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Abstract. The asymptotic behavior of a queueing process in overloaded state-dependent queueing models
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1. Introduction

The complexity of real models of computing and information systems leads to the ne-
cessity of the creation of more complicated queueing models and the development of
new approaches to the approximate (asymptotic) investigation.

A large number of papers is devoted to the analysis of queueing models in heavy
traffic conditions. This usually means that the characteristics of the system depend on
some parameter, say n, and as n → ∞, the average load in the system tends to one
with the rate O(1/

√
n). The study of heavy traffic limits has a long history and there are

several directions oriented on different classes of queueing models. Many authors deal
with the renewal input process, the independent service times and the routing processes
not depending on the current size of a queue or a workload process. For this case, the
convergence of a normalized queue length or a workload process to a solution of a dif-
ferential equation (fluid limits) or to a reflecting Brownian motion in a corresponding
domain (Brownian approximation) is proved for a single-class network [43] and for var-
ious classes of multiclass networks (see survey [48] and papers [17,20–22,28,29,44,49]).
Several classes of service disciplines for multiclass networks are studied in the latest pa-
per [18]. The methods of analysis in these papers essentially use the functional central
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limit theorems for arrival, service and routing processes and the continuous mapping
theorems for the corresponding reflection map (or the continuity of the solution of Sko-
rokhod reflection problem [46] and its generalizations).

Another direction is related to the analysis of Markov state-dependent queueing
models. The method of analysis here is mostly based on a martingale technique [36] and
again uses the continuous mapping theorems. Basing on this technique, the convergence
of a queueing process in heavy traffic conditions for a state-dependent (M/MQ/1/cn)r

network to the diffusion process with the reflection in the rectangle is proved in [12],
for (MQ/MQ/1/∞)r type networks the fluid limits and the convergence to the diffu-
sion process with the reflection in the orthant are studied in the papers [38,39], and the
book [15]. Markov time-dependent models are considered in [37,38]. Some results for
the state-dependent arrival process and the general service time distribution are given
in [34].

The fluid limits and the diffusion approximation (without reflection) for state-
dependent Markov queueing systems (networks) of the type (MQ/MQ/k/∞)r are
studied in the book [13] basing on the averaging principle and the diffusion ap-
proximation for so-called recurrent processes of a semi-Markov type [5,10]. Some
types of Markov state-dependent models (MQ/MQ/1/∞)r and non-Markov models
GQ/MQ/1/∞, (GQ/MQ/1/∞)r are considered in [5,6,10] as examples of using this
approach.

The aim of this paper is to extend fluid and diffusion approximation type results
to more general classes of queueing models of a switching structure. That is, the corre-
sponding queueing process can be represented in terms of so-called Switching processes
(SP’s). SP has the property that the character of its operation varies spontaneously
(switches) at some epochs of time which can be random functionals of the previous
trajectory or possibly jumps of some random environment. The environment may reflect
some outer perturbations, a type of operating regime, a number of working servers, a
domain of operation for queueing process, a type of priority, etc. Note that on the in-
tervals between switches the process may have a non-Markov structure (for a general
description of SP see section 2 and papers [2,5]).

The class of switching queueing models, in particular, includes open and closed
Jackson’s type Markov and semi-Markov systems and networks with the dependence of
the arrival, service and routing processes on the current state of the queueing process
and possibly some additional Markov or semi-Markov environment (for instance, a
batch semi-Markov arrival process, a service rate depending on the current size of the
queue and the environment, etc.). This class also includes some models with multiple
calls, calls of a random size and different priorities, models with negative and impatient
calls, semi-Markov models with unreliable servers, nonhomogeneous in time Markov
and semi-Markov models, networks (GQ/MQ/s/m)r with the state-dependent non-
exponential arrival process [5], some classes of state-dependent retrial models [8,9,11]
and polling systems. In terms of SP’s we can also describe an output process jointly with
the queueing process and some other types of additive functionals on the trajectory of
the queueing process such as flows of lost calls, etc.
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Taking into account that the queueing processes in these models are more com-
plicated, the reflected process in general cannot be represented as a functional of the
independent primary processes (arrival, service, routing), and a martingale technique
cannot be applied directly, we restrict our analysis to study overloaded models without
reflection on the boundary. This means that we study the convergence on the interval
[0, T ] such that in each component s(t) > 0, t ∈ [0, T ], where s(t) is a fluid limit.

A new quite general approach to study limit theorems for models of these types is
suggested. It is based on Averaging Principle (AP) and Diffusion Approximation (DA)
type results for SP’s [2–5], and also uses the representation of a queueing process in
terms of SP’s.

This approach gives us the possibility to extend fluid and diffusion approxima-
tion type results (without reflection) to new more general classes of queueing mod-
els, in particular, to state-dependent Markov models (networks) (MQ,B/MQ,B/k/∞)r

with batch arrival process and service, state-dependent Markov models (networks)
(MM,Q/MM,Q/k/∞)r in a Markov environment, state-dependent semi-Markov type
models (MSM,Q/MSM,Q/k/∞)r , retrial queues and some types of non-semi-Markov
models. From the other side, it also gives us a new technique to study known classes of
Markov state-dependent and time-dependent models (MQ/MQ/1/∞)r .

In the paper, we concentrate our attention to study mostly state-dependent Markov
and semi-Markov models (networks) and their modifications at the presence (or not) of
the ergodic Markov or semi-Markov environment as well. We suppose that character-
istics of the system depend on some parameter n → ∞, and the arrival and service
processes as well as the routing matrix may depend on the current value of the queueing
process Qn(t) (a vector of queues or a workload process) and possibly some random
environment xn(t). In specific applications the environment may appear due to some ex-
ternal or inner factors. In general, the environment may depend on the queueing process
and be not a Markov or a semi-Markov process (case of feedback). We suppose also
that a number of calls (or a value of a workload process) in the system is asymptotically
large, which may be caused by a high load or by a large initial value of the queueing
process.

For queueing models of these types we prove that under quite general assumptions
the multidimensional queueing process n−1Qn(nt) on some interval [0, T ] uniformly
converges in probability to some function s(t) which is a positive solution of an ordi-
nary differential equation (fluid limit), and the process n−1/2(Qn(nt) − ns(t)) weakly
converges (in the sense of a weak convergence of probability measures induced by the
process on the space Dr

T and endowed by Skorokhod topology) to a diffusion process
with coefficients depending in general on s(t) (diffusion approximation). Here Dr

T is the
Skorokhod space of r-dimensional right-continuous functions given on [0, T ] with finite
left limits. Readers are refereed to [16,23,45] for the definition of Skorokhod space and
Skorokhod topology.

The results obtained are mostly oriented to the analysis of a transient behavior of
the queueing processes. They also give the possibility to study the transient behavior of
the queueing process even for ergodic systems in the case, when the initial value of the
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process is large, and, in addition, to get the asymptotic behaviour of the time of hitting to
zero, because the weak convergence of measures implies the weak convergence of con-
tinuous functionals of the process such as hitting times. From the other side, for some
types of overloaded models the queueing process asymptotically cannot reach zero (for
instance, for M/M/∞ model (network) when the service rate goes to 0). For models
of this type we get the approximation on the entire time horizon. It is possible to study
so-called quasi-stationary regimes also. These regimes appear, when the corresponding
fluid limit s(t) has a point of stability s∗ > 0. In this case n−1Qn(nt) is asymptotically
close to s∗, as n → ∞ and then t → ∞. In particular, if n−1Qn(0) → s∗ in proba-
bility, then the coefficients of the limiting diffusion process do not depend on time, and
the queueing process is balancing near some asymptotically high level ns∗ as a homoge-
neous diffusion process multiplied by

√
n.

The rest of the paper is organized as follows. A description of some important
subclasses of SP’s and some classes of switching queueing models is given in section 2.
Section 3 deals with the asymptotic analysis (fluid limits and diffusion approximation)
of some classes of overloaded state-dependent Markov queueing systems and networks
in transient conditions. Some classes of non-Markov models (systems and networks in a
semi-Markov environment), state-dependent systems with unreliable servers and polling
systems are considered in section 4. Some theoretical results related to AP and DA for
some special subclasses of SP’s are given in appendix.

2. Switching models

We consider here some rather general models of switching queueing systems and net-
works. These models can be described in terms of switching processes (SP’s). First,
to illustrate our approach and to give some basic ideas on the analysis of more general
switching systems, we consider rather simple Markov state-dependent system.

2.1. A system MQ/MQ/1/∞

A system consists of one server with infinite buffer. The calls arrive one at a time and
wait in the queue according to FIFO discipline. Let nonnegative functions {λ(q), µ(q),

q � 0} be given. Denote the total number of calls in the system at time t by Q(t), t � 0.
The system operates as follows. If at time t Q(t) = q, then the local arrival rate is λ(q),
and the local service rate is µ(q). After service completion a call leaves the system.

It is well known, that in this case the process Q(t) is a birth-and-death process. Let
us represent it in a recurrent form. Denote by t1 < t2 < · · · the times of any changing
in the system (arrival of a call or service completion), and put Qk = Q(tk + 0), k � 0.
Suppose that t0 = 0, Q(0+) = Q0.
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First, we construct the family of jointly independent random variables {τk(q),
ξk(q), q � 0}, k � 0. Here τk(q) has an exponential distribution with parameter
�(q) = λ(q) + µ(q)χ(q > 0), ξk(q) is an independent of τk(q) variable and

ξk(q) =
{+1, with probab. λ(q)�(q)−1,

−1, with probab. µ(q)χ(q > 0)�(q)−1,

where χ(A) is the indicator of the set A.
Let us introduce the following recurrent sequences:

Q̃0 = Q0, Q̃k+1 = Q̃k + ξk
(
Q̃k

)
,

t̃0 = 0, t̃k+1 = t̃k + τk
(
Q̃k

)
, k � 0,

(2.1)

and put

Q̃(t) = Q̃k, as t̃k � t < t̃k+1, t � 0. (2.2)

It is easy to check that the process Q̃(t) is equivalent (by finite dimensional distri-
butions) to the queueing process Q(t).

The advantage of this representation is that Q̃(t) is written as a superposition of
two more simple recurrent processes in discrete time, t̃k and Q̃k, k � 0. Processes, repre-
sented in this form, are called recurrent processes of a semi-Markov type [3,5,10]. This
representation gives also an idea, how to study the limiting behavior of Q(t). If we can
prove, that appropriately scaled processes t̃k and Q̃k weakly converge to some (maybe
dependent) processes y(u) and q(u), u � 0, then under some regular assumptions we
can expect that the appropriately scaled process Q̃(t) weakly converges to the superpo-
sition of y(u) and q(u) in the form q(y−1(t)), where y−1(t) is the inverse function.

The representation (2.1), (2.2) has a similar form for Markov networks and also
for batch arrivals and service. In this case the variables ξk(q) may take vector values,
and variables τk(q) again have exponential distributions. By analogy, we can write sim-
ilar representations for more general systems with non-Markov arrival process and non-
exponential service. For these cases we need to choose in the appropriate way times t̃k
and construct corresponding processes, reflecting the behavior of queueing processes,
on the intervals [̃tk, t̃k+1).

For further exploration we note that, actually, the exponentiality of τk(q) is not
essential for the asymptotic analysis. That means, if we can prove quite general theorems
on the convergence of the recurrent processes, constructed according to relations (2.1),
(2.2), then these theorems can be used for the analysis of more general queueing models,
for which the queueing processes have representations similar to (2.1), (2.2).

In this way we came to the idea to analyze switching queueing models. For these
models, the queueing processes can be represented in terms of SP in the form similar to
(2.1), (2.2). From the other side, for SP rather general results on averaging principle and
diffusion approximation are proved in [3–5,10]. Thus, we can use the class of SP as a
very convenient tool to describe wide classes of state-dependent queueing models and to
study their asymptotic behavior.

Let us give now a general definition of an SP.
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2.2. Switching processes

Let Fk = {(ζk(t, x, α), τk(x, α), βk(x, α)), t � 0, x ∈ X, α ∈ Rr}, k � 0, be jointly
independent parametric families. Here (X,BX) is some measurable space, ζk(t, x, α)

at each fixed k, x, α, is a stochastic process with sample trajectories belonging to Sko-
rokhod space Dr∞ (the space of right-continuous functions given on [0,∞) with val-
ues in Rr and finite left limits) [45], and τk(x, α), βk(x, α) are possibly dependent on
ζk(·, x, a) random variables, τk(·) � 0, βk(·) ∈ X. Furthermore, we suppose that the
vectors from Rr are column vectors and the variables introduced are measurable in the
ordinary way in the pair (x, α) concerning σ -algebra BX × BRr . Let also (x0, S0) be an
independent of Fk, k � 0, initial value in X ×Rr . We introduce the following recurrent
sequences:

t0 = 0, tk+1 = tk + τk(xk, Sk), Sk+1 = Sk + ξk(xk, Sk),

xk+1 = βk(xk, Sk), k � 0,
(2.3)

where ξk(x, α) = ζk(τk(x, α), x, α), and set

ζ(t) = Sk + ζk(t − tk, xk, Sk), x(t) = xk, as tk � t < tk+1, t � 0. (2.4)

Then the two-component process {(x(t), ζ(t)); t � 0} is called a switching process
(SP). Times tk are usually called switching times, x(t) is a switching random environ-
ment. We introduce also the imbedded process

S(t) = Sk, as tk � t < tk+1, t � 0, (2.5)

and call it a recurrent process of a semi-Markov type (RPSM) (see [5,10]). Furthermore,
we assume that SP is regular, i.e., the component x(t) has with probability one a finite
number of jumps on each finite interval.

The class of SP’s was introduced in [1,2]. Note that this class is a natural general-
ization of such well-known classes of stochastic processes as Markov processes homo-
geneous in the second component [24], piecewise Markov aggregates [19], and Markov
and semi-Markov evolutions [30,32,33,35,41,42].

