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We consider observer based synchronization of continuous-time chaotic systems. We present
two message transmission schemes for such systems. The first one is based on chaotic masking
and modulation, and the second one is based on only chaotic modulation. We show that in
these schemes, the message may be recovered under certain conditions. We show that the
proposed schemes are robust with respect to noise and parameter mismatch. We also present
some simulation results.
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1. Introduction

After the seminal works of Pecora and Carrol [1990,
1991], the idea of synchronization and control of
chaotic systems has received a great deal of interest
among researchers from various fields. Many scien-
tific journals in fact devoted special issues on these
and related subjects, see e.g. IEEE Trans. Circuits

Syst., Part 1, October 1997 and December 2000,
Int. J. Bifurcation and Chaos, March and April
2000 issues. For more information on this subject
and for more references, see [Chen & Dong, 1998;
Boccaletti et al., 2000]. While the synchronization
of two chaotic systems is an interesting subject on
its own, one of the main motivations for the research
in this area is the possibility of using chaotic signals
for secure communication, see [Cuomo & Oppen-
heim, 1993; Kocarev & Parlitz, 1995; Okşaşoĝlu
& Akgül, 1995; Hasler, 1995]. Use of chaos may
also increase the performance of communication
systems, see e.g. [Kolumbán et al., 1997]. Most of
the synchronization schemes consist of two parts:
a generator of chaotic signals, which is called the
drive system, and a receiver, which is also called a
response system. A signal generated by the drive
system may be used as an input to the receiver to

achieve synchronization. An extensive list of refer-
ences for various aspects of chaotic systems may be
found in [Chen, 1997].

Chaotic systems may be used in message trans-
mission in various ways, see e.g. [Hasler, 1995;
Kolumbán et al., 1997]. One of the widely used
techniques is called chaotic masking, and in this
scheme the message is added to the chaotic signal
used for synchronization, and this signal is sent to
the receiver. Under certain conditions the message
may be recovered at the receiver, see [Cuomo &
Oppenheim, 1993; Kocarev & Parlitz, 1995; Ko-
carev et al., 1992; Liao & Huang, 1999; Okşaşoĝlu
& Akgül, 1995]. Another possibility is to use
the message as an appropriate input to the drive
system, and send the synchronization signal to the
receiver. This scheme may be called as chaotic
modulation, and as in chaotic masking scheme, the
message may be recovered in the receiver under cer-
tain conditions.

In this paper, we will consider continuous-
time chaotic systems. For the synchronization of
such systems various methods are available, and
we choose the method based on observers, see
[Morgül & Solak, 1996, 1997; Morgül, 1999]. For
the message transmission, we propose two schemes.
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The first one is based on chaotic modulation and
masking, and is a slight modification of the scheme
proposed in [Liao & Huang, 1999]. The second
scheme is based only on chaotic modulation. We
will show that in these schemes, under certain
conditions the message may be recovered in the
receiver.

This paper is organized as follows. In Sec. 2,
we will briefly outline the observer based synchro-
nization scheme. In Sec. 3, we will propose a chaotic
masking scheme, which is similar to the scheme pro-
posed in [Liao & Huang, 1999]. In the following
section we show that the proposed scheme is ro-
bust with respect to noise and parameter mismatch
under certain conditions. This method may have
some disadvantages, and to eliminate these, we pro-
pose a chaotic modulation scheme in Sec. 5. We also
give a robustness result for this scheme as well. We
will present some simulation results in Sec. 6, and
finally we will give some concluding remarks.

2. Observer Based Synchronization

Let a chaotic (drive) system be given as:

u̇ = f(u) , o = c(u) , (1)

where u ∈ Rn, f : Rn → Rn and c: Rn → Rm

are differentiable functions, and o is the synchro-
nization signal to be sent to the response system.
Later, for simplicity, we will choose m = 1, i.e. a
scalar synchronization signal. An observer for (1)
is another system of the form

v̇ = g(v, o) , ur = k(v, o) , (2)

where v ∈ Rl, g: Rl×Rm → Rl and k: Rl×Rm →
Rn are differentiable functions. Let the error signal
be defined as e = u − ur. The system (2) is called
a local observer for (1) if e(t) → 0 as t → ∞ for
all sufficiently small e(0), i.e. when ‖e(0)‖ < γ for
some γ > 0. If γ = ∞, then the observer is global.
As noted in [Morgül, 1999], many synchronization
schemes proposed in the literature are in fact ob-
server based schemes.

In this paper, we will assume the following form
for the chaotic drive system:

u̇ = Au + f(u) + h(t) , o = Cu , (3)

where A ∈ Rn×n and C ∈ R1×n are constant ma-
trices, f : Rn → Rn is a smooth function, and
h: R → Rn is a known forcing function. (Note that

certain chaotic systems, such as Duffing oscillator,
contains such a known forcing function, and with
the inclusion of such a term in (3), we will be able
to cover such systems as well.) For the response
system, we use the following observer

˙̂u = Aû+f(û)+h(t)+K(o− ô) , ô = Cû , (4)

where K ∈ Rn is a gain vector to be selected. Note
that (4) is in the form given by (2), where we have
ur = û. By defining the error as e = u−û, and using
(3) and (4), we obtain the following error dynamics:

ė = (A − KC)e + f(u) − f(û) . (5)

Obviously, if ‖e(t)‖ → 0 as t → ∞, then syn-
chronization is achieved. Moreover, if the following
holds for some M > 0, δ > 0

‖e(t)‖ ≤ Me−δt‖e(0)‖ , (6)

then we say that the synchronization is exponential.
Local and global exponential synchronization may
be defined similarly. We note that the norm ‖·‖ may
be any norm on Rn. If the pair (A,C) is observ-
able, then we can always find gain vectors K such
that the matrix A−KC is stable, i.e. all eigenvalues
have negative real parts, see e.g. [Morgül & Solak,
1996, 1997]. A related condition, which is called
detectability, is a necessary condition for synchro-
nization in certain cases, see [Morgül, 1999]. On
the other hand, observability is a sufficient condi-
tion for exponential synchronization in many cases,
see e.g. [Grassi & Mascolo, 1997; Morgül & Solak,
1996, 1997; Nijmeijer & Mareels, 1997]. These cases
include the following.

