently.
In contrast, if disjoint sampling patterns that contain partly
distinct subsets of k-space samples are used, then residual
artifacts will interfere destructively. Thus, we hypothesized
that employing distinct patterns across separate acquisitions
will improve image quality compared to a common pattern.
We evaluted this hypothesis for both uniform-density and
variable-density sampling patterns. A nonlinear reconstruction
was employed to recover image structure from undersampled
data using appropriate sparsifying transformations. Finally, the
reconstructed SSFP images were combined to reduce banding
artifacts. Maximum-intensity, sum-of-squares, and p-norm
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combination methods were tested. The following sections de-
scribe in detail the procedures used to demonstrate the proposed
technique.

A. Multiple-Acquisition SSFP Imaging

The multiple-acquisition method collects a total of SSFP
images, each with a different phase increment , where
[1 N]. The MRI signal acquired using each phase-increment is
given as [31]

(1)

where TE is the echo time, TR is the repetition time, is the
spatial location, and is the spatial distribution of phase ac-
crual over a single TR due to B0 field inhomogeneity. Mean-
while, and are terms that depend on several
imaging and tissue relaxation parameters (see Appendix for de-
tails), but do not depend on or .
The goal of the multiple-acquisition method is to retain SSFP

tissue contrast while removing the off-resonant frequency de-
pendence of the signal in (1). In other words, the resulting image
should be equivalent to a fully-refocused SSFP acquisition
where at all locations across the image

(2)

In principle, if a large number of images are collected with
densely sampling the range , the off-resonant frequency
shift for any given voxel will be refocused in at least one phase-
cycled image. However, the phase-cycled image (equivalently

) that eliminates signal loss at a given voxel cannot be de-
termined a priori unless the value of at that voxel is known.
Instead, the multiple-acquisition method relies on the obser-

vation that the signal intensity should be higher for refocused
SSFP signals than for signal voids. Therefore, banding artifacts
can be reduced by aweighted combination ofmultiple phase-cy-
cled images. Several combination methods have been proposed,
including maximum-intensity (MI) [18], sum-of-squares (SOS)
[19], and p-norm [22] combinations

(3)

MI is the most effective among the techniques considered here
in reducing banding artifacts, but each voxel intensity in the
combined image is determined solely by intensity in one phase-
cycled image. Thus, MI is suboptimal in terms of SNR effi-
ciency. SOS yields near-optimal SNR but it is less effective
in reducing banding artifacts. Meanwhile, the p-norm method
converges to MI as approaches infinity (i.e., better artifact re-
duction for large ), and it converges to SOS as approaches 2

(i.e., higher SNR efficiency). Previous work has indicated that
maintains a favorable trade-off between artifact sup-

pression and SNR efficiency [21], [22].

B. Sampling Patterns

To maintain an overall scan time equal to the duration of
a single SSFP acquisition, each phase-cycled acquisition was
N-fold accelerated through undersampling. Both uniform-den-
sity and variable-density sampling patterns were generated
across k-space. Two separate sampling strategies were then
implemented across phase-cycles: a single pattern for all acqui-
sitions, or alternatively a unique pattern for each acquisition.
1) Uniform-Density Sampling: Two-dimensional uniform-

density sampling patterns were generated. Because the energy
in MR images is concentrated at low-spatial frequencies, the
central 10% of k-space was fully sampled. To undersample the
remaining portions of k-space, a center-out square-spiral trajec-
tory was first generated that spans through the entire k-space
[32]. An acceleration factor of was then achieved by sam-
pling every th point along this trajectory. Note that the spiral
trajectory is not used to specify the order of data collection,
but rather to generate a pseudo-random sampling pattern on a
Cartesian grid. This sampling strategy yields trajectories with
similar shapes to Caipirinha trajectories [33], and thus reduces
aliasing energy while maintaining near-isotropic sampling den-
sity in two dimensions.
2) Variable-Density Sampling: Variable-density sampling

patterns were also generated in two dimensions, with the central
10% of k-space fully sampled. A sampling density was first
constructed that gradually diminishes towards the periphery of
k-space based on a polynomial [29], [30], [34]