Relations (2.3)–(2.5) show that we may have the dependence (feedback) between
components x(t) and S(t). That is, the sequence xk itself is not in general a Markov
process (MP), and the process x(t) also in general is not an MP or a semi-Markov process
(SMP), respectively. We do not have feedback, if we consider a semi-Markov random
evolution or a queueing model in some external Markov or semi-Markov environment.

Consider some particular cases. Suppose that characteristics of Fk do not depend
on k � 0 (homogeneous case). Then {(xk, Sk); k � 0} is a homogeneous MP, and
{(x(t), S(t)); t � 0} is an SMP with the sojourn time in the state (x, α), τ1(x, α), and
transition probability

P{xk+1 ∈ A, Sk+1 ∈ B, tk+1 − tk < t | xk = x, Sk = α}
= P

{
β1(x, α) ∈ A, ξ1(x, α) ∈ B − {α}, τ1(x, α) < t

}
,

where B − {α} = {b: α + b ∈ B}.
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If, in addition, the distributions of variables τk(x, α), βk(x, α) do not depend on
the parameter α, then {x(t); t � 0} is itself an SMP. Assume also that at each x ∈ X

variables τk(x) are independent of {ζk(t, x, α); t � 0}. If in this case τk(x) has an expo-
nential distribution, then {x(t); t � 0} is an MP. If τk(x) has an arbitrary distribution,
then the component ζ(t) can be described as a stochastic process with semi-Markov
switches (or in a semi-Markov environment). In particular, if at each (x, α) ∈ X × Rr ,
{ζk(t, x, α); t � 0} is a process with independent increments, then {(x(t), ζ(t)); t � 0}
is a process with independent increments and semi-Markov switches (see [2]). If at each
(x, α) {ζk(t, x, α); t � 0} is an MP with the initial value α and {x(t); t � 0} is an MP
or an SMP, then {(x(t), ζ(t)); t � 0} is a Markov or a semi-Markov random evolution.

Using the construction of SP we can describe the nonhomogeneous in time mod-
els also. For this purpose, in the definition of families Fk we add an additional
parameter u. Then relations (2.3)–(2.5) have the form: tk+1 = tk + τk(xk, Sk, tk),
Sk+1 = Sk + ξk(xk, Sk, tk), xk+1 = βk(xk, Sk, tk).

Now we say, a switching queuing model is a model with the property that a queue-
ing process Q(t) can be described in terms of SP’s. This means that we can construct
on some probability space an auxiliary SP (̃x(t), Q̃(t)) such that the component Q̃(t) is
equivalent (by finite-dimensional distributions) to Q(t).

Consider some special subclasses of SP’s which are useful at the analysis of queue-
ing models.

2.3. Recurrent processes of a semi-Markov type

Let Fk = {(ξk(α), τk(α)), α ∈ Rr}, k � 0, be jointly independent families of random
variables with values in Rr ×[0,∞). Let also S0 be an independent of Fk, k � 0, initial
value, S0 ∈ Rr . Denote

t0 = 0, tk+1 = tk + τk(Sk), Sk+1 = Sk + ξk(Sk), k � 0,
S(t)= Sk, as tk � t < tk+1, t � 0.

(2.6)

Then the process {S(t); t � 0} is called a Recurrent Process of a Semi-Markov type
(RPSM) [5,10]. In homogeneous case (distributions of introduced variables do not de-
pend on k) the process S(t) is a homogeneous SMP.

Suppose now that jointly independent families of random variables Fk = {(ξk(x, α),
τk(x, α)), x ∈ X,α ∈ Rr}, k � 0, with values in Rr × [0,∞) be given. Let {xl; l � 0}
be an independent of Fk , k � 0, MP with values in X, (x0, S0) be an initial value. We
put t0 = 0, tk+1 = tk + τk(xk, Sk), Sk+1 = Sk + ξk(xk, Sk), k � 0, and denote

S(t) = Sk, x(t) = xk, as tk � t < tk+1, t � 0. (2.7)

Then the process {(x(t), S(t)); t � 0} is an RPSM with Markov switches.
Consider a general case. Let Fk = {(ξk(x, α), τk(x, α), βk(x, α)), x ∈ X, α ∈

Rr}, k � 0, be jointly independent families of random variables with values in Rr ×
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[0,∞) × X, X be some measurable space, (x0, S0) be an initial value. We put t0 = 0,
tk+1 = tk + τk(xk, Sk), Sk+1 = Sk + ξk(xk, Sk), xk+1 = βk(xk, Sk), k � 0, and denote

S(t) = Sk, x(t) = xk, as tk � t < tk+1, t � 0. (2.8)

Then the pair {(x(t), S(t)); t � 0} forms a general RPSM (case of feedback be-
tween components x(t) and S(t)). In particular, when distributions of the variables
βk(x, α) do not depend on the parameter α, the sequence xk is an MP and (x(t), S(t)) is
an RPSM with Markov switches.

2.4. Processes with semi-Markov switches

Consider an operation of some stochastic process in a semi-Markov environment. Let
Fk = {ζk(t, x, α), t � 0, x ∈ X, α ∈ Rr}, k � 0, be jointly independent families of
stochastic processes, where ζk(t, x, α) at each fixed k, x, α is a process with trajectories
in Skorokhod space Dr∞. Let also x(t), t � 0, be an independent of Fk , k � 0, right-
continuous SMP in X, and S0 be an initial value. Denote by 0 = t0 � t1 � · · · the epochs
of sequential jumps of x(·) and set xk = x(tk), k � 0. We construct a process with semi-
Markov switches (or in a semi-Markov environment) as follows: put Sk+1 = Sk + ξk,
τk = tk+1 − tk , k � 0, where ξk = ζk(τk, xk, Sk), and denote

ζ(t) = Sk + ζk(t − tk, xk, Sk), as tk � t < tk+1, t � 0. (2.9)

Then a two-component process {(x(t), ζ(t)); t � 0} is called a process with semi-
Markov switches (PSMS). We introduce also an imbedded process

S(t) = Sk, as tk � t < tk+1, t � 0. (2.10)

By construction, {(x(t), S(t)); t � 0} is an RPSM with Markov switches. In particular,
if at each (x, α) ζk(t, x, α) is an MP with the initial value α, and x(t) is either an MP or
an SMP, then {(x(t), ζ(t)); t � 0} is a random evolution.

2.5. Switching queueing models

In this section we consider several examples of state-dependent queueing models and a
technique of the representation of queueing processes in terms of SP’s.

2.5.1. State-dependent Markov network
Consider a state-dependent queueing network (MQ/MQ/1/∞)r consisting of r nodes.
Suppose for simplicity that there is one server at each node with infinite buffer. Denote
by Rr+ the space of vectors with non-negative components. To distinguish the cases of
systems and networks, we denote by q column-vectors (q1, . . . , qr) ∈ Rr . Let non-
negative functions {λ(q), µi(q), i = 1, r , q ∈ Rr+} be given. Let also the independent
families of random vectors {η(q), q ∈ Rr+} and {(κi(q), γ i(q)), i = 1, r, q ∈ Rr+}
with values in Rr+ and (R+ ×Rr+1

+ ), respectively, be given. An arrival flow is consisting
of calls of a random size (a portion of work, an information package, etc.). Let Qi(t) be
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the total amount of work (or information) in the buffer at node i at time t (a queue size
in the case of ordinary arrivals). Put Q(t) = (Q1(t), . . . ,Qr(t)).

The network operates as follows. Suppose that at time t Q(t) = q. Then we have
the following possibilities. A call of a random size η(q) may enter the network with the
local arrival rate λ(q) (it means that the ith component ηi(q) of the vector η(q) enters
node i). Correspondingly, with the local service rate µi(q) a random portion of work of
the size min{κi(q), qi} may finish service at node i. Immediately after this, this portion is
transformed to the vector γ i(q) which is added to current amounts of work at the nodes.
This means that j th component γ (j)

i (q) of the vector γ i(q) goes to node j , j = 1, r , and
the portion γ

(0)
i (q) leaves the network. We can always assume that µi(q) = 0, if the ith

component of q is equal to zero.
Let us describe the process {Q(t); t � 0} as an RPSM. In our case, Q(t) is

a multidimensional MP. We define here switching times tk, k � 0, as times of any
changing in the network. Let us introduce the independent random variable τ(q) and
vector ξ(q) such that τ(q) has an exponential distribution with parameter �(q) = λ(q)+∑r

i=1 µi(q), and

ξ
(
q
) =

{
η
(
q
)
, with probab. λ

(
q
)
�

(
q
)−1

,

− min
{
κi

(
q
)
, qi

}
ei + [

γi(q)
]
r
, with probab. µi

(
q
)
�

(
q
)−1

, i = 1, r .

Here ei is a vector with the ith component equals to one and the other compo-
nents equal to 0, and for any vector a = (a1, . . . , ar , ar+1), [a]r denotes the vector
(a1, . . . , ar).

Now we put Qk = Q(tk + 0). It is easy to see that for any k � 0, z ∈ Rr , u > 0

P
(
Qk+1 − Qk � z, tk+1 − tk � u | Qk = q

) = P
(
ξ(q) � z

)
P
(
τ
(
q
)

� u
)
.

This relation shows that the process Q(t) is equivalent to an RPSM which is defined
by families {ξ(q), τ (q)} according to (2.6). In this way we can also represent an output
process Z(t). We add an additional node r + 1 and consider it as an accumulating node
for Z(t). Then the process (Q(t), Z(t)) by analogy can be described as an RPSM.

If we consider the case of negative calls introduced in [26], then ηi(q) may take
negative values. In this case, according to a standard truncation procedure, we can
assume that the total amount of work qi at node i after arrival is transformed into
min{0, qi + ηi(q)} and leave the rest of notation.

Note that in these terms it is also possible to describe state-dependent Markov
models with different classes of calls, impatient calls, priority models, etc.

2.5.2. Markov system in a Markov environment
Consider a system MM/MM/1/∞ in a Markov environment. There is one server and an
infinite number of waiting places. Let {x(t); t � 0} be an MP with finite state space
X = {1, . . . , d} and transition rates axy , x, y ∈ X, x �= y, and let nonnegative functions
{λ(x, q), µ(x, q), x ∈ X, q � 0} be given. The calls arrive one at a time and wait
in the queue according to FIFO discipline. Denote by Q(t) the total number of calls in
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the system at time t . If x(t) = x, Q(t) = q, then the local arrival rate is λ(x, q) and
the local service rate is µ(x, q) (for simplicity assume that µ(x, 0) ≡ 0). A call being
served leaves the system.

For this model we may choose switching times in a different way. For instance,
let us define switching times tk as times of any changing (either Q(t) or x(t)) in the
system. Denote xk = x(tk), Qk = Q(tk), k � 0. It is easy to see that we can represent
(x(t),Q(t)) as a general RPSM, for which τ1(x, q) has an exponential distribution with
parameter �(x, q) = axx + λ(x, q) + µ(x, q), and

ξ1(x, q) =
+1, with probab. λ(x, q)�(x, q)−1,

−1, with probab. µ(x, q)�(x, q)−1 ,
0, with probab. axx�(x, q)−1, x = 1, r ,

where axx = ∑
y �=x axy . In this case

P(xk+1 = y | xk = x,Qk = q) = axy�(x, q)−1, y �= x,

P(xk+1 = x | xk = x,Qk = q) = (
λ(x, q) + µ(x, q)

)
�(x, q)−1.

Here xk is not, in general, an MP and we have feedback between components xk and Qk.

2.5.3. State-dependent semi-Markov type network
Consider a network (MSM,Q/MSM,Q/1/∞)r switched by a semi-Markov environment,
which in some sense is a generalization of a model considered in section 2.5.1. Suppose
that there are r nodes and one server at each node with infinite buffer. Let {x(t); t � 0}
be an SMP with state space X = {1, 2, . . . , d}, which stands for the external envi-
ronment. Let also the families of nonnegative functions {λ(x, q), µj (x, q), j = 1, r ,
x ∈ X}, routing matrices P(x, q) = ‖pij (x, q)‖i=1,r, j=1,r+1, x ∈ X, and the indepen-
dent families of random vectors {η(x, q), x ∈ X} with values in Rr+ and nonnegative
random variables {κj (x, q), x ∈ X, j = 1, r} be given (here q ∈ Rr+).

As in section 2.5.1, denote the total amount of work in the buffer at node i at time t

by Qi(t) and put Q(t) = (Q1(t), . . . ,Qr(t)). If at time t (x(t),Q(t)) = (x, q), then
with the local arrival rate λ(x, q) a call of a random size η(x, q) may enter the system
(the ith component of the vector η(x, q) enters node i). Correspondingly, with the local
service rate µi(x, q) a random portion of work of a size κ̃i(x, q) = min{κi(x, q), qi}
may leave node i. Immediately after this, either with probability pij (x, q) this portion
goes to node j , j = 1, r , or with probability pi,r+1(x, q) it leaves the network. Here we
may assume for simplicity that µi(x, q) ≡ 0 if qi = 0, where q = (q1, . . . , qr).

To describe the process {(x(t),Q(t)); t � 0} in the network as an SP, we introduce
the independent families of multidimensional MP’s {γ k(t, x, q), t � 0, x ∈ X,q ∈ Rr+},
k � 0, with distributions not depending on k and with values in Rr+ in the following
way: γ k(0, x, q) = q, and if at time t γ k(t, x, q) = s, then the process γ k(t, x, q) can
make a jump of the size δ(x, s) with the local rate �(x, s) = λ(x, s) + ∑r

i=1 µi(x, s),
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where

δ
(
x, s

) =


η
(
x, s

)
, with probab. λ

(
x, s

)
�

(
x, s

)−1
,(−ei + ej

)̃
κi

(
x, s

)
, with probab. µi

(
x, s

)
pij

(
x, s

)
�

(
x, s

)−1
,

−ei κ̃i

(
x, s

)
, with probab. µi

(
x, s

)
pi,r+1

(
x, s

)
�

(
x, s

)−1
,

i, j = 1, r .
(2.11)

Now we construct the family of processes {ζ k(t, x, q); t � 0} in the following
way. Let at each x ∈ X, τk(x), k � 0, be a sequence of i.i.d.r.v. having the same
distribution as the sojourn time τ(x) in state x. Then ζ k(t, x, q) is defined on the interval
[0, τk(x)], and ζ k(t, x, q) = γ k(t, x, q) − q, 0 � t � τk(x). We choose switching

times tk as times of sequential jumps of x(t). Then the process {(x(t), Q̃(t)); t � 0},
which is constructed using introduced processes ζ k(·) and an SMP x(·) according
to (2.9), is a process with semi-Markov switches (PSMS). It is equivalent to the process
{(x(t),Q(t)); t � 0} in our system.