(i) Assume that f is Lipschitz, i.e. the following is
satisfied for some γ > 0:

‖f(u) − f(û)‖ ≤ γ‖u − û‖ . (7)

If γ is sufficiently small, then one can always
choose a gain vector K such that (6) holds, see
[Morgül & Solak, 1996, 1997].

(ii) When the system given by (3) is in Brunowsky
canonical form and (7) holds, then for any
γ > 0 one can always choose a gain vector K
such that (6) holds, see [Morgül & Solak, 1996,
1997]. Note that many systems are already in
this form, or can be transformed into this form,
e.g. Rössler system, almost all forced chaotic
oscillators, etc.
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(iii) Assume that the nonlinearity f in (3) depends
only on the measured signal o, i.e. the following
holds:

f(u) = g(o) , (8)

for some g: R → Rn. In this case, the observer (4)
could be selected as:

˙̂u = Aû+ g(o)+h(t)+K(o− ô) , ô = Cû . (9)

The error dynamics (5) now becomes:

ė = (A − KC)e . (10)

Hence, one can choose a gain vector K such that
(6) holds, see [Morgül & Solak, 1996, 1997]. We
note that some chaotic systems, e.g. Lur’e systems,
are already in this form, and some chaotic systems,
e.g. such as Duffing oscillator, and most of the elec-
tronic chaotic oscillators such as Chua’s circuit, can
be transformed into this form.

3. A Chaotic Modulation and
Masking Scheme

Let us assume that for the chaotic drive system
given by (3), by using either of the observers given
by (4) or (9), and with an appropriate choice of
the gain vector K, exponential synchronization is
achieved, i.e. (6) holds. Let m(t) denote the mes-
sage to be sent. We will use the synchronization
signal o(t) given by (3) to mask the message, hence
we assume that both signals have the same dimen-
sion. If we use (4) as the observer, we will modify
the drive system as follows:

u̇ = Au+f(u)+h(t)+Km, o = Cu+m. (11)

Note that in this case the signal o sent to the re-
ceiver is the masked message. Obviously, the mes-
sage m should be sufficiently small so that (11) still
generates chaotic signals. This might reduce the
magnitude of m considerably if the gain K required
for synchronization is too high. Note that in this
case the error dynamics given by (5) is still valid,
hence (6) still holds. Therefore if we define the
recovered message mr as:

mr(t) = o(t) − ô(t) = Ce(t) + m(t) , (12)

it follows from (6) that mr(t) → m(t) as t → ∞.
Moreover, in most of the cases the decay rate δ
could be adjusted by using the gain K, hence we

may have arbitrary fast recovery of the message.
We note that this scheme is quite similar to the one
proposed in [Liao & Huang, 1999]. The only dif-
ference is in the assumed form of the nonlinearity
f(·). In [Liao & Huang, 1999], the nonlinearity is
assumed to depend on the synchronization signal o
as well, i.e. f has the form f(u, o), and this form
is used in (4) and (11). Hence, in [Liao & Huang,
1999], the message is not only injected into (3) as
a linear term (i.e. Km), but is also injected into
the nonlinearity, whereas in our case, the message
is only injected into the chaotic drive system as a
linear term.

If the nonlinearity f has the form given by (8)
and the observer is given by (9), we modify the drive
system given by (3) as

u̇ = Au+g(o)+h(t)+Km, o = Cu+m. (13)

For the receiver system, we use the observer given
by (9). Consequently, (10) and hence (6) are valid,
and the message can be recovered by using (12).
In this case, the decay rate δ could be adjusted
arbitrarily by using appropriate K.

4. Robustness of the Proposed
Scheme

To analyze the robustness of the proposed scheme
with respect to noise and parameter mismatch, let
us rewrite the drive and the response systems as
follows:

u̇ = A(µ)u + f(u, µ) + h(t) + Km,

o = Cu + m,
(14)

˙̂u = A(µ̂) + f(û, µ̂) + ĥ(t) + K̂(o + n − ô) ,

ô = Cû ,
(15)

where a hat denotes the variables and parameters
which are used in the response system, µ, µ̂ ∈ Rp

are the parameter vectors used in the drive and
the response systems, respectively, and n is the
noise. In the ideal case, obviously we have µ = µ̂,
h(t) = ĥ(t), K = K̂, n = 0, and in this case we
assume that the exponential synchronization holds,
e.g. see (6). For robustness, we will assume that
both A(·) and f(u, ·) satisfy the following Lipschitz
properties

‖A(µ1) − A(µ2)‖ ≤ ka‖µ1 − µ2‖ ,

∀µ1, µ2 ∈ Rp , (16)
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1006 Ö. Morgül et al.

‖f(u, µ1) − f(u, µ2)‖ ≤ kµ‖µ1 − µ2‖ ,

∀u ∈ Rn,∀µ1, µ2 ∈ Rp , (17)

where ka and kµ are appropriate positive constants.
We note that the Lipschitz properties are satisfied
locally if both A(·) and f(u, ·) are differentiable with
respect to µ. Let U ⊂ Rn be a region which contains
the chaotic attractor of (14) and let M ⊂ Rp be a
region containing the relevant parameter values for
which (14) exhibits chaotic behavior. The follow-
ing analysis will remain valid if (16) and (17) are
satisfied locally for u ∈ U and µ1, µ2 ∈ M.