(4)

where is the k-space radius (normalized to a maximum of
1), is the degree of the polynomial, and are constants se-
lected to yield a desired acceleration factor (R). For a given R,
separate sampling densities were constructed using polynomial
degrees varying from 1 to 8. For each that maintain the
target acceleration were identified using a binary search algo-
rithm. A probability density function (PDF) was then created
by normalizing the sampling density to a sum of 1 over the en-
tire k-space. The resulting PDF was used to generate random
sampling patterns.
A total of 2000 random patterns were generated (250 patterns

for each ) using a Monte Carlo procedure. The point spread
function (PSF) for each pattern was simulated assuming an im-
pulse object located at the center of the image. Undersampled
k-space data were zero-filled and inverse Fourier transformed to
compute the PSF. Aliasing energy was computed as the magni-
tude sum of all noncentral pixels in the PSF. The optimal pattern
among 2000 candidates was selected to yield minimal aliasing
energy. Repeated Monte Carlo procedures indicated that 2000
iterations were sufficient to converge on the same aliasing-en-
ergy minimum.
3) Common Versus Disjoint Sampling: In the common

sampling strategy, a single uniform or variable-density sampling
pattern was generated. This specific pattern was used to under-
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TABLE I
DESIGN PARAMETERS OF SAMPLING PATTERNS

sample all of the phase-cycled SSFP acquisitions. However,
with disjoint sampling, a distinct sampling pattern was gen-
erated for each acquisition. For uniform-density patterns, the
square-spiral trajectory was interleaved into nonoverlapping
segments, and each segment was taken as a distinct pattern. For
instance, thefirst pattern contained samples , and
the second pattern contained samples . For vari-
able-density patterns, separate patterns were selected using a
slightly modified Monte Carlo procedure. The first pattern was
selected among2000 candidates to yieldminimal aliasing energy
as in the original procedure. To select the second pattern, we first
identified candidates in the fifth percentile according to aliasing
energy. We then calculated Pearson’s correlation between the
first pattern and the fifth percentile of candidates for the second
pattern. Because sampling patterns are in matrix form, each
matrix was converted into a column vector prior to correlation
measurements. We selected the candidate yielding the lowest
correlation (i.e., least amount of similarity) with the first pattern.
Ingeneral, thenthpatternwas selectedas the candidate thatyields
the lowest average correlation with the ( ) previously se-
lected patterns. This procedure is similar to the use of correlation
to measure the coherence of system matrices in linear algebra
[35].Thedesignparametersof the samplingpatterns for phantom
and in vivo experiments reported in thiswork are listed in Table I.

C. Compressed-Sensing Reconstructions

Due to the inherent sparsity of MRI images, compressed-
sensing reconstructions can recover images from heavily under-
sampled MRI datasets [29]. This recovery relies on several crit-
ical conditions. First, images must be accurately represented by
a relatively small number of coefficients in a linear transform
domain. The appropriate transform can be a wavelet or identity
transformation based on the underlying image structure [29].
Second, undersampling should produce incoherent aliasing ar-
tifacts in this transform domain, with minimal resemblance to
the actual image structure. Lastly, a nonlinear algorithm should
be used to simultaneously enforce the compressibility of the re-
constructed images and the consistency of the reconstructions
with the acquired data.
In this work, compressed-sensing reconstructions were im-

plemented through the following optimization problem [29],
[30], [34]:

(5)

Here, denotes the reconstructed image. The first term en-
forces data consistency by penalizing the -norm difference

between the reconstruction and the acquired data
in k-space. The second term enforces compressibility by penal-
izing the -norm of the image in the transform domain, .
The third term reduces aliasing artifacts and noise in the re-
constructed image by penalizing the sum of spatial finite differ-
ences of the image, . Relatively small penalty weights,

, were utilized to minimize undesired loss of image features
with low contrast and/or small size. Separate reconstructions
were performed while were independently varied from 0
to 2 10 in steps of 5 10 . The optimal penalty weights
were selected to achieve the highest image quality, measured
in terms of peak signal-to-noise ratio and structural similarity
that are explained in Section II-D. The optimization was solved
using an iterative conjugate-gradient method, and the iterations
were stopped when the improvement in the objective fell below
0.1% [29]. Reconstruction times for simulated phantom and in
vivo images reported here are listed in Table IV.

