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Abstract—Shift and rotation invariance properties of linear Fourier transformation arer /2 rad rotated versions of each
time-frequency representations are investigated. It is shown other [14], [15]. We start our investigation on linear time-fre-

that among all linear time-frequency representations, only the fetrihg 4 ; o _
short-ime Fourier transform (STFT) family with the Her- quency distributions by showing that STFT satisfies the rota

mite—Gaussian kernels satisfies both the shift invariance and tion property only if the STFT kerne_zl is a Herm_ite-Gaussian
rotation invariance properties that are satisfied by the Wigner fUnCt|0n. ThUS, we reaCh the COI”IClUSIOI’] that the |Ineal’ tlme—fl‘e-
distribution (WD). By extending the time-bandwidth product quency distributions, which satisfy both the rotation property

(TBP) concept to fractional Fourier domains, a generalized and the magnitude-wise time and frequency shift property, are
time-bandwidth product (GTBP) is defined. For mono-component the STFT with Hermite-Gaussian kernels.

signals, it is shown that GTBP provides a rotation independent . . .
measure of compactness. Similar to the TBP optimal STFT, the The choice of the STFT kernel determines the time-frequency

GTBP optimal STFT that causes the least amount of increase in Signal localization properties of the distribution. Among the
the GTBP of the signal is obtained. Finally, a linear canonical Hermite-Gaussian function family, since it has the minimum
decomposition of the obtained GTBP optimal STFT analysis time-bandwidth product (TBP), the Gaussian function is the
is presented to identify its relation to the rotationally invariant most commonly used kernel function. However, STFT with
STFT. : . ' -

the Gaussian kernel still suffers from the problem of limited
resolution. To overcome the inherent tradeoff between the time
and the frequency localization of the STFT, several alternatives
have been investigated in the literature. In [5], using two kernel
functions of different supports, a wideband and a narrowband
. INTRODUCTION spectrogram are obtained. In order to preserve the localization

ESEARCH on time-frequency domain characterizatiopharacteristics of both, a combined spectrogram is formed by
R of signals has been focused on the variants of short-tifi@mputing the geometric mean of the corresponding STFT
Fourier transform (STFT) [1]-[7] and Wigner distributionmagnitudes, whereas in [6], the STFT is evaluated by using a
(WD) [8], [9]. The absence of undesirable cross terms [1], [16fMe! function with an adaptive width in order to analyze the
and computational simplicity [11}-[13] are the major factors ifansient response of radar targets. In [16], a kernel matching
the wide-spread use of the STFT in practice. With the advan@gorithm is developed by locally adapting the Gaussian kernel
of faster processors, the efficiency of the STFT techniques hd8ctions to the analyzed signal. Although these investigations
become less important. However, the ability of representifjovide significant improvements in the time-frequency lo-
time-frequency content of signals free of cross terms is still tif&lization of signal components, in the presence of chirp-like
major advantage of the STFT techniques over the WD-relateignals, they still provide descriptions whose localization prop-
quadratic time-frequency distributions. erties depends on the chirp rate of the components. Recently,
Among its many important properties, the STFT has a fuhZ] introduced an improved instantaneous frequency estimation
damental property that simplifies the interpretation of the resichnique using an adaptive STFT where the kernel functions
tant distribution: magnitude-wise shift invariance in both tim@re chosen from a set of functions through adaptation rules
and frequency. In this paper, we first prove that the STFT #d computation of the STFT with varying kernel functions at
the only linear distribution that has the magnitude-wise shift i§2ch time instance. In addition, apart from the analysis of de-
variance property in both time and frequency. Then, we investgrministic signals, there have been studies where time-varying
gate time-frequency domain rotation property within the genergpectra of random processes are investigated [17]. _
class of linear distributions. This lesser known property, which I this paper, we characterize the time-frequency domain lo-
is satisfied by the WD, is defined as follows: A time-frequencg@lization by STFT and investigate the effect of the STFT kernel
distribution satisfies the rotation property if the distribution 0PN the obtained time-frequency representation of signals. We in-
an arbitrary signal and the distribution of itth-order fractional froduce the generalized time-bandwidth product (GTBP) defini-
tion to provide a rotation-invariant measure of signal support in
. . , the time-frequency domain. Then, we obtain the optimal STFT
Manuscript received August 28, 2001; revised October 23, 2002. The asso- . . .
ciate editor coordinating the review of this paper and approving it for publicati rnel that prowdes the most compact representation consid-
was Prof. Paulo S. R. Diniz. ering the GTBP of a signal component. The proposed time-fre-
The authors are with the Department of Electrical 'Engineeringluency analysis is shown to be equivalent to an ordinary STFT
Bilkent University, Ankara, Turkey (e-mail: lutfiye@ee.bilkent.edu.tr; . . . .
oarikan@ee.bilkent.edu.tr). analysis conducted in a scaled fractional Fourier transform do-
Digital Object Identifier 10.1109/TSP.2003.810293 main. The obtained GTBP optimal STFT representation yields
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optimally compact time-frequency supports for chirp-like sigmplications of magnitude-wise shift invariance in frequency