Let us define the error as e = u − û. By
adding and subtracting likewise terms, we obtain
the following error equation

ė = [(A(µ) − KC)e + f(u, µ) − f(û, µ)]

+ [A(µ) − A(µ̂)]û + [f(û, µ) − f(û, µ̂)]

+ [K − K̂]Ce + [h(t) − ĥ(t)]

+ [K − K̂]m − K̂n . (18)

Note that the first bracketed term in (18) is the
same as the right side of (5); the remaining terms
are the contributions of parameter mismatch and
noise to the error equation. Let u(t) and û(t) be the
solutions of (14) and (15), respectively, and define
F (e, t) = (A(µ)−KC)e+f(u, µ)−f(û, µ). Hence, in
the ideal case (18) reduces to ė = F (e, t). Since this
dynamics is exponentially stable by assumption, by
a well-known result in Lyapunov stability theory,
there exists a Lyapunov function V : R ×Rn → R

which satisfies the following:

c1‖e‖
2 ≤ V (t, e) ≤ c2‖e‖

2 , (19)

V̇ =
∂V

∂t
+

∂V

∂e
F ≤ −c3‖e‖

2 , (20)

∥

∥

∥

∥

∂V

∂e

∥

∥

∥

∥

≤ c4‖e‖ , (21)

for some positive constants c1, c2, c3, c4. Note that
the existence of such a Lyapunov function is both
necessary and sufficient for the exponential stabil-
ity of the error dynamics, see e.g. [Khalil, 2002,
p. 162]. Moreover, the constants in (6) can be given
as M =

√

c2/c1, δ = c3/2c2.
Let us consider the nonideal case. By using

the Lyapunov function V given above and by using

(18), we obtain:

V̇ =
∂V

∂t
+

∂V

∂e
F +

∂V

∂e
[A(µ) − A(µ̂)]û

+
∂V

∂e
[f(û, µ) − f(û, µ̂)] +

∂V

∂e
[K − K̂]Ce

+
∂V

∂e
[h(t) − ĥ(t)] +

∂V

∂e
[K − K̂]m

−
∂V

∂e
K̂n . (22)

Let the noise n and the message m satisfy |n(t)| ≤
nm and |m(t)| ≤ m for some nm > 0 and m > 0,

respectively. Moreover, let ‖h(t) − ĥ(t)‖ ≤ ∆hm

and ‖û‖ ≤ ûm be satisfied for some ∆hm > 0 and
ûm > 0, respectively. Let us define ∆µ = ‖µ − µ̂‖

and ∆K = ‖K − K̂‖. By using (16), (17) and (19)–
(21), we obtain

V̇ ≤ −c3‖e‖

{(

1 −
c4

c3
∆K‖C‖

)

‖e‖

−
c4

c3
(kaûm + kµ)∆µ

−
c4

c3
(∆hm + ‖K̂‖nm + m∆K)

}

. (23)

Let us define D = 1 − c4/c3∆K‖C‖, K1 =

c4/c3(kaûm + kµ), K2 = c4/c3, K3 = c4/c3‖K̂‖,
K4 = (c4/c3)m. Let us assume that ∆K is suffi-
ciently small so that D > 0. From (23) it follows
that if ‖e‖ > (K1∆µ+K2∆hm+K3nm+K4∆K)/D,
then V̇ < 0, hence V decreases, which implies that
‖e‖ decreases as well, see (19). It then follows from
the standard invariance arguments that asymptoti-
cally the error satisfies the following bound:

‖e‖ ≤ C1∆µ + C2∆hm + C3nm + C4∆K , (24)

where Ci ≥ Ki/D, i = 1, 2, 3, 4, see e.g. [Khalil,
2002, p. 323]. If we define the error in message re-
covery em as em = mr−m, then from (12) we obtain
em = Ce. By combining this result with (24) we see
that a similar asymptotic bound for em is also valid,
see Remark 2.

Remark 1. From (24) it follows that the asymp-
totic error depends linearly on the nonidealities ∆µ,
∆hm, and nm. Hence, if these terms are small, the
resulting error will be small as well. The depen-
dence of the error on ∆K deserves special atten-
tion. Note that we have D = 1 − (c4/c3)∆K‖C‖
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Observer Based Chaotic Message Transmission 1007

and Ci ≥ Ki/D, i = 1, 2, 3, 4. Hence, as ∆K in-
creases, D will decrease and consequently Ci will
increase, which also increases the asymptotic error
bound. For D < 0, the estimate given by (24) is
not valid, hence ∆K cannot be made arbitrarily
large. This argument shows that with the proposed
method, ∆K should be made as small as possible.

Remark 2. Let us consider the recovered message
mr(t) as given in (12) and define the error in mes-
sage recovery em as em = mr − m. From (12) we
have em = Ce, where e denotes the synchroniza-
tion error. If the error decay is exponential, then
by using (6) we obtain:

‖em(t)‖ ≤ M‖C‖e−δt‖e(0)‖ . (25)

Clearly, as t → ∞, we have em(t) → 0, hence
mr(t) → m(t), i.e. the message is recovered asymp-
totically. This property, together with the robust-
ness result indicated above shows the importance of
exponential synchronization. To elaborate further,
let εp > 0 be a given precision level on the message
error, i.e. we can recover the message successfully
if ‖em(t)‖ ≤ εp. (In this sense, the errors satisfy-
ing this bound may be called as acceptable errors.)
Let us assume that ‖e(0)‖ ≤ R for some R > 0.
(Note that if the chaotic attractor of (11) is inside
of a ball in Rn whose radius is Ra, and if we choose
û(0) = 0, then we may choose R = Ra; if û(0) is
also arbitrary in the same ball, then we may choose
R = 2Ra.) Under these assumptions, from (25) it
easily follows that we have ‖em(t)‖ ≤ εp for t ≥ Tp

where

Tp =
1

δ
ln

εp

MR‖C‖
. (26)

Hence, to guarantee successful message transmis-
sion, we may choose to apply the message for t ≥ Tp,
(e.g. use m = 0 in (11) for t < Tp).