D. Assessment of Image Quality

1) Peak SNR and Structural Similarity: The quality of the
reconstructed images was assessed by calculating the mean-
squared error (MSE) between reconstructed images and a refer-
ence. The maximum signal intensity in the reference image was
normalized by the MSE to determine the peak signal-to-noise
ratio [36]

(6)

where denotes the reference image, denote pixel lo-
cations, and is the number of pixels. Higher PSNR values in-
dicate a closer match between the reference and reconstructed
images. Note that PSNR is a summary statistic for the quality
of the entire image, as opposed to conventional SNR measure-
ments over a specific region-of-interest. To estimate the recon-
struction errors perceived by the human visual system, the mean
structural similarity index (SSIM) was calculated between the
reconstructed and reference images

(7)

Here, is a 20 20 image window from the reconstructed
image ( being the total number of windows), is a 20 20
image window from the reference image ( being the total
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number of windows), is the average pixel intensity in an
image window, is the covariance of pixel intensities across
image windows. SSIM was computed using stabilization pa-
rameters of and , and a Gaussian
smoothing kernel of 10-pixel width and 5-pixel standard de-
viation [37]. Higher SSIM values indicate a closer perceptual
match between the reference and reconstructed images. Note
that arbitrary scalings of image contrast and brightness can lead
to inadvertent deviations in PSNR and SSIM measurements.
Thus, histograms of the reconstructed and reference images
were matched prior to image quality assessments. For this
purpose, equispaced histograms of reference and reconstructed
images (both normalized to a maximum intensity of 1) were
separately calculated. An intensity transformation was then
computed for the reconstructed image that matches the his-
togram counts between the reference and reconstructed images.
2) Spatial Resolution: To assess the effect of sampling pat-

terns on image resolution, the line spread function (LSF) of
each sampling method was simulated separately. For this pur-
pose, the modulation transfer function (MTF) was first mea-
sured using the slanted-edge method [38]. Images of a slanted-
edge separating uniform high- (1) and low-intensity (0) regions
were generated for edge orientations ranging from 0 to 360 .
Images were Fourier transformed, and undersampled using uni-
form- and variable-density patterns, and common and disjoint
sampling across phase-cycled acquisitions.
For common sampling, each slanted-edge image was under-

sampled with a single common pattern. For disjoint sampling,
each slanted-edge image was undersampled times with dis-
tinct patterns. To compute the MTF, undersampled data were
density compensated in k-space, inverse Fourier transformed,
and combined with the p-norm method . The spatial
derivative of the MTF in the horizontal direction was calculated
to derive the LSF. The total energy under the LSFwas computed
for each separate sampling method, and for a fully-sampled ac-
quisition as a reference [39]. Spatial resolution at each orienta-
tion was quantified by normalizing the LSF energy by that of
the reference.

E. Simulations

To evaluate the proposed technique, a realistic digital brain
phantom was used (http://www.bic.mni.mcgill.ca/brainweb).
This phantom is constructed from high-resolution -, -, and
proton-density weighted images, and it has a spatial resolution
of 0.5 0.5 0.5-mm [40]. The phantom provides the spatial
distribution of each tissue across the brain volume, and the
relative proportion of the tissues within each voxel.
To simulate brain images, phase-cycled SSFP signals for

each tissue were first calculated according to (1). The following
three-dimensional (3D) acquisition parameters were assumed:
a flip angle of , 5.0-ms TR, 2.5-ms TE, and 12
phase-cycled acquisitions with the following increments

).
A field-inhomogeneity map provided with the phantom was
used to simulate off-resonant frequency shifts at each voxel.
The mean off-resonant frequency across the brain volume was
0 Hz, with a standard deviation of 62 Hz. The following
relaxation parameters were used: ms for