For this case, an arrival process may be called a semi-Markov modulated Poisson
process by analogy to Markov modulated arrival process [40].

If we add an additional node r + 1 and consider it as an accumulating node for the
output process Z(t), then in the same way we can describe the process (x(t),Q(t), Z(t))

as PSMS.
By analogy, we can consider different classes of calls, a priority service, etc.

2.5.4. Models with dependent arrival flows
Consider a system GQ/MQ/1/∞. There is one server and an infinite number of waiting
places. The function µ(α) � 0, α � 0, and the independent families of nonnegative
random variables {τk(α), α � 0}, k � 0, with distributions not depending on index k are
given. The system operates as follows: the calls enter the system one at a time and wait
according to FIFO discipline. Denote the total number of calls in the system at time t by
Q(t). If a call enters the system at time tk and Q(tk + 0) = q, then the next call enters
the system at time tk+1 = tk + τk(q), and the service rate on the interval (tk, tk+1) is
µ(q).

In this case we do not have a switching component xk. Now we choose τk(q)

as switching intervals. Let us construct the process ζk(t, q) as follows: ζk(t, q) =
− min{q,6k(t, µ(q))} as t < τk(q), and ζk(τk(q), q) = 1 − min{q,6k(τk(q), µ(q))},
where 6k(t, µk) are jointly independent Poisson processes with parameters µk. Then
we can represent Q(t) as an SP according to (2.3), (2.4).

In the same way we can describe models with the dependent batch arrival and
service and extend this description to networks.

2.5.5. Polling systems
Consider a system with r stations and a single moving server. An arrival flow to station i

is a Poisson flow with rate λi . Denote by Qi(t) a number of calls at station i at time t ,
Q(t) = (Q1(t), . . . ,Qr(t)). Let κk(i) and κk(i, j) be the independent at different k � 0,
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i, j = 1, . . . , r, random variables with distributions not depending on index k. If the
server comes to station i at time t and Q(t) = Q = (Q1, . . . ,Qr), then it occupies
the station for the time κk(i), and the service rate on this period is µi(Qi). All calls
being served at the station during this period leave the system. After completing the
time κk(i), the server with probability pij goes to station j , and it takes a random time
κk(i, j). During this time no service is provided. When the server arrives to station j ,
the service immediately begins with rate µj(Qj), where Qj is the number of calls at
station j at the time of arrival, and so on.

Let us represent this system as a switching system. Denote by tk, k � 0, the
sequential times of arrivals of the server at any station (t0 = 0). We construct the
process x(t) in the following way: x(t) = i, tk � t < tk+1, if at time tk the server
arrives to station i. Note that x(t) is an SMP. Put xk = x(tk + 0). Let also κ̃k(i) be an
independent of κk(i) random variable such that P(̃κk(i) � z) = ∑

j pijP(κk(i, j) � z).
Then P(tk+1 − tk � z | xk = i) = P(κk(i) + κ̃k(i) � z), k � 0.

Let {yk(t, i,Q); t � 0} be the independent at different k � 0, i = 1, . . . , r,
birth-and-death processes with constant rates of birth λi and death µi(Q), respectively,
and the initial value Q (the rates do not depend on the current state except state 0). Let
also {6k(t, i, λk); t � 0} be the independent at different k, i Poisson processes with
parameters λk. We introduce the process ζ k(t, i,Q) = (ζ

(j)

k (t, i,Qj ), j = 1, r) on the
interval [0, κk(i) + κ̃k(i)] as follows:

ζ
(i)
k (t, i,Qi) = yk(t, i,Qi) − Qi, as 0 � t � κk(i);
ζ
(i)
k (t, i,Qi) = yk

(
κk(i), i,Qi

) − Qi + 6k

(
t − κk(i), i, λi

)
,

as κk(i) < t � κk(i) + κ̃k(i);
ζ
(j)

k (t, i,Qj ) = 6k(t, j, λj ), as 0 � t � κk(i) + κ̃k(i), j = 1, r, j �= i.

Then, using families {xk, ζ k(t, i,Q)} and relations (2.9), we can construct a PSMS
which is equivalent to the queueing process {(x(t),Q(t)); t � 0}.

We can also consider a workload process Wi(t) at station i (the total time that a call
arriving at time t will spend in the system). If Qi(t) = Qi , then for any fixed t , Wi(t)

can be represented as the hitting time to level Qi of a Poisson type process switched by
an SMP x(t).

It is also possible to consider other types of service policy. For instance, under the
gated policy we suppose that if the server upon arrival to station i sees Qi calls in the
queue, it spends at the station the time which is necessary to complete the service of all
those Qi calls. Other calls, arriving during this time, go to the queue and wait until the
next arrival of the server.

In this case, the total time κ(i) = κ(i,Qi) spent at station i depends also on Qi

and is represented in the form: κ(i,Qi) = ∑
1�l�Qi

ηl(Qi), where ηl(Qi), l � 1, are
jointly independent and exponentially distributed with parameter µ(Qi) variables (we
assume that

∑0
1 = 0). The family of processes ζk(t, i,Q) is constructed in a similar

way. Note that here x(t) is not an SMP.
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Remark 2.1. In terms of SP it is also possible to describe some classes of Markov and
semi-Markov queueing systems and networks with unreliable servers and some classes
of retrial queues [8,9,11].

3. Diffusion approximation in Markov queueing models

In overloaded switching queueing models various multidimensional characteristics
(numbers of calls at different nodes, volumes of information in buffers, output flows,
flows of lost calls, waiting times, etc.) can be approximated by the solutions of differen-
tial equations or by the diffusion processes. The method of the analysis is based on the
asymptotic results of Averaging Principle (AP) and Diffusion Approximation (DA) types
for SP’s (see appendix) and uses the representation of corresponding queueing processes
as SP’s.

As it was mentioned in introduction, the queueing processes here are in general
more complicated comparatively to known models. Therefore, we restrict our analysis to
study queueing processes without reflection and consider the convergence on the interval
[0, T ] such that in each component s(t) > 0, t ∈ [0, T ]. The analysis of reflecting
processes should be detached into a separate problem.

In this section, as an illustration of a general approach we consider some classes of
overloaded state-dependent Markov queueing systems and networks.

3.1. Markov queueing systems

Consider rather general Markov system MQ,B/MQ,B/1/∞, which includes state-
dependent systems with batch arrivals and service, systems with different types of calls,
impatient calls, etc.

Suppose that characteristics of the system depend on some scaling parameter
n → ∞. Let nonnegative functions λ(q), µ(q), νi(q), i = 1,m, q ∈ Rm+, be given.
Let also α(q), γ (q), βi(q), i = 1,m, q ∈ Rm+, be random variables with values in Rm+.
There is one server and an infinite number of waiting places. Denote by Qn(t) the num-
ber of calls in the system at time t , Qn(t) ∈ Rm+ . Vector values may denote the different
classes of calls (or different priorities). The system operates in the following way: if
Qn(t) = nq, then with the local rate λ(q) a batch of α(q) calls may enter the system.
Correspondingly, with the local service rate µ(q) a batch of min{γ (q), nq} calls may
finish service (in the case of vector-valued variables the minimum is taken in each com-
ponent). In addition to this, each call of type i in the queue independently of others with
the local rate n−1νi(q) may be transformed into ei + βi(q) calls, where ei is a vector
with ith component is equal to one and other components are equal to 0. Calls after ser-
vice completion leave the system. If a vector βi(q) may have negative components (for
instance, we have impatient calls), then after transformation we get min{0, nq + βi(q)}
calls in the system.
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Denote �(q) = λ(q) + µ(q) + ν(q), where ν(q) = ∑m
i=1 qiνi(q), q = (q1, . . . ,

qm), and introduce the following moment functions:

m(1)(q) = Eα
(
q
)
, m(2)(q) = Eγ

(
q
)
, m

(3)
i

(
q
) = Eβi

(
q
)
,

d(1)
(
q
) = Eα

(
q
)
α
(
q
)∗
, d(2)

(
q
) = Eγ

(
q
)
γ

(
q
)∗
, d

(3)
i

(
q
) = Eβi

(
q
)
βi

(
q
)∗
,

where an expectation is taken in each component, and a∗ denotes the conjugate vector.
Put

b
(
q
) =m(1)(q)

λ
(
q
) − m(2)(q)

µ
(
q
) +

m∑
i=1

m
(3)
i

(
q
)
qiνi

(
q
)
,

B2(q) = d(1)(q)
λ
(
q
) + d(2)(q)

µ
(
q
) +

m∑
i=1

d
(3)
i

(
q
)
qiνi

(
q
)
.

Let also G(q) be the matrix of partial derivatives for b(q):

lim
h→0

h−1(b(q + hz
) − b

(
q
)) = G

(
q
)
z, z ∈ Rm.

Furthermore, for any two vectors a and b, the inequality a > b means that ai > bi for
all components. Denote by s(t) a solution of the equation

ds(t) = b
(
s(t)

)
dt, s(0) = s0. (3.1)

Theorem 3.1. (1) Suppose that in any bounded and closed domain in int{Rm+} the vari-
ables α(q), γ (q), β(q) are uniformly in q integrable, functions λ(q), µ(q), νi(q),
m

(j)

i (q) are locally Lipschitz, and �(q) > 0. Let also

n−1Qn(0)
P−→ s0, (3.2)

where s0 > 0 is some deterministic value, there exist T > 0 such that s(t) > 0, t ∈
[0, T ], and also y(+∞) > T , where y(t) = ∫ t

0 �(η(u))−1 du, and the function η(t)

satisfies the equation

η(0) = s0, dη(t) = b
(
η(t)

)
�

(
η(t)

)−1
dt, (3.3)

a unique solution of which exists on any interval.
Then a unique solution of (3.1) exists on [0, T ] and

sup
0�t�T

∣∣n−1Qn(nt) − s(t)
∣∣ P−→ 0. (3.4)

(2) Suppose, in addition, that variables |α(q)|2, |γ (q)|2, |β(q)|2 are integrable uni-
formly in q in any bounded and closed domain in int{Rm+}, functions B2(q) and G(q)

are continuous in int{Rm+}, and n−1/2(Qn(0) − ns0)
w⇒ ζ 0.
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Then the sequence of processes ζ n(t) = n−1/2(Qn(nt)− ns(t)) weakly converges
in Dr

T to a diffusion process ζ (t) satisfying the following stochastic differential equation:

dζ (t) = G
(
s(t)

)
ζ (t) dt + B

(
s(t)

)
dw(t), ζ (0) = ζ 0,

a unique solution of which exists on the interval [0, T ].
Here int{Rm+} = Rm+ \ ∂Rm+ (the interior of Rm+), the matrix B(q) satisfies the

relation B(q)B(q)∗ = B(q)2, w(t) is a standard Wiener process in Rm, symbols
P−→ and

w⇒ mean the convergence in probability and the convergence in distribution, respectively,
and the weak convergence of random processes in Dr

T means the weak convergence of
probability measures induced by the processes on Skorokhod space Dr

T and endowed by
Skorokhod topology [45].

Proof. Let us introduce jointly independent families of random variables {(τnk(nq),
ξnk(nq))}, k � 0. Here τnk(nq) has an exponential distribution with parameter �(q) =
λ(q) + µ(q) + ν(q), where ν(q) = ∑m

i=1 qiνi(q), q = (q1, . . . , qm). ξnk(nq) is inde-
pendent of τnk(nq) and can be represented in the form:

ξn1

(
nq

) =


α
(
q
)
, with probab. λ

(
q
)
�

(
q
)−1

,

−γ
(
q
)
, with probab. µi

(
q
)
�

(
q
)−1

,

βi

(
q
)
, with probab. qiνi

(
q
)
�

(
q
)−1

, i = 1,m.

(3.5)

Now, to avoid the consideration of truncated random variables, we construct an auxiliary
RPSM Q̃n(t) defined in the whole space Rm. Let si(t) be the ith component of the
function s(t). Put δ = min1�i�m min0�t�T si(t). By the construction, δ > 0. Take
ε = δ/2 and consider the orthant Rm+(ε) = {a: a ∈ Rm+, ai � ε, i = 1, . . . , m}. Now
we extend the introduced functions and random variables from the domain Rm+(ε) to the
whole space Rm in the following way.

Let f (q), q ∈ Rm+(ε), be some given function. We define a function f̃ (a), a ∈ Rm,

according to the transformation: f̃ (a1, . . . , am) = f (max(a1, ε), . . . ,max(am, ε)). By
construction, in the domain Rm+(ε), f̃ (q) = f (q). If f (q) is a continuous (locally
Lipschitz) in Rm+(ε) function, then it is easy to check that f̃ (a) is also continuous (locally
Lipschitz) in Rm.

Using this transformation, we define the functions λ̃(a), µ̃(a), ν̃i (a), i = 1,m,
a ∈ Rm, and random variables α̃(a), γ̃ (a), β̃i (a), i = 1,m, for any a ∈ Rm. Construct
variables τ̃nk(na) and ξ̃nk(na) as in (3.5) and above.

Now, using these variables, we can define according to (2.6) an RPSM Q̃n(t). It
may take values in Rm, and, by construction, if on some interval [0, T ] Q̃n(t) � nε,
then its trajectory coincides with the trajectory of queue Qn(t) on [0, T ].