The chaotic masking scheme presented in Sec. 3
yields exponential recovery of the message, hence is
very efficient. However, the following points may be
considered as possible drawbacks of this scheme.

(i) In some cases, the gain K which guarantees
the exponential synchronization could be quite
high, see e.g. [Solak, 1996]. On the other hand,
the term Km used in (11) should not be too
big to guarantee the chaotic solutions. Hence
in case of high gain, we may be forced to send
messages with small magnitudes. This may
pose problems if the synchronization message
is corrupted with noise.

(ii) The gain K may have arbitrary nonzero entries,
hence the message need to be injected into (3)
at more than one point. However, for some
systems this may not be suitable and/or not
possible (see e.g. the first simulation example).

(iii) Injection of the message into the nonlinearity
may not be possible for some systems.

(iv) The gain K is a parameter used in the receiver
end. However, in this scheme this parameter
should also be known for the driver system as
well. In some cases, it may be desirable to
change the gains in the receiver, e.g. to im-
prove the performance, and such a change will
affect the driver system as well. This may re-
quire a communication between the driver and
receiver systems, other than the transmission of
the message, and it may not be suitable and/or
desirable. See also Remark 1 to see the effect
of this mismatch on the robustness of the pro-
posed scheme.

To eliminate these problems, in the sequel we
will propose a new message transmission scheme.

5. A Chaotic Modulation Scheme

Let us assume that the nonlinearity f in (3) is in the
form given by (8) and let m be the message to be
transmitted. We modify the chaotic drive system
(3) as follows:

u̇ = Au + g(o) + h(t) + bm , o = Cu , (27)

where b ∈ Rn is a constant vector. We can choose
the entries of b as 1 or 0, with nonzero entries
denoting the possible entries of (3) to which the
message can be injected. As for (11), we assume
that the message magnitude is sufficiently small so
that (27) has chaotic solutions. Note that in (11),
the gain vector K may be too big, hence we may
use messages with larger magnitudes in (27) as com-
pared to (11). For the receiver system, we use the
observer given by (9). The error equation (10) now
becomes:

ė = (A − KC)e + bm . (28)

Since the signal o is available at the receiver, we
can measure em = o − ô = Ce. By using the
Laplace transform in (28), we may relate the sig-
nals em and m. Let s denote the Laplace variable,
and let the variables with capital letters such as
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1008 Ö. Morgül et al.

Em(s), M(s), etc., denote the Laplace transform of
the corresponding variables. From (28), we obtain:

Em(s) = G(s)M(s) ,

G(s) = C(sI − A + KC)−1b . (29)

Hence em(t) is a filtered version of the message m(t).
Consequently, in some cases we may recover the
message from em. These cases include the following.

Case 1. Let the message m be a band-limited

signal, whose frequency spectrum is in the range
[0,Ω]. If G(s) given by (29) is a low-pass filter whose
cut-off frequency ωc satisfies ωc � Ω, then we can
recover m. In most cases, by selecting the gain K
appropriately, we can design such a G(s). More-
over, since em is available, we may use another filter
G1(s) to obtain another signal ef as follows:

Ef (s) = G1(s)Em(s) = G1(s)G(s)M(s) . (30)

If we can choose G1 and G such that |1 −
G1(jω)G(jω)| is sufficiently small for ω ∈ [0,Ω],
then we may use ef (t) as the recovered message.
We note that while in the masking scheme presented
in the previous section we have asymptotic recov-
ery of the message, in the present case there will
always be error in the recovery, however this error
may be made arbitrarily small by carefully selecting
the gain K.

Case 2. Let the message m be a discrete signal,
e.g. m(t) ∈ {0, 1}. In this case, it is possible to re-
cover the message without error. To see this, we set
G(s) = n(s)/d(s) where n(s) and d(s) are polyno-
mials as given below

n(s) = an−1s
n−1 + · · · + a1s + a0 ,

d(s) = sn + bn−1s
m−1 + · · · + b1s + b0 ,

(31)

where ai and bi are various constants, i =
0, 1, . . . , n − 1. We note that we may choose K
appropriately so that d(s) becomes a stable poly-
nomial, i.e. all of its roots have negative real parts,
moreover these roots may be selected arbitrarily,
see [Morgül & Solak, 1996, 1997]. Let m̃ denote 0
or 1. After the transients, em(t) will converge to
a0m̃/b0. As for the transients, let T denote the in-
terval length in which m = 0 or m = 1, and let
si, i = 1, 2, . . . , n denote the roots of d(s) = 0.
Since the transients contain the terms esit, these
terms will become negligible within the interval T

if −<{si} � 1/T , i = 1, 2, . . . , n. Hence, the recov-
ered message mr may be given as

mr(t) =
b0

a0
em(t) , (32)

provided that a0 6= 0. We note that the roots
si of d(s) may be selected arbitrarily when A,C
are an observable pair, see [Morgül & Solak, 1996,
1997], hence arbitrary fast decay of transient is pos-
sible. Furthermore, since m is discrete, we may
even reconstruct the signal by comparing mr with a
threshold. Such a reconstructed signal mc may be
given as

mc(t) =

{

1 if mr(t) > 0.5

0 if mr(t) < 0.5
. (33)

Obviously, this idea could be applied to any discrete
message, i.e. when m(t) ∈ {a1, . . . , al}.