Fig. 1. Simulated SSFP images of the brain for , 5.0-ms TR,
2.5-ms TE, and an off-resonant frequency distribution (mean: 0 Hz, s.d.:
62 Hz). (a) SSFP images at different phase-cycling increments (top row),

). The corresponding field maps that incorporate both
B0 inhomogeneity and RF phase cycling display the phase shift induced over
one TR (bottom row). Regions of zero phase-shift (modulo 2 ) appear as signal
voids in SSFP images, whereas pass-band SSFP signals are observed in regions
of phase-shift (see color bar). (b) Total of separate phase-cycled images
were combined to alleviate banding artifacts (top row). Display windowing
within the white boxes has been adjusted to emphasize banding artifacts.
Squared error between the combined images and a banding-free reference
image are also shown (bottom row, see color bar for logarithmic scale). While
residual banding artifacts are clearly visible for (red arrow), artifact
suppression improves significantly for larger .

gray matter, ms for white matter,
ms for blood, ms

for cerebro-spinal fluid (CSF), ms for
muscle, and ms for fat [41], [42]. The
complex SSFP signals for separate tissues were linearly
summed, and complex white Gaussian noise was added to the
images to simulate varying levels of image SNR (see
Fig. 1(a) for representative images).
The simulated images were undersampled by a factor

of using either uniform- or variable-density patterns in
two phase-encode dimensions. To examine the effects of
different anatomical views, three separate phase-encoding
schemes were considered: anterior/posterior and right/left,
superior/inferior and anterior/posterior, and superior/inferior
and right/left. For common sampling, one specific pattern
was used for all phase-cycled images. For disjoint sampling,
a different sampling pattern was used for each image. The
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following acquisitions were used to reconstruct the brain im-
ages: for for

for , and
for .

To prevent image blurring, undersampled data were com-
pensated to account for changes in sampling density across
k-space. For uniform-density patterns, data outside the central
k-space was multiplied by the undersampling factor. For vari-
able-density patterns, data were multiplied by the inverse of the
probability density functions used for generating the sampling
masks. The density-compensated data were then reconstructed
using compressed sensing. An orthogonal wavelet transform
-Daubechies 4- [43], , and 60 iterations
were observed to yield high-quality reconstructions. The CS
reconstructions were finally combined using three methods:
maximum-intensity, sum-of-squares, or p-norm combinations

.
Note that the simulations outlined above incorporate nat-

ural brain anatomy, B0 field inhomogeneity, noise, partial
volume effects, and sampling artifacts. We also examined
the effects of TR/TE, flip angle, and relaxation parame-
ters. For this purpose, simulations were repeated for all
possible combinations of the following set of parame-
ters:

, and ( %, 0%, 20%) deviation in
ratios for all tissues. The aforementioned sampling and

reconstruction strategies were employed in each case.

F. In Vivo Experiments

In vivo SSFP images of the brain were acquired on a 3T
Siemens Magnetom scanner (maximum gradient strength of 45
mT/m and slew rate of 200 T/m/s) using a 32-channel head coil.
Images were acquired with a 3D balanced SSFP sequence. The
imaging parameters were as follows: 218 218 218-mm
field-of-view, 0.85 0.85 0.85-mm spatial resolution,

, 5.1-ms TR, 2.65-ms TE, left/right and anterior/poste-
rior phase-encode dimensions. Eight phase-cycled images were
acquired with .
In vivo SSFP images of the knee were acquired on the same
3T scanner using a 15-channel knee coil. The imaging param-
eters were as follows: 192 192 192-mm field-of-view,
1 1 1-mm spatial resolution, , 5.0-ms TR, 2.5-ms
TE, superior/inferior and anterior/posterior phase-encode di-
mensions, and eight phase-cycled acquisitions. All protocols
were approved by the Ethics Committee of Bilkent University,
and written informed consent was obtained from all subjects.
For each region, variable-density sampling patterns were gen-

erated in the phase-encode dimensions to yield an acceleration
factor of . In vivo datasets were retrospectively undersampled
using both common and disjoint sampling strategies. The fol-
lowing acquisitions were used to reconstruct the final images:

for for
for , and
for . Under-

sampled data were density compensated, and then reconstructed
using compressed sensing. For brain data, the Daubechies-4
wavelet transform, , and 60 iterations
were used. For knee data, an identity transform,

Fig. 2. Total of phase-cycled and fully-sampled SSFP images (
ms) were combined using MI, SOS, and p-norm methods.