nals on the STFT plane. In general, the GTBP optimal STFEN be investigated in the Fourier domain as

representation does not satisfy the rotation property. However,

as shown in detail, there exists a linear canonical decomposition p_(¢, f) = /Fa (t—t, f) /X (f') 2RI et gyt

of the GTBP optimal STFT that provides the link between the . . .

GTBI_D optlmal_ STFT a_nd the rotation invariance property. —er2nft /F f, ) o2~ )t x (fydf (@)
This paper is organized as follows. In Section Il, we show .

that the_STFT is the on_ly Imear tlme-.fre_quer!cy representatlor}]ere X(f) is the Fourier transform ofz(), and

that satisfies the magnitude-wise shift invariance property. | P —2m " g : .

. . ) I L) = [w@", fe ™I qt". The magnitude-wise
Section Ill, we define the rotation property of sh|ft-|nvar|anshift invariance with respect to frequency requires that
time-frequency distributions and obtain the class of STFT ker- P q yreq
nels satisfying the rotation property. In Section 1V, we introduce N ey ad(f)
the GTBP and obtain the GTBP optimal STFT kernel. In Sec- L) =G = e ' ®)
tIOI’! V, we presentahnear canonical d_ecomposmon ofthe GTBIFﬁus, the kernel has the following representation:
optimal STFT and relate it to the rotation property. Furthermore,
the performance of the GTBP optimal STFT representationis il- 4 ) N g2 ft e
lustrated by using simulated data. Finally, the paper is concluded k(t, f) =e /G (f=F)e af
in Section VI with future research directions. :q(_f)eﬂvrfteﬂ)(f) (6)

Il. LINEAR SHIFT-INVARIANT Since the phase’>™/t ande’*() can be ignored, the general
TIME-FREQUENCY DISTRIBUTIONS form of a magnitude-wise shift invariant linear time-frequency

Time-frequency distributions are designed to characterigstribution is
the time-frequency content of signals. Since time or frequency ,
shifts do not change the time-frequency content of a signal, Dy(t, f) = /!J(t' — ) (t') eI at! (7
except to relocate it correspondingly, it is important that
time-frequency representations satisfy the magnitude-wisdich has the same form of the STFT [1], [3] with the kernel
shift invariance property. A precise statement of this propertyj$t). Consequently, STFT is the only distribution that is
given as follows: A time-frequency representatibn(¢, f) is linear and magnitude-wise shift-invariant under both time and
magnitude-wise shift invariant if for, (t) = z(t — t,) - e’27/st  frequency shifts.

|D..(t, /)] = |Ds (t —ts, f — )|, Vz(t), ts, fs- (1) [ll. LINEAR TIME-FREQUENCY DISTRIBUTIONS
AND THE ROTATION PROPERTY
In this section, we investigate the magnitude-wise shift invari-
ance property within the class of linear time-frequency repr%htions is defined as follows:
sentations.

. . . . . . Definition 1: A time-frequency distributiorD, (¢, f) satis-
The magnitude-wise shift invariance of linear t|me-frequen<%}/eS the rotation property [19] if for alk(t) anda
distributions can be characterized fully as follows. The gen- property
eral kernel-based form of a linear time-frequency distribution D, (£, )] = |R—y {Du(t, )} @8)

D, (t, f) is given by

The lesser known rotation property of time-frequency distri-

where ¢ is equal toar /2, andz,, is the ath-order fractional
D.(t,f) = /K (t, f,t)x (V') dt’ (2) Fourier transformation (FrFT) af(t) given by [20], [21]

where «(t, f,t') is the kernel of the distribution [18]. By zalt) {70} (1)
making use of the general theorem on linear systems given in = /Bﬂ, (t, Yz (t')dt', aeR 0<|al<2 (9)
Appendix A, it can be shown easily that the magnitude-wise .
shift invariance in time require®. (¢, f) to have the following \where B, (,#) is
form:

e—d(msgn(sin ¢)/4+¢/2)