Case 3. In (27), instead of using the message di-
rectly, we may use a signal related to the message.
Let r(t) denote the message to be sent and let us
choose the signal m used in (27) as follows:

M(s) =
k

Gp(s)
R(s) , (34)

where k is a scaling constant, Gp(s) is a new trans-
fer function, M and R denote the Laplace trans-
form of m and r, respectively. Let Gp(s) be given
as Gp(s) = np(s)/dp(s), where np(s) and dp(s) are
polynomials in s, see (31). Obviously, the polyno-
mial np(s) given by (31) should be stable to have
bounded m(t). Let, for any polynomial q(s), deg(q)
denote the degree of q(s). In general, deg(np) ≤
deg(dp), see (31), hence the derivatives of r should
be available to generate m. Under these conditions,
from (29) and (34) it follows that

R(s) =
Gp(s)

kG(s)
Em(s) . (35)

Note that em(t) is available, hence to recover r(t),
the overall transfer function in (35) should be real-
izable. For this, (i) n(s) in (31) should be a stable
polynomial, and (ii) deg(d) + deg(np) ≤ deg(n) +
deg(dp) should hold. This is always satisfied if,
e.g. we have np(s) = 1, and deg(dp) = deg(d).
Under these conditions, the transfer overall func-
tion in (35) is realizable, hence we can recover r(t).
A special case is to choose Gp(s) = G(s). In this
case (35) becomes R(s) = Em/k, hence we have
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Observer Based Chaotic Message Transmission 1009

r(t) → em(t)/k as t → ∞. However, note that in
this case to generate m(t) in the driver, we need to
know the gain K of the receiver, cf. (29) and (34).

The scheme presented above was applied to a
special class of chaotic systems, see (27). The same
methodology may be used without this restriction
in some cases. Assume that the chaotic drive sys-
tem is given by (3). For the response system we
will use the observer given by (4) and assume that
with an appropriate choice of gain vector K, the
error dynamics given by (5) is exponentially stable,
i.e. (6) holds. Following (27), we first modify (3) as
follows:

u̇ = Au + f(u) + h(t) + bm , (36)

where m is the message to be transmitted, and
b ∈ Rn is a constant vector as in (27). The error
dynamics (5) now becomes:

ė = (A − KC)e + f(u) − f(û) + bm . (37)

If we compare (37) with (28) we see that they both
contain the message as a linear addition to an ex-
ponentially stable error equation. However, the
recovery of m from (37) may not be simple. If f(·)
satisfies (7), then by choosing sufficiently high gain
K, we may make the linear term dominant in (37).
If the nonlinear terms in (37) have negligible ef-
fect, then the solution of (37) is similar to that of
(28), hence we may use the techniques presented
above. To elaborate further, let us assume that
the message is discrete, e.g. m(t) = {0,m}, and
let T denote the interval length in which m(t) = 0
or m(t) = m. When m(t) = 0, (37) reduces to
(5). Since we assume that (6) holds in this case,
we have em(t) → 0, hence em(t) → m(t) for the
period in which m(t) = 0. For the periods in which
m(t) = m, note that the term bm represents a per-
turbation to an exponentially stable dynamics given
by (5), hence if m is small, e is also small. As before,
let em = Ce denote the measured error. If

‖C(A − KC)−1(f(u) − f(û))‖ � 1 , (38)

then the effect of the nonlinear term in (37) on em

may be neglected. For some cases, this may be pos-
sible by choosing K sufficiently big. If this is possi-
ble, then we may recover the message by using the
techniques given above, see (32). Note that, due
to the nonlinear terms, em may contain high fre-
quency terms. These terms may be eliminated by
further passing the signal em through a low pass fil-
ter, hence the recovered message may be improved.

This approach may also be used when m is a band-
limited signal.

Remark 3. We note that the scheme proposed
above is also robust with respect to noise and pa-
rameter mismatch. This result could be proven by
using the approach given in Sec. 4. Here we will
present an alternative approach to the same prob-
lem. To be specific, let us consider the chaotic drive
and the response systems given by (27) and (9),
respectively, as follows:

u̇ = A(µ)u + g(o, µ) + h(t) + bm ,

o = Cu ,
(39)

˙̂u = A(µ̂)û + g(o + n, µ̂) + ĥ(t) + K(o + n − ô) ,

ô = Cû , (40)

where µ, µ̂ ∈ Rp are the parameter vectors, n is the
channel noise, which is added to the transmitted
signal o at the response system. Let us define the
synchronization error as e = u − û. By using (39)
and (40), and by adding and subtracting likewise
terms, we obtain:

ė = (A(µ) − KC)e + bm + [A(µ) − A(µ̂)]û

+ [h(t) − ĥ(t)] + [g(o + n, µ) − g(o + n, µ̂)]

+ [g(o, µ) − g(o + n, µ)] − Kn . (41)

Note that the first two terms on the right-hand side
of (41) are the same as (28), whereas the rest of the
terms are due to parameter mismatch and noise,
cf. (18). Since the gain K is only used in the re-
sponse system, the term ∆K in (18) does not ap-
pear in (41). Similar to (16) and (17), we assume
the following Lipschitz conditions:

‖A(µ) − A(µ̂)‖ ≤ ka‖µ − µ̂‖ , ∀µ, µ̂ ∈ Rp ,
(42)

‖g(o, µ) − g(o, µ̂)‖ ≤ kµ‖µ − µ̂‖ ,

∀ o ∈ R,∀µ, µ̂ ∈ Rp ,
(43)

‖g(o1, µ) − g(o2, µ)‖ ≤ ko‖o1 − o2‖ ,

∀ o1, o2 ∈ R,∀µ ∈ Rp .
(44)