Let us study the behavior of Q̃n(t). As we can see, all conditions of theorem A.1
in appendix A are satisfied. Calculating the expectation of ξn1(nq), we get that Q̃n(nt)

satisfies relation (3.4) with the same function s(t). Consider now an interval [0, T ],
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where s(t) > 0, t ∈ [0, T ]. Then, for chosen above ε > 0, we have s(t) � 2ε,
t ∈ [0, T ], and (3.4) implies that

P
(
n−1Q̃n(nt) � ε, t ∈ [0, T ]) → 1. (3.6)

Let us construct now on the same probability space the queueing process Qn(nt)

and RPSM Q̃n(nt) in a recurrent way as follows. We put Q̃n(0) = Qn(0). Then we
generate a sequence of uniformly distributed on [0, 1] random variables ω1, ω2, . . . , and
construct recursively on this sequence the variables Q̃nk, τ̃nk(Q̃nk), ξ̃nk(Q̃nk), k � 0, ac-
cording to (2.6) and using a standard simulation technique. For instance, we construct an
exponential random variable by the formula τnk(Q) = −�(n−1Q)−1 ln ω3k, and ξnk(Q)

is constructed by variables ω2k+1, ω2k+2 in two stages according to (3.5). Then we con-
struct trajectories of Qn(nt) and Q̃n(nt), where a trajectory of Q̃n(nt) is constructed
directly according to relations (2.6) for variables with tilde. By construction, if on some
interval [0, T ] Q̃n(nt) � nε, then Q̃n(nt) = Qn(nt), t ∈ [0, T ]. Now for any measur-
able set A of functions from σ -algebra BDr

T
we have according to (3.6) as n → ∞∣∣P(

n−1Qn(nt) ∈ A, t ∈ [0, T ]) − P
(
n−1Q̃n(nt) ∈ A, t ∈ [0, T ])∣∣

�
∣∣P(

n−1Qn(nt) ∈ A, Q̃n(nt) � nε, t ∈ [0, T ])
− P

(
n−1Q̃n(nt) ∈ A, Q̃n(nt) � nε, t ∈ [0, T ])∣∣

+ 2P
(
exists u, u ∈ [0, T ] such that Q̃n(nu) < nε

)
= 2P

(
exists u, u ∈ [0, T ] such that Q̃n(nu) < nε

) → 0.

This relation shows that the asymptotic behavior of trajectories of the queue and auxil-
iary RPSM Q̃n(nt) is the same and, finally, implies relation (3.4).

To prove the 2nd part of theorem 3.1, we first prove DA for the process Q̃n(nt).
The proof uses theorem A.2 given in appendix A. Then this result is extended using the
same considerations as above to the process Qn(nt). �

Remark 3.2. The result of theorem 3.1 is also valid if the value s0 is a random variable,
and corresponding relations involving s0 are satisfied with probability one. These results
can be also extended to the case of r servers.

Consider now as examples some special models.

3.1.1. A system MQ/MQ/1/∞
Suppose that calls arrive and are served one at a time, there is only one type of calls, and
there is no transformation of calls in the system. That is, α(q) ≡ 1, νi(q) ≡ 0, q � 0,
γ (q) ≡ 1, q > 0, γ (0) = 0. Denote by s(t) a solution of the equation:

ds(t) = b
(
s(t)

)
dt, s(0) = s0, (3.7)

where b(q) = λ(q) − µ(q).
The following result is a consequence of theorem 3.1 for the scalar case.
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Corollary 3.3. (1) Suppose that (3.2) is true, s0 > 0, on the open interval (0,∞) the
functions λ(q), µ(q) satisfy a local Lipschitz condition and λ(q) + µ(q) > 0, there
exists T > 0 such that s(t) > 0, as 0 < t � T , and in addition y(+∞) > T , where

y(t) =
∫ t

0

(
λ
(
η(u)

) + µ
(
η(u)

))−1
du, (3.8)

and the function η(t) satisfies the equation

η(0) = s0, dη(t) = b
(
η(t)

)(
λ
(
η(u)

) + µ
(
η(u)

))−1
dt, (3.9)

a unique solution of which exists. Then

sup
0�t�T

∣∣n−1Qn(nt) − s(t)
∣∣ P−→ 0. (3.10)

(2) Suppose, in addition, that functions λ(q), µ(q) are continuously differentiable
in (0,∞), and n−1/2(Qn(0) − ns0)

w⇒ ζ0. Then the sequence of processes ζn(t) =
n−1/2(Qn(nt) − ns(t)) weakly converges in DT to the diffusion process ζ(t):

dζ(t) = (
λ′(s(t)) − µ′(s(t)))ζ(t) dt + (

λ
(
s(t)

) + µ
(
s(t)

))1/2
dw(t), ζ(0) = ζ0.

(3.11)

Remark 3.4. Suppose that s0 = 0, other conditions of corollary 3.3 hold and, in addition,
λ(q) is continuous in 0, there exists a limit µ(+0) = lim µ(q) as q ↘ 0, and λ(0) >

µ(+0). Then (3.10) also holds.

Proof of remark 3.4. Suppose for simplicity that Qn(0) = 0. Let there exist T > 0 such
that s(t) > 0, as 0 < t � T . As λ(0) > µ(+0), using the continuity of λ(q) and µ(q) in
(0, T ) we can find ε > 0 such that λ∗ −µ∗ = δ > 0, where λ∗ = inf{λ(q): 0 � q � ε},
µ∗ = sup{µ(q): 0 < q � ε}.

Let 61(t) and 62(t) be two independent Poisson processes with parameters λ∗
and µ∗, respectively. Note that in the domain Qn(nt) � nε the queue Qn(nt) stochasti-
cally dominates the process 61(nt) − 62(nt). This implies for any c > 0 that

P
(
τn(ε) > c

)
� P

(̃
τn(ε) > c

)
,

where τn(ε) = inf{u: Qn(nu) � nε}, τ̃n(ε) = inf{u: 61(nt) − 62(nt) � nε}. It is easy

to see that as n → ∞, τ̃n(ε)
P−→ ε/δ. Then for any c > 0

lim
ε→0

lim sup
n→∞

P
(
τn(ε) > c

) = 0,

and also for any ε > 0

lim
c→∞ lim sup

n→∞
P
(
τn(ε) > c

) = 0. (3.12)

Now let us consider the behavior of Qn(nt) on the interval [τn(ε), T ]. As the sequence
τn(ε) is stochastically bounded (see (3.12)), then for any sequence nk → ∞ we can
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choose a subsequence nkl such that τnkl
(ε)

w⇒ τ0(ε). Using Skorokhod construction
of a common probability space, we can always assume without loss of generality that

τnkl
(ε)

P−→ τ0(ε).

By construction, n−1Qn(nτn(ε))
P−→ ε > 0. Thus, applying corollary 3.3, we get

sup
τnkl

(e)�t�T

∣∣n−1
kl

Qnkl
(nkl t) − sε(t)

∣∣ P−→ 0, (3.13)

where sε(t) is a solution of equation (3.7) on the interval [τ0(ε), T ] with initial value ε.
As τ0(ε) → 0, ε → 0, using the continuity of the solution of a differential equation in
the initial value, we get that sε(t) → s(t) as ε → 0 uniformly on any interval [δ, T ],
δ > 0. Now from (3.12), (3.13) and the relation

sup
0�t�τn(e)

∣∣n−1Qn(nt) − s(t)
∣∣ � ε + 1

n
+ sup

0�t�τn(e)

s(t),

we, finally, get for any ε > 0, when n = nkl → ∞,

P lim
n→∞ sup

0�t�T

∣∣n−1Qn(nt) − s(t)
∣∣

� P lim
n→∞ max

{
sup

0�t�τn(e)

∣∣n−1Qn(nt) − s(t)
∣∣,

sup
τn(e)�t�T

{∣∣n−1Qn(nt) − sε(t)
∣∣ + ∣∣sε(t) − s(t)

∣∣}}
� max

{
ε + sup

0�t�τ0(e)

s(t), sup
τ0(e)�t�T

∣∣sε(t) − s(t)
∣∣},

where symbol P lim means the limit in probability, and the last term tends to 0 as ε → 0.
Now we see that for any sequence nk we can choose some subsequence nkl , for

which (3.10) is true. So that (3.10) is true as n → ∞. �

As we can see from remark 3.4, the result of theorem 3.1 can be extended to the
case when some components of s0 may take values zero. For this case, we need to have
some additional assumptions of non-ergodicity on the border. In addition, we have to
prove that if the process starts in any point s on the border, then the 1st time τn(s, ε),
when all components are greater then ε, should satisfy the property: for any c > 0
limε→0 lim supn→∞ P(τn(s, ε) > c) = 0.

Consider some particular applications of theorem 3.1.
Case 1. Let λ(q) ≡ λ, q � 0, µ(q) ≡ µ, q > 0 (µ(0) = 0). Then our system is

equivalent to a classical system M/M/1/∞. In this case s(t) = s0 + (λ−µ)t as s0 > 0.
Consider the relation between T and parameters of the system. Obviously, y(+∞) > T

for any T (see (3.8)). If λ � µ, then s(t) > 0 for any t > 0, and (3.4) is true for any
T > 0. If λ < µ, then s(t) > 0 for 0 < t < s0(µ − λ)−1, and (3.4) is true for any
T < s0(µ − λ)−1.
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Consider the behavior of the first time when the queue becomes zero: ψn(Q) =
inf{t : t � 0, Qn(t) = 0 given that Qn(0) = Q}. This time is a continuous functional
concerning uniform convergence in probability to a monotone function. Therefore, if
λ < µ and n−1Qn(0)

P−→ s0 > 0, then n−1ψn(Qn(0))
P−→ s0(µ − λ)−1.

From (3.11) we easy get that ζ(t) = ζ0 + (λ + µ)1/2w(t), 0 � t � T .
Case 2. Let λ(q) ≡ λ, µ(q) ≡ µq, q � 0. Then our system is equivalent to a

system M/M/∞. In this case (3.1) has the form: s(0) = s0 > 0, ds(t) = (λ−µs(t)) dt,
and s(t) = λ/µ + (s0 − λ/µ)e−µt , t � 0.

Let us show that (3.10) holds for any T > 0. In our case (3.9) has the form

dη(t) = (
λ − µη(t)

)(
λ + µη(t)

)−1
dt. (3.14)

We can see that the function η(t) strictly monotonically increases in the domain η(t) <

λ/µ, and it strictly monotonically decreases in the domain η(t) > λ/µ. That means
η(t) > 0 for any t > 0, and there exists a limit η∞ = limt→∞ η(t). If η∞ �= λ/µ, then
(3.14) implies that there exists a limit η′∞ = limt→∞ η′(t) = (λ−µη∞)(λ+µη∞)−1 �= 0.
In this way we get a contradiction, because from the one side for any a > 0, η(t + a) −
η(t) → 0, as t → ∞, and from the another side η(t + a) − η(t) = ∫ t+a

t
η′(u) du →

aη′∞ �= 0. That is why it should be η′∞ = 0 and η∞ = λ/µ.
This implies according to (3.8) that y(t) = ∫ t

0 (λ + µη(u))−1 du → ∞ as t → ∞.
Finally, we get y(∞) > T , and (3.10) holds for any T > 0.

Equation (3.11) has the form: dζ(t) = −µζ(t) dt + (λ + µs(t))1/2 dw(t). This is
an Ornstein–Uhlenbeck type process, and a solution can be written in the explicit form.
Note that the convergence of the process n−1/2(Qn(nt)− nλ/µ) to Ornstein–Uhlenbeck
process for the system M/M/∞ was obtained in [31].

3.1.2. An output process
Consider a system MQ/MQ/1/∞ described above. Denote by Zn(t) the total number of
calls served on the interval [0, t].

Corollary 3.5. If conditions of corollary 3.3 are satisfied, then (3.10) holds and

sup
0�t�T

∣∣n−1Zn(nt) − g(t)
∣∣ P−→ 0, (3.15)

where

ds(t) = (
λ
(
s(t)

) − µ
(
s(t)

))
dt, s(0) = s0 > 0, g(t) =

∫ t

0
µ

(
s(u)

)
du. (3.16)

Correspondingly, the sequence (n−1/2(Qn(nt) − ns(t)), n−1/2(Zn(nt) − ng(t))) weakly
converges in DT to the diffusion process (ζ(t), κ(t)) satisfying the system of stochastic
differential equations:

dζ(t) = (
λ′(s(t)) − µ′(s(t)))ζ(t) dt + 1√

2

([√
λ
(
s(t)

) +
√
µ

(
s(t)

)]
dw1(t)
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+
[√

λ
(
s(t)

) −
√
µ

(
s(t)

)]
dw2(t)

)
, ζ(0) = ζ0, (3.17)

dκ(t) =µ′(s(t))ζ(t) dt − 1√
2

√
µ

(
s(t)

)(
dw1(t) − dw2(t)

)
, κ(0) = 0,

where w1(t) and w2(t) are two independent standard Wiener processes.

Proof. We can represent the process (Qn(t), Zn(t)), t � 0, as a vector-valued
RPSM. Here tnk, k � 0, are constructed in the same way as above. If at time tnk
(n−1Qn(tnk), n

−1Zn(tnk)) = (q, g), then distributions of variables τnk(nq) and ξn(nq) =
(ξ (1)

n (nq), ξ (2)
n (nq)) depend only on the first component q, τnk(nq) has an exponential

distribution with parameter �(q) = λ(q) + µ(q), and

ξn1(nq) =
{
(1, 0), with probab. λ(q)�(q)−1,
(−1, 1), with probab. µ(q)�(q)−1.

Now we use theorems A.1, A.2 from appendix A. Following notation of these theorems
it is easy to calculate that if α = (q, g), z = (z1, z2), then m(α) = �(q)−1, b(α) =
(λ(q) − µ(q), µ(q))�(q)−1, q(α, z) = ((λ′(q) − µ′(q))z1, µ

′(q)z2), and

D2(α) =
(
λ(q) + µ(q) −µ(q)

−µ(q) µ(q)

)
�(q)−1.

Now we can calculate the matrix D(α) using the relation D2(α) = D(α)D(α)∗, and
from equations (A.7), (A.10) it is not difficult to get (3.16), (3.17). �

Note that results of this part can be extended to nonhomogeneous in time models
also. Consider for the illustration the following model.