[sin g[/2

B, (t t/): Jm(t? cot p—2tt' csc p+t'? cot ¢)

Dyt f) = e?t0) / K-t Pz @yd.  (3) ¢ o

Since the magnitude of time-frequency distributions are relatfad tt.he lr)otanon. ogefr.ato(; acting on a two-dimensional (2-D)
to the energy distribution of the signals in the time-frequen l}.)nc ion D(u, v) is defined as
plane,e??*:f) will be ignored in the rest of the derivations. The Ry {D(u,v)} = D (ucos ¢ + vsin $, —usin ¢ + v cos @) .
(11)
It has been shown that a quadratic time-frequency distribu-
1All integrals are from—co to 400 unless otherwise stated. tion satisfies the rotation property only if it has a rotationally
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symmetric kernel [22]. The most widely known quadratic diswherea does not depend ambut may be a function of. The

tribution satisfying the rotation property is the WD equality in (15) can only be satisfied/if{¢) is one of the eigen-
functions of the FrFT operator. The Hermite-Gaussian functions
aTm i i -
Wa,(t,f) = Ry {Walt, )}, ¢="2 (12) fprm t.he complete set oiagepfuncnonsl ofthe FrFT operator de

2 fined in (9) [21]. Theng = will be the eigenvalue of the FrFT

such thatx equals(r/2)al, wherel is the Hermite polynomial

where W, is the WD of z(¢) [14], [15], [19]. As the time o

and frequency variables have different units, a dimensionarlder' "
-quency : . The rotation property of the STFT with the zeroth-order Her-
normalization of the time-frequency plane is required before

performing the rotation operation [23]. It is assumed that thrglte-Gausman kernel is illustrated in Fig. 1(c) and (d), which

time and frequency domain representations of a sianal corresponds to the STFT of the time domain signal and the
confined to EA#/2y At/2] and p[—Af/2 Af/2] interv%ls YSth-order fractionally Fourier transformed signal in Fig. 1(a)

) LA oL ' and (b), respectively. The rotation property fails if the STFT
respectively. Then, a scaling parametas introduced, where

the dimension of time and scaled coordinatés and fs are Of. both of thgse signals are co_mputed with a scaled Gaussian
window function, as shown in Fig. 1(e) and (f) .

used as new coordinates. This way, the time and frequenC}it will be shown next that the rotation property fails when the

representations of the signal are confined to intervals of Ien%t]'FT kernel is a linear combination of many Hermite—Gaussian
At/s andAfs. We chooses = /At/Af so that the lengths functions

of bOth intervals are equal mAtAf’.Wh'Ch Is adimensionless . Proposition 2: The rotation property fails when the STFT
quantity. In numerical examples, signals can be represented in

both domains withV = AtA f samples spacety/ /N apart. ernel is a. linear comblmatlon of Hermﬂe—@aus&an funct[ons.
: . N Proof: The Hermite—Gaussian functions are the eigen-
In the paper, we assume that a dimensional normalization I?as .
. : unctions of the FrFT. For each FrFT order

already been done and all the coordinates represent dimension-
less quantities.

The rotation property has some important conceptual and {Fhi} (t) = A\ ha(t) (16)
practical implications [14], [15], [24]-[27]. It implies that the
inherent time-frequency domain characteristics of a signahereh,(¢) is the /th-order Hermite—Gaussian function, and
remains unchanged in all the fractional Fourier domaing; = ¢~7'*/2.If h(u) is a combination of Hermite-Gaussian
Therefore, there is nothing special about any of the fractiorfainctions asi(u) = 221:1 aihy (u) with arbitrary nonzeray,,
Fourier domain representations of a signal including thmefficients, therk_,(u) on the left-hand side of (15) is
commonly used time or frequency domains. Among the linear,
shift-invariant time-frequency distributions, only the STFT M
with Hermite-Gaussian kernels satisfies the rotation property. h_o(u) =4 F° Zakhk (u)
This can be shown as follows: b1

Proposition 1: STFT satisfies the rotation property only if M
the window function is a Hermite-Gaussian function. = Z arA “hi(u). a7
Proof: The STFT of the fractionally Fourier transformed k=1
x(t) is

The condition in (15) requires (17) be equal to
, e=7 M arhi(u). However, for arbitrarya, if @ # j,
STFT,, (t, f) = /Jia () h* (' —=t)e ™ "dr’. (13) then \;* # A7 . Therefore, any linear combination of
) Hermite—Gaussian functions fails to satisfy the rotation
By using (9) and the propert, (', 7) = B* (', 7) [21], we Property of STFT.
obtain
IV. TIME-FREQUENCYDOMAIN LOCALIZATION BY STFT