Since Ac = A(µ)−KC is stable by a proper choice
of K, the exponential operator eAct is exponentially
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1010 Ö. Morgül et al.

stable, i.e. the following holds for some M > 0 and
δ > 0

‖eAct‖ ≤ Me−δt . (45)

The solution of (41) can be given in the following
form

e(t) = eActe(0) +

∫ t

0
eAc(t−τ)bm(τ)dτ

+

∫ t

0
eAc(t−τ)[h(τ) − ĥ(τ)]dτ

+

∫ t

0
eAc(t−τ)[A(µ) − A(µ̂)]û(τ)dτ

+

∫ t

0
eAc(t−τ)[g(o + n, µ) − g(o + n, µ̂)]dτ

+

∫ t

0
eAc(t−τ)[g(o, µ) − g(o + n, µ)]dτ

−

∫ t

0
eAc(t−τ)Kn(τ)dτ . (46)

As before, assume that |n(t)| ≤ nm, ‖û(t)‖ ≤ ûm

and ‖h(t)− ĥ(t)‖ ≤ ∆hm for some nm > 0, ûm > 0,
and ∆hm, and let ∆µ = ‖µ− µ̂‖. By taking norms,
using (45) and after simple integration we obtain:

‖e(t)‖ ≤ ‖eActe(0) +

∫ t

0
eAc(t−τ)bm(τ)dτ‖

+ (1 − e−δt)(C1∆µ + C2nm

+ C3∆hm) , (47)

where C1 = M(kaûm + kµ)/δ, C2 = M(ko‖C‖+
‖K‖)/δ, and C3 = M/δ. Here, the first term on
the right-hand side of (47) is precisely the error
obtained from (28). The rest of the terms give
an upper bound for the contribution of the pa-
rameter mismatch and noise on the error. As
can be seen, the contributions of these terms on
the error is asymptotically bounded by the term
C1∆µ+C2nm+C3∆hm. Hence, for small ∆µ, ∆hm

and nm, this additional error will be small as well.
Consequently, the effect of this small error on the
message recovery will be small as well.

6. Simulation Results

In this section, we will give some simulation results.
First, we consider the well-known forced Duffing
equation. In this case, the chaotic drive system is
given as:

ẍ + 0.25x + x3 = 11 cos t + m(t) , (48)

where m is the message to be transmitted. It is
known that this system exhibits chaotic behavior
when m(t) = 0, see e.g. [Thompson, 1986]. We will
use the solution x of (48) as the signal to be trans-
mitted to the receiver, i.e. o = x. By using x1 = x,
x2 = ẋ, we may rewrite (48) as follows:

ẋ1 = x2 , (49)

ẋ2 = −0.25x1 − x3
1 + 11 cos t + m(t) ,

o = x1 .
(50)

This system is obviously in the form given by (27)

with C = (1 0), b = (0 1)T and h(t) = 11 cos t,
where the superscript T denotes the transpose. For
the receiver, we use the observer given by (9)

˙̂x1 = x̂2 + k1(x1 − x̂1) , (51)

˙̂x2 = −0.25x̂1 − x3
1 + 11 cos t + k2(x1 − x̂1) , (52)

where k1, k2 are observer gains. Note that in
this case, the message may only be injected into
the equation of x2, see (48), (50), hence for k1 6=
0, the scheme given by (11) is not appropriate.
For this system, we performed the following two
simulations.

Case i. We choose the message as m(t) = sin 0.2t.
Observer gains are chosen as k1 = 8, k2 = 199.75.
In this case, G(s) given by (29) is computed as
G(s) = 1/(s2 + 8s + 200), and by choosing G1 =
200, we have |1 − G1G(jω)| = 0.008 for ω = 0.2.
Hence, we may use ef = 200em as the recovered
message, see (30). The results of this simulation is
shown in Fig. 1. Here, Fig. 1(a) shows the transmit-
ted message x, and Fig. 1(b) shows x versus ẋ. As
can be seen, the solutions are chaotic. Figure 1(c)
shows the message, and Fig. 1(d) shows the recov-
ered message. As can be seen, the message is recov-
ered with reasonable accuracy. Also note that, the
message magnitude is comparable with the trans-
mitted signal, see Figs. 1(a) and 1(c).

Case ii. We choose the message as the sum of
three sinusoids as r(t) = 0.5 sin t + 0.5 cos 0.5t +
0.5 sin 0.3t. We choose the observer gains as k1 = 8,
k2 = 14.75. In this case, G(s) given by (29)
is computed as G(s) = 1/(s2 + 8s + 15). In this
case, we choose the signal m to be used in (50) as
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Fig. 1. Simulation result for Duffing system, case i (a) Transmitted signal x, (b) x1 = x versus x2 = ẋ, (c) message,
(d) recovered message mr.

m = (r̈ + 8ṙ + 20r)/20, hence (34) is satisfied with
k = 1/20. Consequently, we have 20em(t) → r(t).
The results of this simulation are shown in Fig. 2.
Here, Fig. 2(a) shows the transmitted message x,
and Fig. 2(b) shows x versus ẋ. As can be seen, the
solutions are chaotic. Figure 2(c) shows the mes-
sage, and Fig. 2(d) shows the recovered message
(as solid line), and the error in message recovery
(dotted line). Also note that, the message magni-
tude is comparable with the transmitted signal, see
Figs. 2(a) and 2(c).

Case iii. In this case, we choose the Lorenz sys-
tem as the chaotic drive system:

ẋ = −10x + 10y + m(t) , (53)

ẏ = 28x − y − xz , (54)

ż = xy − 8/3z . (55)

It is well-known that this system exhibits chaotic
behavior when m(t) = 0, see e.g. [Thompson, 1986].