3.1.3. Time-dependent system MQ,t/MQ,t/1/∞
Consider a queueing system described in section 3.1.1 with the additional dependence
of service and arrival rates on time: if at time nt Qn(nt) = nq, then the local arrival rate
is λn(q, t) and the service rate is µn(q, t).

Suppose that functions λn(q, t) and µn(q, t) satisfy the following condition: in
each bounded domain max{t1, t2} � N , max{q1, q2} � L, q1, q2 > 0,∣∣λn(q1, t1) − λn(q2, t2)

∣∣ � CN,L

(|q1 − q2| + |t1 − t2|
)
, (3.18)

(the same for µn(·)), there exist constants 0 < C0 < C1 < ∞ and functions λ(q, t),
µ(q, t) such that for any t � 0, q > 0

C0 � λn(q, t) + µn(q, t) � C1, (3.19)

lim
n→∞ λn(q, t) = λ(q, t), lim

n→∞ µn(q, t) = µ(q, t). (3.20)

Denote �(q, t) = λ(q, t) + µ(q, t). Let s(t) be a solution of the equation

ds(t) = (
λ
(
s(t), t

) − µ
(
s(t), t

))
dt, s(0) = s0. (3.21)
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Corollary 3.6. (1) Suppose that (3.2) is true with s0 > 0, there exists T > 0 such that
s(t) > 0, as 0 < t � T , and y(+∞) > T , where y(t) = ∫ t

0 �(η(u), u)−1 du, and η(t)

satisfies the equation

η(0) = s0, dη(t) = (
λ
(
η(t), t

) − µ
(
η(t), t

))
�

(
η(t)

)−1
dt,

a unique solution of which exists. Then relation (3.10) holds.
(2) Suppose in addition that functions λ(q, t), µ(q, t) are continuously differen-

tiable in q in the domain (0,∞) × [0, T ], and n−1/2(Qn(0) − ns0)
w⇒ ζ0. Then the se-

quence ζn(t) = n−1/2(Qn(nt)− ns(t)) weakly converges in DT to the diffusion process
ζ(t):

dζ(t) = (
λ′
q

(
s(t), t

) − µ′
q

(
s(t), t

))
ζ(t) dt + �

(
s(t), t

)1/2
dw(t), ζ(0) = ζ0.

Proof. The proof follows the same scheme as above. We use theorem A.1. Switch-
ing times tn1 < tn2 < · · · are chosen as times of any changing in the system. Put
Snk = (Qn(tnk), tnk), k > 0. Then the argument α in theorem A.1 has the form
α = (q, t). At any q � 0, t � 0, define the family of jointly independent in k vari-
ables (ξnk(nq, nt), τnk(nq, nt)), k > 0, as follows:

P
(
ξnk(nq, nt) � z, τnk(nq, nt) � u

)
= P

(
Qn(tn,k+1) − Q(tnk) � z, tn,k+1 − tnk � u | Qn(tnk) = nq, tnk = nt

)
.

Here the variable ξnk(nq, nt) takes values +1 or −1 with some probabilities pn(q, t) or
1 − pn(q, t), respectively.

Using relations (3.18)–(3.20) it is not difficult to prove that for any k > 0 the
variables ξnk(nq, nt) and τnk(nq, nt) are asymptotically independent, τnk(nq, nt) is as-
ymptotically close to the exponential distribution with parameter λ(q, t) + µ(q, t), and,
as n → ∞, uniformly in each bounded domain max{t1, t2} � N , c � min{q1, q2},
max{q1, q2} � L (c > 0),

Eτnk(nq, nt) → �(q, t)−1, Eξnk(nq, nt) → (
λ(q, t) − µ(q, t)

)
�(q, t)−1.

These relations correspond to condition (A.4). Then we follow the same lines as in the
proof of theorem 3.1 and construct an auxiliary RPSM, for which all other conditions
of theorem A.1 can be checked. Finally, this implies relation (3.10) with s(t) defined in
(3.21). In a similar way we can prove DA. �

Note that time-dependent and state-dependent Markov queueing models in heavy
traffic conditions are studied using a martingale technique in [37–39]. We consider a
simple overloaded model MQ,t/MQ,t/1/∞ just for the illustration of possibilities of a
suggested approach. Using the same technique, these results can be extended to time-
dependent and state-dependent Markov queueing networks, models in nonhomogeneous
quasi-ergodic Markov environment (limit theorems for SP in quasi-ergodic Markov envi-
ronment are considered in [3]), and also to non-Markov models considered in section 4.
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3.1.4. A system with impatient calls
Consider a time-homogeneous system MQ/MQ/1/∞ with impatient calls. Suppose that
calls arrive and are served one at a time, and, as Qn(t) = nq, the local arrival and service
rates are λ(q) and µ(q), respectively. In addition, each call in the queue independently
of others with rate n−1ν(q) may leave the system.

Then in notation of theorem 3.1 α(q) ≡ 1, q � 0, γ (q) = 1, β(q) = −1, for
q > 0, and γ (0) = 0, β(0) = 0, �(q) = λ(q) + µ(q) + qν(q), b(q) = λ(q) − µ(q) −
qν(q), B2(q) = λ(q) + µ(q) + qν(q), G(q) = λ′(q) − µ′(q) − ν(q) − qν′(q), q > 0,
and equations (3.1), (3.3) can be written in the general form.

Consider a particular case, when λ(q) ≡ λ, q � 0, µ(q) ≡ µ, ν(q) ≡ ν, q > 0.
Then

ds(t) = (
λ − µ − νs(t)

)
dt, dζ(t) = −νζ(t) dt + (

λ + µ + νs(t)
)1/2

dw(t),

where s(0) = s0, ζ(0) = ζ0. Solving these equations we find:

s(t) = ν−1(λ − µ) + (
s0 − ν−1(λ − µ)

)
e−νt , ζ(t) = e−νt

(
ζ0 + w

(
ψ(t)

))
,

where ψ(t) = ν−1(λ − µ)(e2tν − 1) − ν−1(λ − µ − νs0)(etν − 1).
If λ � µ, then in the same way, as it was done in section 3.1.1, we can show that

(3.4) holds for any T > 0. In this case we have a quasi-stationary point s∗ = ν−1(λ−µ),

that is, as n → ∞ and t → ∞, n−1Qn(nt)
P−→ s∗.

If λ < µ, then (3.4) holds on the interval [0, T ], where T < ν−1 ln((µ − λ +
νs0)/(µ − λ)).

3.2. Markov state-dependent networks

Consider a queueing network (MQ,B/MQ,B/1/∞)r with batch state-dependent arrival
process and service. It consists of r nodes with one server at each node and an infinite
number of waiting places. The local characteristics of the network depend on some
scaling parameter n. Denote by Qn(i, t) a number of calls at node i at time t and put
Qn(t) = (Qn(i, t), i = 1, r). Let the following values be given:

(1) nonnegative functions λi(q), µi(q) and νi(q), i = 1, r , where q = (q1, . . . , qr);

(2) families of integer random variables δi(q), γi(q) with values in {0, 1, . . .} and vari-
ables βi(q) with values in {0,±1, . . .}, i = 1, r ;

(3) a family of stochastic matrices P(q) = ‖pij (q)‖i=1,r,j=1,r+1;

(4) the initial vector Qn(0).

The system operates as follows. If at time t , Qn(t) = nq, then:

(1) with local arrival rate λi(q), δi(q) calls may enter node i, i = 1, r ;

(2) with local rate µi(q), min{γi(q), qi} calls may complete service at node i and all
of them either with probability pij (q) go to node j , j = 1, r , or with probability
pi,r+1(q) leave the network;
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(3) each call in the queue at node i independently of others with local rate n−1νi(q),
may be transformed into max{βi(q), 1 − nqi} calls, i = 1, r .

In this case the process Qn(t), t � 0, is a multidimensional MP. Suppose that there
exist the 1st and 2nd moment functions of introduced variables. Denote

mi

(
q
) = Eδi

(
q
)
, gi

(
q
) = Eγi

(
q
)
, ei

(
q
) = Eβi

(
q
) − 1,

�
(
q
) =

r∑
i=1

(
λi

(
q
) + µi

(
q
) + qiνi

(
q
))
,

a2
i

(
q
) = Eδ2

i

(
q
)
, c2

i

(
q
) = Eγ 2

i

(
q
)
, d2

i

(
q
) = E

(
βi

(
q
) − 1

)2
, i = 1, r.

Let us introduce the following column vector-functions:

m
(
q
) = (

λ1
(
q
)
m1

(
q
)
, . . . , λr

(
q
)
mr

(
q
))
, g

(
q
) = (

µ1
(
q
)
g1

(
q
)
, . . . , µr

(
q
)
gr

(
q
))
,

e
(
q
) = (

q(1)ν1
(
q
)
, . . . , q(r)νr

(
q
))
, b

(
q
) = m

(
q
) − (

I − P0
(
q
)∗)

g
(
q
) + e

(
q
)
,

where I is the unit matrix, P0(q) = ||pij (q)||i,j=1,r , and symbol “*” denotes the opera-
tion of transposition.

Let G(q) = b
′
(q) be the matrix of partial derivatives of b(q), and B2(q) =

‖bij (q)‖i,j=1,r be the matrix with the following elements:

bij

(
q
) = −µi

(
q
)
pij

(
q
)
c2
i

(
q
) − µj

(
q
)
pji

(
q
)
c2
j

(
q
)
, i �= j,

bii

(
q
) = −2µi

(
q
)
pii

(
q
)
c2
i

(
q
) + λi

(
q
)
a2
i

(
q
) + µi

(
q
)
c2
i

(
q
)

+
r∑

k=1

µk

(
q
)
pki

(
q
)
c2
k

(
q
) + qiνi

(
q
)
d2
i

(
q
)
, i = 1, r.

Denote by s(t) a solution of the equation

s(0) = s0, ds(t) = b
(
s(t)

)
dt. (3.22)

Theorem 3.7. (1) Suppose that in any bounded and closed domain in int{Rr+} the vari-
ables δi(q), γi(q), βi(q), i = 1, r , are uniformly in q integrable, the functions λi(q),
µi(q), νi(q), mi(q), gi(q), ei(q), i = 1, r , P(q) satisfy local Lipschitz condition,

�(q) > 0, n−1Qn(0)
P−→ s0 > 0, the equation dη(t) = b(η(t))�(η(t))−1 dt , η(0) = s0,

has a unique solution η(t), and there exists T > 0 such that s(t) > 0 in each component
as t ∈ [0, T ], and

∫ ∞
0 �(η(t))−1 dt > T .

Then

sup
0�t�T

∣∣n−1Qn(nt) − s(t)
∣∣ P−→ 0. (3.23)

(2) If in addition in any bounded and closed domain in int{Rr+} random vari-
ables δi(q)

2, γi(q)
2, βi(q)

2, i = 1, r , are integrable uniformly in q, functions λi(q),
µi(q), νi(q), mi(q), gi(q), ei(q), i = 1, r , P(q) are continuously differentiable, and
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n−1/2(Qn(0) − ns0)
w⇒ γ 0, then the sequence γ n(t) = n−1/2(Qn(nt) − ns(t)) weakly

converges in Dr
T to the multidimensional diffusion process γ (t):

dγ (t) = G
(
s(t)

)
γ (t) dt + B

(
s(t)

)
dw(t), γ (0) = γ 0, (3.24)

where B(q)B(q)∗ = B2(q), and w(t) is a standard Wiener process in Rr .

Proof. First, we construct an auxiliary RPSM Q̃n(t) by analogy to theorem 3.1. It is an
MP which is constructed by families of random variables {(τnk(nq), ξnk(nq))}, k � 0.
Here τn1(nq) has an exponential distribution with parameter �(q), ξn1(nq) does not
depend on τn1(nq), and

ξn1

(
nq

) =


δi

(
q
)
ei, with probab. λi

(
q
)
�

(
q
)−1

γi

(
q
)(
ej − ei

)
, with probab. pij

(
q
)
µi

(
q
)
�

(
q
)−1

−γi

(
q
)
ei, with probab. pi,r+1

(
q
)
µi

(
q
)
�

(
q
)−1(

βi

(
q
) − 1

)
ei, with probab. qiνi

(
q
)
�

(
q
)−1

, i, j = 1, r .

Now we follow the same lines about the equivalence of trajectories of Q̃n(t) and
Qn(t) as in theorem 3.1. Finally, calculating moment characteristics of these variables
and using theorems A.1, A.2, we get the statement of theorem 3.7. �

In particular, if λi(q) ≡ 0, pir+1(q) ≡ 0, i = 1, r , then our network is closed.

Example 3.8. Let λi(q) ≡ λi, µi(q) ≡ µiqi, pij (q) ≡ pij for q � 0, i = 1, r, j =
1, r + 1. Then our network is equivalent to a classical network (M/M/∞)r . In this case

ds(t) = (
λ + (

P ∗
0 − I

)
As(t)

)
dt, (3.25)

where λ = (λ1, . . . , λr), A is a diagonal matrix with elements µi , i = 1, r , and P0 =
‖pij‖i,j=1,r .

Suppose that the matrix P ∗
0 − I is invertible. Then, iterating equation (3.25), we

obtain a representation

s(t) = q∗ + exp
{(

P ∗
0 − I

)
At

}(
s0 − q∗

)
,

where q∗ = A−1(I − P ∗
0 )

−1λ (q∗ is the stationary point). Equation (3.24) has the form

dγ (t) = (
P ∗

0 − I
)
Aγ (t) dt + B

(
s(t)

)
dw(t). (3.26)

If s0 = q∗, then for all t > 0 s(t) ≡ q∗, and we have a quasi-stationary regime and a
stationary form for the equation (3.26) with the matrix of diffusion B = B(q∗).