SNR of the maximally bright tissue (CSF) in phase-cycled images was varied
from 10 to 40. The combined image was compared against a reference image
(simulated without off-resonant shifts). Two quality metrics were calculated:
peak SNR (PSNR, top row) and structural similarity index (SSIM, bottom row).
Calculations were repeated for axial, coronal and sagittal brain images, and the
resulting metrics were averaged. Quality of the combined image is enhanced for
larger and higher SNR values. In addition, the p-norm method outperforms
the MI and SOS methods for at all SNR values.

, and 30 iterations were used. Finally, the recon-
structed images from separate phase-cycled acquisitions were
combined using the p-norm method .

III. RESULTS

A. Simulations

To evaluate the proposed technique, SSFP images of a dig-
ital brain phantom were simulated. Individual and combined
phase-cycled images are displayed in Fig. 1. A banding-free
SSFP image was also simulated in the absence of off-resonant
frequencies. The difference between the combinations and the
banding-free image are also shown in Fig. 1(b). As expected,
increasing reduces errors due to residual banding artifacts.
To assess the combination methods, brain phantom images

for , and 8 were combined using the MI, SOS, and
p-norm methods. The level of artifact suppression (measured
with PSNR and SSIM) for separate methods are shown in Fig. 2.
PSNR and SSIM for all methods improve for larger and
higher SNR. Furthermore, the p-norm method yields
higher PSNR and SSIM than the other methods for , and
comparable performance for . These results were valid
for all TR/TE, , and ratios tested here. Thus, the p-norm
method was used for all combinations hereafter.
Next, the brain phantom images were undersampled by a

factor of using uniform- and variable-density patterns (see
Section II). In common sampling, a single pattern was used
across all phase-cycled images. In disjoint sampling, a unique
pattern was assigned to each phase-cycled image. Sample com-
binations of axial and coronal brain images are displayed in
Fig. 3. The disjoint sampling strategy yields visibly reduced ar-
tifacts compared to common sampling.
To quantitatively assess the image quality for each sampling

strategy, two separate analyses were performed. First, the level



112 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 1, JANUARY 2015

Fig. 3. Combined axial (left panel) and coronal (right panel) brain images are
shown for phase cycles and an acceleration factor of 8. Phase-cy-
cled images were undersampled either with a uniform-density pattern across
k-space (top row), or a variable-density random pattern (bottom row). Sam-
pling patterns were either common (left column), or disjoint (right column)
across phase-cycled images. (See Section II for descriptions of these sampling
strategies.) Zero-filled reconstructions of the undersampled data were then com-
bined using the p-normmethod. For both uniform- and variable-density patterns,
disjoint sampling reduces aliasing artifacts and noise in the combined images.
For variable-density patterns, disjoint sampling substantially improves the de-
lineation of gray matter pixels, which are not easily discriminable from white
matter pixels with common sampling.

Fig. 4. Total of phase-cycled brain phantom images (
ms) were undersampled by a factor of . For both uniform- and vari-

able-density random sampling, the patterns were either common (c-uniform,
c-random) or disjoint (d-uniform, d-random) across phase-cycles. Zero-filled
reconstructions of undersampled data were combined using the p-norm method,
and compared to the combination of fully-sampled images. Peak SNR (top row)
and SSIM (bottom row) indices were calculated for axial, coronal and sagittal
brain images, and the resulting metrics were averaged. As expected, the quality
of the combined image is reduced larger due to increased undersampling. The
d-random strategy outperforms all other methods in terms of PSNR and SSIM.
In addition, disjoint sampling across phase-cycles yields higher image quality
than common sampling.

of artifacts were evaluated by comparing the combination of un-
dersampled images against a combination of fully-sampled im-
ages (Fig. 4). For all , variable-density patterns yield higher
PSNR and SSIM than uniform-density patterns. In addition,
disjoint sampling across phase-cycled images significantly in-
creases PSNR and SSIM for both types of patterns. These results
indicate that lowest level of aliasing artifacts are attained by
variable-density patterns with disjoint sampling across phase-
cycled acquisitions.