With u = (xyz)T , this system is of the form given

by (36) with b = (1 0 0)T . It can be shown eas-
ily that this system cannot be transformed into the
form given by (30). By using o = x as the signal
transmitted to the receiver, we have o = Cu with
C = (1 0 0). For the receiver, we use the observer
given by (4) as follows:

˙̂x = −10x̂ + 10ŷ + k1(x − x̂) , (56)
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Fig. 2. Simulation result for Duffing system, case ii (a) Transmitted signal x, (b) x1 = x versus x2 = ẋ, (c) message,
(d) recovered message mr (solid), error (dotted).

˙̂y = 28x̂ − ŷ − x̂ẑ + k2(x − x̂) , (57)

˙̂z = x̂ŷ − 8/3ẑ + k3(x − x̂) . (58)

For this system, we choose k2 = 28, and k3 = 0 as
the observer gains, the gain k1 is yet to be deter-
mined. It can easily be shown that in this case we
have C(A − KC)−1 = 1/(k1 + 10)(−1 − 10 0),
hence by choosing k1 sufficiently large, the effect of
the nonlinear terms may become negligible on the
measured error em = Ce, see (38). In the simula-
tions, we choose the message m as a square wave
whose magnitude is alternating between ±m = 10
and the period T is given as T = 10 sec. Note
that in this case G(s) in (29) becomes G(s) =
1/(s + k1 + 10), hence the recovered message may

be given as m̂ = (k1 + 10)em, see (32). The re-
sults of the simulation are shown in Fig. 3. Here,
Fig. 3(a) shows the transmitted message x, and
Fig. 3(b) shows x versus y. As can be seen, the
solutions are chaotic. In the receiver part, we con-
sidered two cases. We first choose k1 = 190, and
the recovered message mr = (k1 + 10)em is shown
in Fig. 3(c) (dotted line) together with the message
(solid line). To show the effect of increased gain, we
also choose k1 = 1990, the recovered message mr is
passed through a low-pass filter. Figure 3(d) shows
this filtered mr (solid line) and the message (dot-
ted line). As can be seen, by increasing the gain,
we may reduce the error in the message recovery.
Note that since the message is discrete, in both
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Fig. 3. Simulation result for Lorenz system, (a) Transmitted signal x, (b) x versus y, (c) Message (solid), recovered message
(dotted) for k1 = 190, (d) message (dotted), recovered message (solid) for k1 = 1990.

cases we may reconstruct the signal at the receiver
by simply comparing mr with a threshold value,
see (33). Also note that the message magnitude is
comparable with the transmitted signal.

Case iv. To demonstrate the robustness of the
proposed scheme with respect to noise and param-
eter mismatch, we use the following model of the
well-known Chua’s circuit:

ẋ = α(y − h(x)) + m, (59)

ẏ = x − y + z , (60)

ż = −βy , (61)

where h(x) is a piecewise linear function given
as:

h(x) =
2

7
x −

3

14
(|x + 1| − |x − 1|) , (62)

and m is the message to be transmitted. This sys-
tem is known to exhibit double scroll characteristics
for α = 9, β = 14.286; see e.g. [Yalçın et al., 2000]
for more references as well as an electronic circuit
implementation of this system. For the output of
this system, we choose o = x, i.e. C = (1 0 0), see
(27), (39). This system is in the form given by (27)
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with

A =









0 α 0

1 −1 1

0 −β 0









, b =









1

0

0









, g =









−αh(x)

0

0









.

(63)

We note that the signal received by the response
system will be o + n = x + n, where n is the noise.

For the response system, we use the following

˙̂x = α̂(ŷ − h(x + n)) + k1(x + n − x̂) , (64)

˙̂y = x̂ − ŷ + ẑ + k2(x + n − x̂) , (65)

˙̂z = −β̂ŷ + k3(x + n − x̂) . (66)

In the simulations, for the message we used the
coded version of the word “chaos”. For coding,
we used the standard international alphabet code
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Fig. 4. Simulation result for Chua’s circuit, (a) message m (b) x versus y, (c) transmitted message x with noise (d) message
m (solid), recovered message mr (dashed) in ideal case (e) recovered message mr (solid), reconstructed message mc (dashed)
for nm = 0.01, ∆µ = 0.168, (f) recovered message mr (solid), reconstructed message mc (dashed) for nm = 0.05, ∆µ = 0.337.
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no. 2, see e.g. [Gegg, 1997]. This message is shown
in Fig. 4(a). We simulated (59)–(61) with this mes-
sage and with the parameters indicated above. The
resulting x versus y graph is shown in Fig. 4(b),
which clearly indicates the chaotic behavior. Note
that we have m = 1 (maximum message magni-
tude), hence the message magnitude is comparable
with the chaotic signal used in message transmis-
sion. The signal transmitted to the response system
with the added noise is shown in Fig. 4(c). Here,
as noise we used a random signal whose maximum
magnitude is limited by nm = 0.01.

For the response system given by (64)–(66), we
chose the gains as k1 = 100, k2 = 1, k3 = 0,
(i.e. K = (100 1 0)T ). It can easily be shown
that with this choice, A − KC is a stable ma-
trix. Note that in this case, G(s) in (29) becomes
G(s) = 1/(s + k1), hence the recovered message
may be given as mr = k1em = k1(x + n − x̂).

For the simulations, we considered the following
cases:

Case 1. We simulated (64)–(66) with α̂ = α = 9,

β̂ = β = 14.286, and with n = 0. The message is
as given in Fig. 4(a). The recovered message mr

and the corrected message mc (as given by (33))
are shown in Fig. 4(d). As can be seen, the mes-
sage error is quite small, and that the message is
reconstructed without any error.