The general model of our system gives us the possibility to consider networks
with impatient calls and unreliable servers also. Some other examples of Markov
state-dependent models are studied in the book [13]. Some Markov models with state-
dependent routing (overloaded and in heavy traffic conditions) are considered in the
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book [15]. In the case, when calls arrive and are served one at a time without transforma-
tion, equations (3.22), (3.24) are in agreement with results [39], where state-dependent
networks (Mξ/Mξ/1)K in heavy traffic conditions are studied.

4. Diffusion approximation in non-Markov queueing models

We consider now a fluid and a diffusion approximation for some non-Markov models
considered in section 2.5.3. The method of analysis consists of several stages. First, we
need to represent a queueing process as an equivalent SP (to choose in the appropriate
way switching times and construct corresponding processes on switching intervals). As
in general, we have a truncation by the level zero, these processes in most cases are not
so simple. Then on the next stage we construct an auxiliary SP which is asymptotically
equivalent to the queueing process, and elementary processes on switching intervals are
constructed without truncation. On the last stage we prove AP and DA for the auxiliary
SP using limit theorems for SP (see appendix).

4.1. A network (MSM,Q/MSM,Q/1/∞)r

Consider a queueing network (MSM,Q/MSM,Q/1/∞)r described in section 2.5.3. Sup-
pose that characteristics of the network depend on parameter n in the following way.
SMP x(t) and variables introduced there do not depend on n. But if at time t , x(t) = x,
n−1Qn(t) = q, then the local arrival and service rates and transition probabilities as
well as random sizes of batches η(x, q), κi(x, q) depend on the pair (x, q). We keep
all notation given in section 2.5.3. Denote as before by t1 < t2 < · · · the times of
sequential jumps of x(t). Suppose that the imbedded MP xk = x(tk), k � 0, is er-
godic with stationary distribution πx , x ∈ X = {1, 2, . . . , d}. Let Q(i)

n (t) be the to-
tal amount of work (queue) at node i at time t , and Qn0 be the initial value. We put
Qn(t) = (Q(1)

n (t), . . . ,Q(r)
n (t)), t � 0, and denote for any x ∈ X, i = 1, r , q ∈ Rr ,

m(x) = Eτ(x), P0
(
x, q

) = ∥∥pij

(
x, q

)∥∥
i,j=1,r , a

(
x, q

) = Eη
(
x, q

)
,

gi

(
x, q

) = Eκi

(
x, q

)
, g

(
x, q

) = (
µ1

(
x, q

)
g1

(
x, q

)
, . . . , µr

(
x, q

)
gr

(
x, q

))
,

m =
∑
x∈X

m(x)πx, c
(
x, q

) = λ
(
x, q

)
a
(
x, q

) + (
P0

(
x, q

)∗ − I
)
g
(
x, q

)
,

b
(
q
) =

∑
x∈X

m(x)c
(
x, q

)
πx, d2(x) = Varτ(x), d2

i

(
x, q

) = Eκ2
i

(
x, q

)
,

J 2
(
x, q

) = λ
(
x, q

)
Eη

(
x, q

)
η
(
x, q

)∗
.

Let F 2(x, q) = ‖fij (x, q)‖i,j=1,r be the matrix with the following elements:

fij

(
x, q

) = −µi

(
x, q

)
pij

(
x, q

)
d2
i

(
x, q

) − µj

(
x, q

)
pji

(
x, q

)
d2
j

(
x, q

)
, i, j = 1, r,

i �= j ;
fii

(
x, q

) =µi

(
x, q

)(
1 − 2pii

(
x, q

))
d2
i

(
x, q

) +
r∑

k=1

µk

(
x, q

)
pki

(
x, q

)
d2
k

(
x, q

)
.
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Denote

D2(x, q) = d2(x)
(
c
(
x, q

) − m−1b
(
q
))(

c
(
x, q

) − m−1b
(
q
))∗

+ m(x)
(
F 2

(
x, q

) + J 2
(
x, q

))
, (4.1)

D2(q) =
∑
x∈X

D2(x, q)
πx, γ

(
x, q

) = m(x)
(
c
(
x, q

) − m−1b
(
q
))
.

Let the matrix B2(q) be calculated by variables γ (x, q) with the help of MP xk according
to (B.9), (B.10). We put H 2(q) = D2(q)+B2(q). Define H(q) according to the relation
H(q)H(q)∗ = H 2(q). Let s(t) be a solution of the equation

ds(t) = m−1b
(
s(t)

)
dt, s(0) = s0. (4.2)

Theorem 4.1. (1) Suppose that functions λ(x, q), µi(x, q), a(x, q), gi(x, q), pij (x, q)

for any x ∈ X, i = 1, r , j = 1, r + 1, are locally Lipschitz with respect to q ∈ int{Rm+},
Eτ(x)2 < ∞, x ∈ X. Let also m > 0, for any bounded and closed domain G ∈ int{Rm+}

Eκi

(
x, q

)2 � CG, E
∣∣η(

x, q
)∣∣2 � CG, i = 1, r, x ∈ X, q ∈ G, (4.3)

where CG < ∞, the function b(q) has no more than linear growth, n−1Qn(0)
P−→

s0 > 0, and there exists T > 0 such that s(t) > 0, t ∈ [0, T ], in each component.
Then relation (3.23) holds with s(t) defined in (4.2).
(2) Suppose in addition that there exists a continuous matrix derivative G(q) =

b
′
(q), q ∈ int{Rm+}, Eτ(x)3 < ∞, x ∈ X, and for any bounded and closed domain

G ∈ int{Rm+}
Eκi

(
x, q

)3 � CG, E
∣∣η(

x, q
)∣∣3 � CG, i = 1, r, x ∈ X, q ∈ G. (4.4)

Let also n−1/2(Qn(0) − ns(0))
w⇒ γ 0, and the function H 2(q) is continuous.

Then the sequence γ n(t) = n−1/2(Qn(nt)− ns(t)) weakly converges in Dr
T to the

diffusion process γ (t):

dγ (t) = G
(
s(t)

)
γ (t) dt + m−1/2H

(
s(t)

)
dw(t), γ (0) = γ 0. (4.5)

Proof. First, we consider an auxiliary queueing network Q̃N switched by SMP x(t).
The network is described with the help of the families of functions and random variables
λ(x, q), µi(x, q), η(x, q), κi(x, q), pij (x, q), x ∈ X, i = 1, r , j = 1, r + 1, introduced
in section 2.5.3, in the following way: on each interval [tk, tk+1) the rates λ(·), µ(·),
probabilities pij (·) and variables η(·), κi(·) depend only on the values x(tk) = x, q =
n−1Qn(tk), at the initial point tk . That is, at given values x(tk) = x, n−1Qn(tk) = q,
parameters of the network on the interval [tk, tk+1) do not depend on the changes of the
current size of the queue. This network is a bit simpler, but we prove that asymptotically
it is equivalent to the initial network.

Let us construct a corresponding PSMS. Denote by 6a(t, ξ) a compound Poisson
process with parameter a and a size of a jump ξ (sizes of different jumps are independent
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random variables). Denote by 6a(t, ξ ) a vector-valued compound Poisson process with
a size of a jump ξ . Put

ζ̃
(
t, x, q

) =6λ(x,q)

(
t, η

(
x, q

)) +
r∑

i,j=1

6µi(x,q)pij (x,q)

(
t, κi

(
x, q

))(
ej − ei

)
−

r∑
i=1

6µi(x,q)pi,r+1(x,q)

(
t, κi

(
x, q

))
ei, t � 0, (4.6)

(here all Poisson processes are independent). We introduce a family of independent at
different k processes ζ̃nk(t, x, nq), k > 0, such that their distributions coincide with the
distribution of ζ̃ (t, x, q). Denote by {(x(t), Q̃n(t)); t � 0} an auxiliary PSMS, which
is constructed with the help of SMP x(t) and processes ζ̃nk(t, x, nq) according to rela-
tions (2.9). By analogy to the proof of theorem 3.1, we can define Q̃n(t) in the whole
space Rr . Now we prove AP for Q̃n(t). Let us check the conditions of theorem B.1.
In our notation the distribution of ξn(x, nq) coincides with the one of ζ̃ (τ (x), x, q).
Conditions (B.2), (B.4) are automatically satisfied. Furthermore, for any random vari-
ables τ > 0 and ξ with the properties Eτ 2 < ∞, E|ξ |2 < ∞, we can calculate that
E62

a(τ, ξ) � aEτE|ξ |2 + a2(Eξ)2Eτ 2. Using Chebyshev’s inequality we get

nP
(
n−1 sup

t�τ

∣∣6a(t, ξ)
∣∣ > ε

)
� nP

(
6a

(
τ, |ξ |) > nε

)
� n(nε)−2E62

a

(
τ, |ξ |) → 0,

for any ε > 0 as n → ∞. This implies condition (B.3). As is easy to calculate,
Eζ̃ (τ (x), x, q) = c(x, q)m(x). Using theorem B.1 we get that Q̃n(t) satisfies rela-
tion (3.23) with s(t) defined in (4.2). Now, following the same lines as in the proof of
theorem 3.1, we get that the multidimensional process generated by the queue in the
system Q̃N also satisfies relation (3.23).

Now we return to the initial network. First, introduce independent families of
multidimensional MP {γ nk(t, x, nq), t � 0, x ∈ X, q ∈ Rr+}, k � 0, with values
in Rr+ in the same way as it was done in section 2.5.3. Put γ nk(0, x, nq) = nq. If
γ nk(t, x, nq) = ns, then with the local rate �(x, s) = λ(x, s) + ∑r

i=1 µi(x, s) the
process can make a jump of the size δ(x, s). Here δ(x, s) is defined in (2.11), where
we take κi(x, s) instead of κ̃i(x, s). Denote ζ nk(t, x, nq) = γ nk(t, x, nq) − nq. Let˜̃Qn(t) be an auxiliary PSMS defined with the help of x(t) and processes ζ nk(t, x, nq)

according to relations (2.9). Again we can define it in the whole space Rr . Note that by

construction the trajectory of ˜̃Qn(t) coincides with the trajectory of the queue Qn(t) on

any interval [0, T ] such that ˜̃Qn(t) > 0, t ∈ [0, T ].
Let us prove that ˜̃Qn(t) also satisfies (3.23) with s(t) defined in (4.2). Again

we need to check conditions of theorem B.1. Now we have that ξn(x, nq) =
ζ n1(τ (x), x, nq). Let us follow the same steps as in [7, proof of theorem 1 and lem-
mas 1, 2]. Using condition (4.3) we can prove for any q ∈ Rr that Eξn(x, nq) →
Eζ̃1(τ (x), x, q) (see (4.6)) and check other conditions of theorem B.1. This implies
(3.23) for ˜̃Qn(t). Now, by analogy to proof of theorem 3.1, we get that the asymptotic
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behavior of the queueing process Qn(t) and PSMS ˜̃Qn(t) is the same, and the 1st part of
theorem 4.1 is proved.

To prove DA we use theorem B.3. We get, in the same way, that it is enough to
calculate the characteristics of the auxiliary PSMS ˜̃Qn(t) defined above. To find the
function D2

n(x, α) (see (B.7)) we can use again [7, theorem 1 and lemmas 1, 2]. Using
condition (4.4) we can prove that for any q ∈ Rr as n → ∞

Eξn
(
x, nq

)
ξn

(
x, nq

)∗ → Eζ̃
(
τ(x), x, q

)̃
ζ
(
τ(x), x, q

)∗
.

Now according to (B.7) we need to calculate D2(x, q), where in notation of theorem 4.1
ρn1(·) = ζ̃ (τ (x), x, q) − m(x)c(x, q) − m−1b(q)(τ(x) − m(x)) (see (4.6)). It is not
difficult to calculate that

D2
(
x, q

) =m(x)λ
(
x, q

)
Eη(x, q)η(x, q)∗

+
r∑

i,j=1

µi

(
x, q

)
pij

(
x, q

)
d2
i

(
x, q

)(
ej − ei

)(
ej − ei

)∗

+
r∑

i=1

µi

(
x, q

)
pi,r+1d

2
i

(
x, q

)
eie

∗
i ,

and after some algebra we get the expression for D2(x, q) in the form (4.1). All other
conditions of theorem B.3 are also satisfied. �

In particular, if λ(x, q) ≡ 0, pi,r+1(x, q) ≡ 0 for all i = 1, r , x ∈ X, q, then the
network is closed.

Example 4.2. Consider a state-dependent system MSM,Q/MSM,Q/1/∞ with semi-
Markov switches. Let {x(t); t � 0} be an SMP with state space X = {1, 2, . . . , d},
τ(x) be the sojourn time in state x ∈ X. Suppose that the imbedded Markov chain is er-
godic and denote by πx, x = 1, . . . , r, it is stationary distribution. Let also nonnegative
functions {λ(x, q), µ(x, q), x ∈ X, q � 0}, be given. Suppose that calls arrive and are
served one at a time. Denote by Q(t) the total number of calls in the system at time t .
Assume that as x(t) = x, n−1Q(t) = q, the arrival rate is λ(x, q) and the service rate
is µ(x, q). That is, we have a semi-Markov arrival process and a semi-Markov service.
After service completion a call leaves the system. Denote

m(x)= Eτ(x), m =
∑
x∈X

m(x)πx, b(q) =
∑
x∈X

m(x)
(
λ(x, q) − µ(x, q)

)
πx,

d2(x)= Varτ(x), γ (x, q) = m(x)
(
λ(x, q) − µ(x, q) − m−1b(q)

)
,

D2(q)=
∑
x∈X

[
d2(x)

(
λ(x, q) − µ(x, q) − m−1b(q)

)2 + m(x)
(
λ(x, q) + µ(x, q)

)]
πx.
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Let the function B2(q) be calculated by variables γ (x, q) with the help of MP xk ac-
cording to relations (B.9), (B.10). We put H 2(q) = D2(q) + B2(q). Denote by s(t) a
solution of the equation

ds(t) = m−1b
(
s(t)

)
dt, s(0) = s0. (4.7)

Corollary 4.3. Suppose that for any x ∈ X the functions λ(x, q), µ(x, q) are locally
Lipschitz with respect to q > 0, m > 0, Eτ(x)2 < ∞, b(q) has no more than linear

growth, n−1Qn(0)
P−→ s0 > 0, and there exists T > 0 such that s(t) > 0, t ∈ [0, T ].