Fig. 5. Effects of four separate sampling strategies on image resolution were
assessed. For both uniform- and variable-density random sampling, the patterns
were either common (c-uniform, c-random) or disjoint (d-uniform, d-random)
across phase-cycles. Relative resolution of each sampling strategy was calcu-
lated from the respective line-spread functions (see Section II). Error bars indi-
cate s.e. across spatial orientations. As expected, relative resolution is degraded
for higher acceleration factors (N). Disjoint sampling achieves improved resolu-
tion compared to common sampling for all N, and for both uniform and random
patterns.

Fig. 6. CS reconstructions of brain phantom images (
ms) were combined using the p-norm method (top row). Display win-

dowing within the white boxes has been adjusted to emphasize banding artifacts.
The combined images were compared against a p-norm combination of eight
fully-sampled SSFP images. For each , the squared-error map is also shown
(bottom row, see color bar for logarithmic scale). While residual banding arti-
facts are clearly visible for , artifact suppression improves for larger
at the expense of increased error at tissue boundaries.

Second, the relative resolution for each strategy was mea-
sured using high-contrast slanted-edge images (see Section II).
Resolution measurements for each strategy are shown in Fig. 5.
For both uniform- and variable-density patterns, disjoint sam-
pling significantly enhances spatial resolution for all com-
pared to common sampling.
We finally assessed the effect of sampling strategies on com-

pressed-sensing reconstructions. The combined reconstructions
were compared against a reference combination of fully-sam-
pled brain phantom images . The reconstructions, and
the squared error between the reconstructed and reference im-
ages are shown in Fig. 6. Banding artifacts, which are clearly
visible for , are effectively suppressed for larger . How-
ever, larger also leads to loss of fine image features due to the
high degree of undersampling. This result implies that there is
an optimal value of that achieves a favorable trade-off be-
tween artifact suppression and image resolution. This predic-
tion is also supported by the PSNR and SSIM measurements
between the combined reconstructions and the reference image,
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TABLE II
QUALITY OF CS RECONSTRUCTIONS: SIMULATED DATA

listed in Table II. Disjoint sampling improves PSNR by
dB (mean s.e. across all tested imaging and relaxation pa-

rameters) and SSIM by 0.48 0.12% over common sampling.
Importantly, PSNR and SSIM values are highest for , in-
dicating maximized image quality.

B. In Vivo Experiments

Our simulation results suggest that disjoint sampling com-
bined with variable-density patterns yields the maximal image
quality. To test this prediction in vivo, the proposed technique
was demonstrated on SSFP images of the brain and the knee
(see Section II). In both regions, compressed-sensing recon-
structions were compared against a reference combination
of fully-sampled images . Representative combined
images for , and 8 are shown in Fig. 7 along with
the squared error between the combinations and the reference
image. Visible banding artifacts at are gradually
suppressed for larger . At the same time, higher undersam-
pling factors for larger (particularly ) cause errors
around tissue boundaries due to loss of high-spatial-frequency
information.
In vivo PSNR and SSIM measurements for both disjoint and

common sampling are listed in Table III. Disjoint sampling
yields 1.13 0.57 dB (mean s.e. across ) higher PSNR than
common sampling for brain images, and 0.95 0.49 dB higher
PSNR for knee images. Disjoint sampling improves SSIM
1.11 0.55% (mean s.e.) consistently across only for knee
images. Highest PSNR values for both brain and knee images
are obtained using disjoint sampling and (matching with
the simulation results). Meanwhile, SSIM values for
and are comparable to each other, and higher than SSIM
values for larger . This result implies that maintains
a near-optimal compromise between suppression of banding
artifacts and preservation of detailed image structure.