STFT, (¢, f) :/‘”(T) An important criterion for the success of time-frequency rep-
, * resentations is how well it preserves the time-frequency domain

: [/ h(t' —t) e " B_, (t,7)dt'| dr  support of signals. Among the commonly used time-frequency
' representations, WD is the best in this respect. However, the

—e im0 / x(T)h*, (T —tcos¢ — fsing) cross-terms of the WD clutters the obtained time-frequency rep-
—y2me(f cos d—tsin) resentation. Therefore, in a way, it disturbs the actual support of
et dr (14)  the signal in the time-frequency domain. The STFT family pro-

vides cross-term free time-frequency representations. So, sup-
wheref = sin ¢ cos ¢(1” — f*) +2ftsin” . The rotation prop- port preservation criteria is applicable to measure the success
erty requires that the magnitude of (13) is equal to the magnituglethe alternative STFT representations. In this section, we in-
of R4 {STFT.(t, f)}, whichimposes the following condition onyestigate the effect of the STFT kernel on the obtained time-fre-
h(t) to hold true for allp quency support of the signal components. This investigation will
require generalized definition of the time-bandwidth product.
h(u) = h_q(u) - e (15) Furthermore, it will lead to signal adaptive STFTSs.
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(b)

signal, and only the Gaussian signal has a TBP equal to this
lower bound [21].

If the TBP is chosen as the measure of support, a well-defined
optimization problem can be cast for the optimal STFT kernel
as follows. As shown in Fig. 2(a), for an STFT kergél), the
time-frequency domain support of the representationzfaj
can be zoned into a rectangular region of respective time-fre-
quency dimensions f/’? + 72)'/% and(B2 + B2)}/? [3]. To
choose the optimal window that adapts to the analyzed signal
x(t), the following optimization criterion can be used:

- i
|

Real{x(t)}
Heal(xa(t))

S o o o
N D o @

o

-0.2

1/2

(T2 +12)"% (B2 + B2) (23)

min
kY Ty,Bg; Tg-Bg>(1/4m)
It can be easily seen that the optimal solutigh) must satisfy
the uncertainty principle with equality; therefore, it must be a
Gaussian kernel. Hence, the optimization problem can be solved
8642 0 2 4 6 & in this set by just obtaining the time-width of the Gaussian by
solving the following problem:

1/2
(12 4122 (B2 L L / (24)
r, Ve T T 16n2T2)
9 g

With a little effort the optimall, can be obtained as

[ Ty
Ty = 47 B, (25)

) . . ) ) . and the corresponding optimal Gaussian window is [3
Fig. 1. STFT satisfies the rotation property only with Hermite-Gaussian P 9 op [ ]

kernels. To illustrate this, a two-component chirp signal is used. (a) Real part

of the signal. (b) Real part of the = 0.5th-order FrFT of the signal. (c) gTBP(t) =e
STFT of the signal. (d) STFT of ite = 0.5th-order FrFT with zeroth-order

Hermite-Gaussian kernel. The STFT of the transformed signal is the rotatedr z(t), itself a Gaussian signal with, - B, = 1/4m, this

version of the original STFT shown in (c). However, as shown in (€) angptimal time-support for the Gaussian kernel function reduces
(f), the STFT fails to satisfy the rotation property if its kernel is not

Hermite-Gaussian function. (e) STFT of the signal. (f) STFT of the fractionalelkp the commonly used rule-of-thumb of choosing Te= T...

s 6-4-2 0 2 4 6 8
time

—7t?B, /Ty ) (26)

Fourier transformed signal with the kerrglt) = e==t"/3, Otherwise, the optimal time suppdt}, is always shorter than
the time support of the analyzed sigrial.