Then relation (3.10) holds with s(t) defined in (4.7).
If in addition there exists a continuous derivative g(q) = b′(q), q > 0, Eτ(x)3

< ∞, x ∈ X, n−1/2(Qn(0) − ns(0))
w⇒ γ0, and the function H 2(q), q > 0, is con-

tinuous, then the sequence γn(t) = n−1/2(Qn(nt) − ns(t)) weakly converges on DT to
the diffusion process γ (t):

dγ (t) = g
(
s(t)

)
γ (t) dt + m−1/2H

(
s(t)

)
dw(t), γ (0) = γ0.

In particular, when λ(x, q) ≡ λ(x), µ(x, q) ≡ qµ(x), our system is equivalent to
a system MSM/MSM/∞ in a semi-Markov environment. If we denote

λ = m−1
∑
x∈X

m(x)λ(x)πx, µ = m−1
∑
x∈X

m(x)µ(x)πx,

then (4.7) has the form ds(t) = (λ − µs(t)) dt , which coincides with the equation for
the system M/M/∞ (see section 3.1.1, case 2).

Remark 4.4. In the same way it is possible to study systems and networks of the type
SM/MSM,Q/1/∞ and (SM/MSM,Q/1/∞)r . Here the calls arrive at times of jumps of
some SMP x(t), and the rate of service may depend on x(t) and the current number of
calls (or the amount of work) in the system. Note that the diffusion approximation of the
system GI/M/1/∞ was considered in [47].

4.2. A system with unreliable servers

To illustrate the wide possibilities of the approach suggested we consider a system
GI/MQ/r/∞ with unreliable servers. Calls enter the system one at a time and in-
terarrival times are i.i.d.r.v. τk, k � 1. The system consists of r identical servers sub-
ject to random failures and an infinite number of waiting places. Suppose that rates
{µi(q), q > 0, νi, i = 1, r, κi, i = 0, r − 1} be given. Denote by Qn(t), t � 0,
a number of calls in the system at time t . Assume that the service rate depends on the
queue size in the following way: if a call enters the system at time tk and Qn(tk+0) = Q,
then the service rate on the interval (tk, tk+1) for each operating server is µ(n−1Q).

Let y(t) be a number of operating (not failed) servers at time t . If y(t) = i, then
each operating server with rate νi may fail. If there is a call on service, then this call
goes back to the queue. Each failed server with rate κi may be repaired. After repair
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a server immediately takes a call for service if there are waiting calls. By construction,
the process y(t) is a birth-and-death process with state space {0, 1, . . . , r} and rate of
birth (r − i)κi and death iνi , respectively. It does not depend on n. Assume that νi > 0,
i = 1, r , κi > 0, i = 0, r − 1. Denote by ρi , i = 0, r, a stationary distribution of y(t).
Put m = Eτ1, ρ̂ = ∑r

i=1 iρi .

Proposition 4.5. Suppose that the function µ(q), q > 0, is locally Lipschitz, m > 0,

n−1Qn(0)
P−→ s0 > 0, a unique solution of the equation

ds(t) = (
m−1 − ρ̂µ

(
s(t)

))
dt, s(0) = s0, (4.8)

exists on some interval [0, T ], and s(t) > 0, t ∈ [0, T ]. Then (3.10) holds.

Proof. Denote by {yi(t); t � 0} a birth-and-death process y(t) with initial state i. Let
{6i(t, yi(·), q); t � 0} be a Poisson process modulated by yi(t) in the following way:
6i(0, yi (·), q) = 0, and if y(t) = j , then the local rate of a jump is jµ(q). Denote
by {x(t); t � 0} an imbedded SMP with state space {0, 1, . . . , r} which is constructed
using y(t) as follows: times of jumps are chosen as arrival times of calls tk, k � 0. If
y(tk + 0) = i, then we put x(tk + 0) = i. Sojourn times in any state have the same
distribution as the variable τ1, and transition probabilities pij of the imbedded Markov
chain xk = x(tk + 0) are calculated in the following way:

pij = P
(
y(τ1 + 0) = j | y(0) = i

)
, i, j = 0, r.

Let us introduce the family of jointly independent at different k � 0 processes
ζnk(t, i,Q), having the same distributions as the process 1 − 6i(t, yi (·), n−1Q), t � 0,
i = 0, r , Q > 0.

Now let {(x(t), Q̃n(t)); t � 0} be an auxiliary RPSM which is constructed with
the help of x(t) and processes {ζnk(t, i,Q); t � 0}, k > 0, according to (2.9). By con-
struction a trajectory of the queue Qn(t) coincides with Q̃n(t) in the domain Q̃n(t) > 0,
t ∈ [0, T ]. Then, according to previous arguments, it is enough to prove the AP for
Q̃n(t). We use theorem B.1. In our case ξn1(i, nq) = 1 − 6i(τ1, yi(·), q). It it easy
to calculate, that the stationary distribution of the imbedded MP xk = y(tk) is also ρi ,
i = 0, r, and for any t > 0,

r∑
i=0

E6i

(
t, yi (·), q

)
ρi = t ρ̂µ(q).

Therefore,
∑r

i=0 ρiEξn1(i, nq) = 1 − mρ̂µ(q). All other conditions of theorem B.1 are
satisfied, and equation (B.6) has the form (4.8). �

Remark 4.6. If a service rate depends on the number of operating devices (equal to
µi(q) when y(t) = i), then (3.10) also holds, but in (4.8) we have to write µ̂(s(t)) =∑r

i=1 ρiiµi(s(t)) instead of ρ̂µ(s(t)).
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Remark 4.7. Using theorem B.3 we can prove DA for Qn(t) also.

Remark 4.8. Results of proposition 4.5 can be extended to systems GQ/MQ/r/∞ with
interarrival times and rates νi, κi depending also on the current size of the queue
n−1Qn(t). In this case it is not possible to construct an auxiliary SMP, which stands
for the external environment, because sojourn times and transition probabilities may de-
pend on the queue. But it is possible to use a general representation for the queue in
terms of SP and use AP for so-called quasi-ergodic MP [3].

4.3. Polling systems

Consider a polling system defined in section 2.5.5. The system consists of r stations and
a single moving server. Suppose that service rates depend on the normalized size of the
queue in the following way: if upon arrival to station j a server sees Qj calls waiting
there, then the service rate on the time interval of the length κk(j) is µj(n

−1Qj). Denote
by Qn(i, t) a number of calls at station i at time t , Qn(t) = (Qn(1, t), . . . ,Qn(r, t)). We
keep all notation of section 2.5.5. Suppose that an MP with transition probabilities pij ,
i, j = 1, r, is ergodic with stationary distribution πi.

Proposition 4.9. Assume that for any i = 1, r the values mi = Eκ1(i), m̃i = Eκ̃1(i)

exist, functions µi(q), q > 0, satisfy local Lipschitz condition, Qn(0)
P−→ s0 =

(s01, . . . , s0r), on some interval [0, T ] at each i = 1, r a unique solution of the equa-
tion

dsi(t) = (
λi − ρ̂iµi

(
si(t)

))
dt, si(0) = s0i , (4.9)

exists, and si(t) > 0, t ∈ [0, T ], where ρ̂i = πimi(
∑r

j=1 πj(mj + m̃j ))
−1.

Then relation (3.23) holds with s(t) = (si(t), i = 1, r).

Proof. First, we construct an auxiliary PSMS. Let 6k(t, i, λi ) and 6̃k(t, i, µi) be inde-
pendent at different k, i Poisson processes with parameters λi and µi , respectively. We
introduce processes ζ nk(t, i,Q) = (ζ

(j)

nk (t, i,Qj ), j = 1, r) as follows:

ζ
(i)
nk (t, i,Qi)=6k(t, i, λi) − 6̃k

(
t, i, µi

(
n−1Qi

))
, as 0 � t � κk(i);

ζ
(i)
nk (t, i,Qi)=6k(t, i, λi) − 6̃k

(
κk(i), i, µi

(
n−1Qi

))
, as κk(i) < t � κk(i) + κ̃k(i);

ζ
(j)

nk (t, i,Qj )=6k(t, j, λj ), as 0 � t � κk(i) + κ̃k(i), j = 1, r, j �= i.

Denote by {(x(t), Q̃n(t)); t � 0} an auxiliary PSMS constructed according to (2.9)
by introduced processes and SMP x(t), introduced in section 2.5.5. By construction, if
on some interval [0, T ] Q̃n(t) > 0 in each component, then the trajectory of Q̃n(t)

coincides with the trajectory of the queue Qn(t) on [0, T ]. Thus, it is enough to prove
AP for Q̃n(t).
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Let us use theorem B.1. In this case ξn(i,Q) = ζn1(κ1(i) + κ̃1(i), i,Q), τn(i) =
κ1(i) + κ̃1(i). It is not difficult to check all conditions of theorem B.1 and calculate that
the function m−1b(q) in (B.6) has the form (λi − ρ̂iµi(qi), i = 1, r). �

In particular, if µi(q) = αi+µiq and ρ̂iαi < λi , i = 1, r , then relation (3.23) holds
for any T > 0, and equation (4.9) has a point of stability s∗ = ((λi−ρ̂iαi)/µi, i = 1, r).

Remark 4.10. Using theorem B.3 we can also prove that the sequence γ n(t) = n−1/2 ×
(Qn(nt) − ns(t)) weakly converges in DT to the diffusion process γ (t) satisfying the
equation:

dγ (t) = G
(
s(t)

)
γ (t) dt + m−1/2H

(
s(t)

)
dw(t), γ (0) = γ 0,

where G(q) is a diagonal matrix with elements −ρ̂iµ
′
i (qi), and matrix H 2(q) is calcu-

lated by vectors ξn(i,Q) and the imbedded MP x(tk + 0) according to relations (B.7),
(B.9), (B.10).

Remark 4.11. Using the same approach, some other examples of queueing systems
GQ/MQ/1/∞, SMQ/MQ/1/∞ and networks (GQ/MQ/1/∞)r are considered in [5,6].

Another possible direction of applications is the class of so-called retrial queues [25].
Using suggested approach, AP- and DA-type theorems for some classes of overloaded
retrial queueing models M/G/1/w.r., M/M/m/w.r. and MQ/G/1/w.r. with state-
dependent Markov arrival process, general or exponential service and asymptotically
small rate of retrial calls are studied in [8,9,11].

4.4. Conclusion

A new approach to study fluid and diffusion approximation type theorems (without
reflection on the boundary) in transient and quasi-stationary regimes for queueing
processes in overloaded state-dependent systems and networks of a switching structure
is suggested. The approach is based on functional limit theorems of averaging principle
and diffusion approximation types for the so-called switching processes.

This approach gives us the possibility to provide an asymptotic analysis of wide
classes of Markov and non-Markov models in a convenient standard way. The analysis
of the initial model is reduced to the analysis of some auxiliary switching process, which
is asymptotically equivalent to the queueing process and usually has more simple struc-
ture (corresponding processes on switching intervals are constructed without truncation
by level zero). Then the coefficients of the equations in fluid and diffusion limits are cal-
culated using the first and second moment functions of the increments of corresponding
processes on switching intervals.

For Markov systems, we basically calculate an increment of a queueing process
on the exponential interval between two sequential changes in the system. For more
complicated systems possibly in a random environment, we calculate increments on the
intervals between changes of the environment or some auxiliary switching component.
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From the practical point of view, it is much simpler to calculate (or estimate) these
characteristics rather than simulate the whole system on a large interval of time.

The wide possibilities of the suggested approach are illustrated for various classes
of state-dependent Markov, semi-Markov and more general non-Markov open and
closed queueing systems and networks.
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Appendix

Here we study limit theorems for SP’s in the case of fast switches. Consider a sequence
of SP’s {(xn(t), ζn(t)); t � 0} on the interval [0, nT ], n → ∞. Suppose that SP depends
on the scaling parameter n so that the number of switches on each interval [na, nb],
0 < a < b < T, tends in probability to infinity. Then, under some natural assumptions,
a normalized trajectory of ζn(nt) uniformly converges in probability to some determin-
istic function which is a solution of some differential equation (Averaging Principle –
AP), and a normalized difference between trajectory and this solution weakly converges
in Skorokhod space DT to some diffusion process (Diffusion Approximation – DA). As
sample trajectories of a limiting process are continuous, this convergence implies weak
convergence of functionals, which are continuous with respect to the uniform conver-
gence [23,45].

Appendix A. Averaging principle and diffusion approximation for RPSM

Consider first AP and DA type theorems for simple RPSM (see section 2.3). Let for each
n = 1, 2, . . ., Fnk = {(ξnk(α)), τnk(α)), α ∈ Rr}, k � 0, be jointly independent families
of random variables with values in Rr × [0,∞). Suppose that their distributions do not
depend on index k. Let Sn0 be an independent of Fnk , k � 0, initial value in Rr . Put

tn0 = 0, tnk+1 = tnk + τnk(Snk), Snk+1 = Snk + ξnk(Snk), k � 0,
Sn(t)= Snk, as tnk � t < tnk+1, t � 0.

(A.1)

Let there exist functions mn(α) = Eτn1(nα), bn(α) = Eξn1(nα), α ∈ Rr .