Fig. 7. CS reconstructions of in vivo brain (a) and knee (b) images were com-
bined using the p-normmethod (top row). The combined images were compared
against a p-norm combination of eight fully-sampled images. For each , the
squared-error map is shown in logarithmic scale (bottom row, see color bar).
The error is dominated by residual banding artifacts for , and by loss of
high-spatial-frequency information for .

TABLE III
QUALITY OF CS RECONSTRUCTIONS: IN VIVO DATA

IV. DISCUSSION

Our simulation and in vivo results indicate that disjoint sam-
pling across phase-cycles improves the quality of combined
SSFP images. Note that disjoint sampling patterns are partly
nonoverlapping. Thus, the number of unique k-space samples
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TABLE IV
RECONSTRUCTION TIMES

collected across phase-cycled acquisitions is greater for
disjoint sampling than for common sampling. For the patterns
generated here, the collective k-space span for disjoint sampling
is 74.1% at , 65.5% at , 61.4% at , and
58.0% at . In contrast, the span for common sampling is
merely 50.0% at , 25.0% at , 16.7% at , and
12.5% at . This fundamental difference helps explain the
superior performance of the disjoint sampling strategy.
The proposed technique is primarily demonstrated for brain

and knee imaging. However, it could significantly accelerate
many other SSFP applications with prominent banding arti-
facts, such as peripheral angiography [6] and coronary artery
imaging [3], [4]. Note that the sampling strategies outlined here
are generally applicable to scenarios where multiple acquisi-
tions are combined. For instance, the proposed technique could
minimize artifacts for accelerated fat/water separation [44],
[45], flow-sensitive angiography [46], and positive-contrast
cell tracking [12].
The phantom and in vivo experiments reported here converge

on a single optimum of that maximizes image quality.
Furthermore, our simulations clearly indicate that this optimal
sampling strategy is robust against reasonable variations in rep-
etition time (5.0–15.0 ms), flip angle ( ), SNR (10–40),
and tissue parameters ( % deviation in ). Note, how-
ever, that optimum inevitably depends on several factors in-
cluding measurement SNR levels, total acquisition time, pre-
scribed image resolution, and reconstruction performance. With
higher measurement SNR, increased acquisition time or larger
voxels, higher degrees of acceleration may be used without sig-
nificant loss in image information. Similarly, the advance of im-
proved reconstruction methods that reduce residual errors may
shift optimal to larger values.
Although the proposed technique maintains the scan time

of a single acquisition, data pertaining to different phase-cy-
cling increments are collected apart in time. If the overall scan
time is longer than several minutes, artifacts due to patient mo-
tion could arise. The motion sensitivity could be potentially re-
duced by interleaving separate acquisitions, and using catalyza-
tion pulses to dampen transient oscillations while switching be-
tween phase-cycling increments [15].
The proposed technique reconstructs phase-cycled acquisi-

tions separately prior to the final combination. However, these
acquisitions contain shared image structure, and they should be
jointly compressible [47], [48]. Thus, reconstructions that en-
force the joint sparsity of phase-cycled images could improve

image quality for high acceleration factors. Furthermore, the in-
formation provided by separate elements in coil arrays could be
utilized in conjunction with image sparsity to enable further ac-
celeration factors [47], [49]. Finally, it is possible to shorten TR
and improve suppression of banding artifacts by employing par-
tial Fourier acquisitions in the readout dimension in conjunction
with the proposed technique [29].

V. CONCLUSION

In this work, we proposed an imaging technique to reduce
banding artifacts without any increase in scan time compared
to a single SSFP acquisition. The technique randomly under-
samples acquisitions using unique variable-density patterns for
each phase cycle. High quality reconstructions are obtained via
compressed sensing, and they are combined using the p-norm
method to suppress banding artifacts. Our technique enables
rapid and robust SSFP imaging in the presence of magnetic field
inhomogeneities.

APPENDIX

The magnetization terms in the SSFP
signal equation (1) are given as [31]

(8)

(9)

(10)

Here, denotes spatial position, TE denotes the echo time, TR
denotes the repetition time, and is the radio-frequency flip
angle. , where denote longi-
tudinal and transverse relaxation times, respectively.
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