Case 2. We simulated (64)–(66) with α̂ = 8.91,

β̂ = 14.143. The message is as given in Fig. 4(a) and
as for the noise we used a random signal whose mag-
nitude is limited to nm = 0.01. Note that in this
case, ∆α = |α − α̂| = 0.09, ∆β = |β − β̂| = 0.143
and ∆µ =

√

(∆α)2 + (∆β)2 = 0.168. The recov-
ered message mr and the corrected message mc are
shown in Fig. 4(e). As can be seen, the message er-
ror is small, and that the message is reconstructed
without any error.

Case 3. We simulated (64)–(66) with α̂ = 8.82,

β̂ = 14. The message is as given in Fig. 4(a) and as
for the noise we used a random signal whose mag-
nitude is limited to nm = 0.05. Note that in this
case, ∆α = |α − α̂| = 0.18, ∆β = |β − β̂| = 0.286
and ∆µ =

√

(∆α)2 + (∆β)2 = 0.337. The recov-
ered message mr and the corrected message mc are
shown in Fig. 4(f). Although the message error is
higher as compared to Case 2 (due to increased

parameter mismatch and noise), the message is re-
constructed without any error.

Remark 4. We did not consider the security of our
scheme. In [Short, 1994], the security of communi-
cation schemes based on chaotic carriers when the
hidden information signal is buried in the order of
−30 dB with respect to the chaotic carrier were an-
alyzed and it was concluded that such schemes may
be useful to increase the privacy in communication,
but may not provide a high level of security. It was
also concluded in [Short, 1994] that the hidden sig-
nal added to the chaotic carrier at low power makes
it even easier to recover the hidden signal. We do
not claim any level of security for the schemes pro-
posed in this paper, and probably the conclusions
of Short [1994] apply to our schemes as well when
the message levels are low. But note that, as is ev-
ident in the simulations, message levels in the pro-
posed modulation scheme are not necessarily low,
whereas in most of the chaotic masking schemes,
the message level is required to be sufficiently lower
than that of the chaotic carrier. Considering the
results of Short [1994], the flexibility in adjusting
the message level might improve the security of our
scheme. Also note that the scheme given in Sec. 5
is based on modulation only, hence the message is
not added to the signal transmitted to the receiver,
see (27). This property may improve the security of
our scheme. However, a detailed security analysis
is quite tedious and such an analysis is beyond the
scope of this paper. Such an analysis requires and
deserves further research.

Also note that, as explained in [Kolumbán
et al., 1997], most of the conventional communi-
cation schemes are susceptible to multipath prop-
agation effects. These effects arise from the inter-
actions between the signals at the receiver which
travel along different propagation paths. In conven-
tional (especially digital) communication schemes,
the transmitted symbols are usually chosen from pe-
riodic waveform segments, whereas in chaotic mod-
ulation case, the relevant waveforms are nonperi-
odic. Since the cross-correlations between segments
of a chaotic waveform are usually lower than that
of a periodic signal, the chaotic modulation should
yield a better performance under multipath prop-
agation conditions, see [Kolumbán et al., 1997].
Thus, in addition to increased privacy in commu-
nications, chaotic modulation may also offer simple
yet robust wideband communication schemes.
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7. Conclusion

In this paper we proposed two message transmission
schemes by using chaotic systems. In these schemes
we use observer based synchronization technique,
see e.g. [Morgül & Solak, 1996, 1997; Morgül, 1999;
Nijmeijer & Mareels, 1997]. The first proposed mes-
sage transmission scheme is a slight modification of
the scheme proposed in [Liao & Huang, 1999]. This
scheme is based on chaotic masking, i.e. the signal
transmitted to the receiver is the sum of a chaotic
signal and the message to be transmitted, and may
have some disadvantages. To eliminate these dis-
advantages, we proposed another scheme. This
scheme is based on chaotic modulation as opposed
to chaotic masking. More precisely, the message
to be transmitted is injected into the chaotic drive
system as an input, and a signal generated by the
drive system is sent to the response system. We
show that in some cases it is possible to recover the
message under certain conditions. The method is
first applied to a special class of chaotic systems, see
(27). For such systems, we investigated three cases.
These cases are (i) when the message is a band-
limited signal, (ii) when the message is discrete,
and (iii) when the message is differentiable. We
show that in the first and second cases it is possible
to recover the message with small error, and in the
third case we may asymptotically recover the mes-
sage, i.e. the error asymptotically decays to zero.
Moreover, the decay rate may be adjusted by us-
ing appropriate gains in the observer. Also, in case
the message is discrete, we may even reconstruct
the message by comparing the recovered message
with a threshold. We then show that this technique
may be used in a broader class of systems. We also
showed that the proposed schemes are robust with
respect to noise and parameter mismatch. Finally
we present some simulation results. These results
indicate that while it is also possible to transmit
band-limited signal for the systems of the form (27),
the proposed scheme is particularly suited in send-
ing discrete signals. We also presented a simula-
tion result indicating the robustness of the proposed
scheme. Also note that, the allowable message mag-
nitude in the proposed schemes is in general com-
parable with the transmitted signal. This may be
useful when the transmitted signal is subjected to
noise.

We do not investigate the security of our
scheme, and do not claim any level of security. But
note that in the proposed modulation scheme, the

message level is not necessarily required to be small,
whereas in most of the schemes the message magni-
tude is required to be sufficiently lower than that of
the chaotic carrier. This point may be considered as
an advantage of our scheme. Also the second pro-
posed scheme is not based on chaotic masking. The
effect of the proposed chaotic modulation scheme
on the security requires and deserves further inves-
tigation. We also note that the chaotic modulation
may increase the privacy in communications, see
[Short, 1994], and may also offer simple and robust
wideband communication schemes under multipath
propagation conditions [Kolumbán et al., 1997].
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