Theorem A.1 (Averaging principle). Suppose that for any N > 0,

lim
L→∞

lim sup
n→∞

sup
|α|�N

{
Eτn1(nα)χ

(
τn1(nα) > L

) + E
∣∣ξn1(nα)

∣∣χ(∣∣ξn1(nα)
∣∣ > L

)}= 0;
(A.2)∣∣mn(α1) − mn(α2)

∣∣ + ∣∣bn(α1) − bn(α2)
∣∣ � CN |α1 − α2| + αn(N), (A.3)
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as max(|α1|, |α2|) � N , where CN are some bounded constants, αn(N) → 0 uniformly
in |α1| � N , |α2| � N, and there exist a deterministic value s0 and functions m(a) > 0,

b(a) such that as n → ∞, n−1Sn0
P−→ s0, and for any α ∈ Rr

mn(α) → m(α), bn(α) → b(α). (A.4)

Let also there exist T such that y(+∞) > T , where y(t) = ∫ t

0 m(η(u)) du, and the
function η(u) satisfies the equation

η(0) = s0, dη(u) = b
(
η(u)

)
du, (A.5)

a unique solution of which exists on each interval.
Then

sup
0�t�T

∣∣n−1Sn(nt) − s(t)
∣∣ P−→ 0, (A.6)

where the function s(t) satisfies the equation

s(0) = s0, ds(t) = (
s(t)

)−1
b
(
s(t)

)
dt, (A.7)

a unique solution of which exists.

Now we consider the process γn(t) = n−1/2(Sn(nt) − ns(t)), t ∈ [0, T ]. Denote

b̃n(α)=mn(α)
−1bn(α), b̃(α) = m(α)−1b(α),

ρn(α)= ξn1(nα) − bn(α) − b̃(α)
(
τn1(nα) − mn(α)

)
,

qn(α, z)= √
n

(
b̃n

(
α + 1√

n
z

)
− b̃(α)

)
, D2

n(α) = Eρn(α)ρn(α)
∗.

Theorem A.2 (Diffusion approximation). Let conditions (A.3), (A.4) be satisfied,
where in (A.3)

√
nαn(N) → 0, there exist continuous vector-valued function q(α, z) and

matrix-valued function D2(α) such that in any domain |α| � N |q(α, z)| � CN(1+|z|),
and uniformly in |α| � N at each fixed z

√
n
(̃
bn

(
α + n−1/2z

) − b̃(α)
) → q(α, z), D2

n(α) → D2(α), (A.8)

γn(0)
w⇒ γ0, and for any N > 0

lim
L→∞

lim sup
n→∞

sup
|α|<N

{
Eτ 2

n1(nα)χ
(
τn1(nα) > L

) + E
∣∣ξn1(nα)

∣∣2
χ

(∣∣ξn1(nα)
∣∣ > L

)} = 0.

(A.9)
Then the sequence γn(t) weakly converges in DT , where T is defined in theo-

rem A.1, to the diffusion process γ (t) satisfying the following stochastic differential
equation, a unique solution of which exists:

dγ (t) = q
(
s(t), γ (t)

)
dt + D

(
s(t)

)
m

(
s(t)

)−1/2
dw(t), γ (0) = γ0. (A.10)
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Here s(·) satisfies (A.7), D(q)D(q)∗ = D2(q), and w(t) is a standard Wiener process
in Rr .

Remark A.3. Let G ∈ Rr be a closed bounded domain such that s(t) ∈ G, 0 � t � T .
Denote by G(ε) a closure of ε-neighborhood of G. Then theorems A.1, A.2 are true, if
for some ε > 0 conditions (A.2)–(A.4) and (A.8), (A.9) hold uniformly in α ∈ G(ε).

Proof of theorems A.1, A.2. We give the proof in a shorten way. Details can be found
in [5]. Let us introduce the sequences ηnk = n−1Snk, ynk = n−1tnk , k � 0, and denote
ηn(u) = ηnk, y(u) = ynk , as n−1k � u < n−1(k + 1), u � 0. Put

νn(t) = min{k: k > 0, tn,k+1 > nt}, µn(t) = inf
{
u: u > 0, yn(u) > t

}
.

As far as Sn(nt) = Snνn(t), we have the representation n−1Sn(nt) = ηn(n
−1νn(t)) =

ηn(µn(t) − 1/n). Thus, RPSM n−1Sn(nt) is constructed as a superposition of two
processes: ηn(t) and µn(t). First, we study the behavior of the processes ηn(t) and yn(t),
then µn(t) and their superposition. According to (A.1), ηnk+1 = ηnk +n−1bn(ηnk)+ϕnk ,
ynk+1 = ynk + n−1mn(ηnk) + ψnk, k � 0, where ϕnk = n−1(ξnk(nηnk) − bn(ηnk)),
ψnk = n−1(τnk(nηnk) − mn(ηnk)).

Sequences ϕnk and ψnk , k � 0, are martingale differences with respect to the se-
quence of σ -algebras generated by variables {ηni, i � k}. Applying results of [27] we
get

sup
0�u�t

∣∣ηn(u) − η(u)
∣∣ P−→ 0, sup

0�u�t

∣∣yn(u) − y(u)
∣∣ P−→ 0 (A.11)

(see (A.5)). As m(a) > 0, the process y(t) strictly monotonically increases. Thus, the
process y−1(t) = µ(t) exists for all t < y(+∞), is continuous and

sup
0�u�t

∣∣µn(u) − µ(u)
∣∣ P−→ 0. (A.12)

Using the result about the uniform convergence of a superposition of random func-
tions [16] and relations (A.11), (A.12), we obtain (A.6).

Denote vnk = γn(ynk). We introduce a stochastic process vn(t) = vnk , as
k/n � u < (k + 1)/n, u � 0. Using relations (A.1) and results [27] it is possible
to prove that the sequence vn(u) weakly converges in DT for any T > 0 to the diffu-
sion process v(u) satisfying the following stochastic differential equation: v(0) = γ0,
dv(u) = m(η(u))q(η(u), v(u)) du + D(η(u)) dw(u). Also, we can get the relation

sup
0�t�T

∣∣∣∣γn(t) − vn

(
µn(t) − 1

n

)∣∣∣∣ p→ 0.

But the sequence vn(µn(t)−1/n) weakly converges in DT to the process v(µ(t)) = γ (t).
As far as µ′(t) = m(s(t))−1, we calculate a stochastic differential of γ (t) using the
relation dw(µ(t)) = √

µ′(t) dw(t) and get (A.10). �
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The result of theorem A.1 is also valid, if the value s0 is a random variable, and
corresponding relations involving s0 are satisfied with probability one.

Consider a particular case, when Sn(t) is a homogeneous MP. Suppose that Sn(t)

is a regular stepwise process with transition rates qn(α,A), α ∈ Rr , A ∈ Br
R, α /∈ A,

where qn(α) = qn(α,Rr\{α}) < ∞. We introduce independent families of random
variables {ξnk(α), α ∈ Rr}, k � 0, and {τnk(α), α ∈ R}, k � 0, with values in Rr and
[0,∞), respectively. Here τnk(nα) has an exponential distribution with parameter qn(α)

and P{ξnk(nα) ∈ A} = qn(α)
−1qn(α,A + α), α /∈ A, where A + α = {z: z − α ∈ A}.

Then RPSM defined by variables (ζnk(α), τnk(α)), k � 0, is equivalent to a MP Sn(t),
t � 0, mn(α) = qn(α)

−1, and it is easy to calculate that D2
n(α) = Eξn1(nα)ξn1(nα)

∗.

Appendix B. AP and DA for processes with semi-Markov switches

Consider now AP- and DA-type theorems for PSMS. Let for each n = 1, 2 . . ., Fnk =
{ζnk(t, x, α), t � 0, x ∈ X, α ∈ Rr}, k � 0, be jointly independent families of
stochastic processes in Dr∞, {xn(t); t � 0} be an independent of Fnk SMP with values
in some measurable space X, Sn0 be an initial value. Let also 0 = tn0 < tn1 < · · · be
the times of sequential jumps of xn(·), xnk = xn(tnk), k � 0. We construct a PSMS
according to (2.9): put Snk+1 = Snk + ξnk, where ξnk = ζnk(τnk, xnk, Snk), τnk =
tnk+1 − tnk, and denote

ζn(t) = Snk + ζnk(t − tnk, xnk, Snk), as tnk � t < tnk+1, t � 0. (B.1)

Then the process {(xn(t), ζn(t)); t � 0} is a PSMS.
First, we study an AP for the switched component ζn(·). Consider for simplicity a

homogeneous case (distributions of ζnk(·) do not depend on index k � 0). Let τn(x) be
the sojourn time in state x for SMP xn(·). Denote for each x ∈ X, α ∈ Rr ,

ξn(x, α) = ζn1
(
τn(x), x, α

)
, gn(x, α) = sup

t<τn(x)

∣∣ζn1(t, x, nα)
∣∣.

Suppose that MP xnk , k � 0, at each n > 0 has a stationary measure πn(A),
A ∈ BX, and denote

mn(x) = Eτn(x), bn(x, α) = Eξn(x, nα),

mn =
∫
X

mn(x)πn(dx), bn(α) =
∫
X

bn(x, α)πn(dx),

αn(k) = sup
A,B∈BX,i�0

∣∣P{xni ∈ A, xn,i+k ∈ B} − P{xni ∈ A}P{xn,i+k ∈ B}∣∣.
Theorem B.1 (Averaging principle). Suppose that n−1Sn0

P−→ s0, there exists a se-
quence of integers rn such that

n−1rn → 0, sup
k�rn

αn(k) → 0, (B.2)



SWITCHING QUEUEING MODELS 179

for any N > 0, ε > 0,

lim
n→∞ sup

|α|�N

sup
x

nP
{
n−1gn(x, α) > ε

} = 0, (B.3)

lim
L→∞ lim sup

n→∞
sup

|α|�N

sup
x

{
Eτn1(x)χ

(
τn1(x) > L

)
+ E

∣∣ξn1(x, nα)
∣∣χ(∣∣ξ(x, nα)∣∣ > L

)} = 0, (B.4)

for any x, |bn(x, α1) − bn(x, α2)| � CN |α1 − α2| + αn(N), as max(|α1|, |α2|) < N ,
where CN are some constants, and αn(N) → 0 uniformly in |α1| � N, |α2| � N .
Let also there exist a function b(α) and a constant m > 0 such that for any α ∈ Rr

bn(α) → b(α), mn → m.

Then for any T > 0,

sup
0�t�T

∣∣n−1ζn(nt) − s(t)
∣∣ P−→ 0, (B.5)

where

s(0) = s0, ds(t) = m−1b
(
s(t)

)
dt (B.6)

(it is supposed that a unique solution of (B.6) exists on each interval).

Remark B.2. Condition (B.2) can be satisfied also in some more general cases, when
the process xnk is not ergodic in the limit. For instance, a state space can form an S-set
(see [6]).

Consider a DA for the sequence of processes γn(t) = n−1/2(ζn(nt)− ns(t)). Intro-
duce a uniformly strong mixing coefficient for the process xnk:

ϕn(k) = sup
x,y,A

∣∣P{xnk ∈ A | xn0 = x} − P{xnk ∈ A | xn0 = y}∣∣, k > 0.

Put

b̃n(α)= bn(α)m
−1
n , b̃(α) = b(α)m−1,

ρnk(x, α)= ξnk(x, nα) − bn(x, α) − b̃(α)
(
τnk(x) − mn(x)

)
,

(B.7)
γn(x, α)= bn(x, α) − bn(α) − b̃(α)

(
mn(x) − mn

)
,

D2
n(x, α)= Eρn1(x, α)ρn1(x, α)

∗.

Theorem B.3 (Diffusion approximation). Suppose that γn(0)
w⇒ γ0, there exist a fixed

r > 0 and q < 1 such that ϕn(r) � q for any n > 0, conditions of theorem B.1 hold,
where

√
nαn(N) → 0, and for any N > 0 the following conditions are satisfied:
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lim
n→∞ sup

|α|�N

sup
x

nP
{
n−1/2gn(x, α) > ε

}= 0, ∀ε > 0;

lim
L→∞ lim

n→∞ sup
|α|�N

sup
x

{
Eτn1(x)

2χ
(
τn1(x) > L

)
(B.8)+ E

∣∣ξn1(x, nα)
∣∣2
χ

(∣∣ξn1(x, nα)
∣∣ > L

)} = 0;∣∣D2
n(x, α1) − D2

n(x, α2)
∣∣ � CN |α1 − α2| + αn(N), x ∈ X

as max(|α1|, |α2|) � N, where αn(N) → 0 uniformly in |α1| � N , |α2| � N ; there
exist a continuous vector-valued function q(α, z) and matrix-valued functions D2(α)

and B2(α) such that in any domain |α| � N , |q(α, z)| � CN(1 + |z|); uniformly in
|α| � N at each fixed z

√
n
(̃
bn

(
α + n−1/2z

) − b̃(α)
) → q(α, z);

for any α ∈ Rm

D2
n(α) =

∫
X

D2
n(x, α)πn(dx)→D2(α),(

B(1)
n (α)

)2 + (
B(2)

n (α)
)2 + (

B(2)
n (α)∗

)2 →B2(α),

(B.9)

where (B(1)
n (α))2 = ∫

X
γn(x, α)γn(x, α)

∗πn(dx), and

B(2)
n (α)2 =

∑
k�1

Eγn(xn0, α)γn(xnk, α)
∗, (B.10)

with P{xn0 ∈ A} = πn(A), A ∈ BX.
Then for any T > 0 the sequence γn(t) weakly converges in DT to the diffusion

process γ (t):

dγ (t) = q
(
s(t), γ (t)

)
dt + m−1/2

(
D2

(
s(t)

) + B2
(
s(t)

))1/2
dw(t), γ (0) = γ0,

(B.11)
where C = A1/2 means that CC∗ = A, w(t) is a standard Wiener process in Rr , and a
unique solution of (B.11) exists.

Proof. The proof of theorems B.1, B.3 follows the same scheme as the proof of theo-
rems A.1, A.2 and uses the results on the convergence of stochastic recurrent sequences
in a Markov environment to the solutions of stochastic differential equations [14]. More
details can be found in [4,5]. �

Conditions (B.3), (B.8) mean that there are no large jumps on the switching inter-
vals.

Results of theorems B.1, B.3 show that at given condition (B.3) (or (B.8), respec-
tively) the asymptotic behavior of PSMS ζn(·) and simpler RPSM Sn(·), which is con-
structed only by accumulating increments on switching intervals, is the same. This is
very useful in applications, because we do not need to keep track of the whole trajectory
of the process on switching intervals.
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These results can be extended to nonhomogeneous in time models also [5].
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