The time-frequency domain support of a signéf) is com- Although the TBP of a signal is commonly used, it is not a
monly measured by its time-widfh, and its frequency domain satisfactory measure for the time-frequency support of signals.
bandwidthB,,, which are defined as This is illustrated in Fig. 2(c), where support of a signal and its

1/2 bounding rectangle of sides time and frequency widths and area
[j (t — ) Ix(t)|2dt] equal to TBP is shown. Even though the rotation operation just

(18) rotates the support af(t), the TBP changes. In Fig. 2(b), the
12 dependence of the TBP on the FrFT ordés shown for a scaled

[f (f —ns)? |X(f)|2df} Gaussian signal. The minimum TBP is reached when the signal
= (19) support lies along the time or frequency axes. As seen from this

P—

x

=] example, TBP is always an upper bound to the support of the
where signal in the time-frequency domain. Therefore, there is a need
Ut|w(t)|2dt] for a tighter measure of the support. Here, we propose a new

i :W (20) measure that we call generalized TBP, which is defined as

xr
" 2 — 1
)y = flif(ﬁ;)l ] o GTBP(z(1)} = min TBP{z,(1)}.  (27)
T

_ . As illustrated in Fig. 2(d), the GTBP provides the tightest
for a Fourier transform pair(#) and X (f). Therefore, the TBP, 1,5 ning rectangle to the support of the signal in the time-fre-
which is defined as quency domain, hence providing a more representative support

TBP{«(1)} = T, - B, (22) information than the TBP. As the well known lower bound on
the TBP, a lower bound for the GTPB also exists, and they
has been commonly used as a measure for the time-frequeay equal to each other. A more detailed discussion of the
domain support of the signal. The well-known uncertainty prinuncertainty relationship in the fractional Fourier domains can
ciple dictates that /(4n) is a lower bound on the TBP of abe found in [28]-[31].
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Fig. 2. Time-frequency domain support of the STFT representatian(fgrwith kernely(t) can be zoned into a rectangular region of respective time-frequency
dimensions of T2 4+ T2)'/2 and(B2 + B2)'/? as shown in (a). Even though the rotation operation does not change the area of the support of a signal, the TBP
changes. (b) Dependence of the TBP on the FrFT ardershown for an example signal. The minimum TBP is attained when the signal support lies along the
time or frequency axes with the corresponding FrFT orders Gtehdrherefore, TBP, which is the area of the dashed rectangle shown in (c), is not usually a tight

measure for the time-frequency support of signals. As illustrated in (d), the GTBP is the area of the tightest bounding rectangle to the supigoilahtties
time-frequency domain. Thus, it is a better measure for the time-frequency domain signal supports.

By using the order additivity and order periodicity propertyf the optimal STFT for,, () by an angle ofpy. Since, as in
of the FrFT, it can be easily shown that the GTBP of a signél4)
x(t) and itsagth-order FrFTz,, (t) is the same for any,. STFT.. (¢, f)

As it has been investigated for the TBP, it is important to ob- . *
tain the optimal STFT kernel, considering the GTBP of asignal. = /a;(T) {/ h(t' —t) e B_, (t',7)dt'| dr (28)
Actually, this investigation is relatively straightforward and can .
be conducted as follows. As shown in Fig. 2(b), for a sigrfa)  with optimal Gaussian kernél(t) = e~™%  wherey =
whose bounding rectangle is oriented at an agglewhichis B, /T, , then the desired representation :oft) can be
not equal to 0 ofr /2, the fractionally Fourier transformed signalwritten as
Za, (t), Whereag = (2/m)¢g, has its bounding rectangle ori-

ented along the time axis. The transformed signal(t) has its Dat, f) =Boo {STFT.,, (1, 1)} (292)
TBP and GTBP equal to each other. Therefore afgr(t), the = /a;(T)R%

optimal STFT window is the Gaussian window given in (26) . .

with 1., andBIa as the corresponding time and bandwidth ) {/h(t’ — 1) 6]27rft’B_a (t',7) dt’} dr.

of the transformed signal. The desired time-frequency represen- oN

tation of z(¢) can be obtained as the counter-clockwise rotation (29b)
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In (29b), the expression in the brackets can be recognized as[B88. In practical applications, both the orientation angle of the
—apth-order FrFT ofh (¢’ — t)eﬂ”ft’ , Which is simply the time signal and parameters related to the dimensions of the bounding
and frequency shifted form of the kernig(t). Using the time rectangle in the appropriate fractional Fourier domain should be
and frequency shift properties of the FrFT,®, f) is computed adaptively chosen. As future work, the performances of alterna-
as tive ways of determining these parameters can be compared.
' In Fig. 3, time-frequency domain localization by TBP op-
N * o\, —p2wfT timal STFT and GTBP optimal STFT of a quadratic FM signal
D.(t,f)=e¢ /‘E(T).QGTBP(T t)e dr (30) 2(t) = eIm (2 +0.1[t4+0.5]°) . =7t /9 ghown in Fig. 3(a) is com-
pared. The STFTs are evaluated with the kernels determined by
wherey = (t2— £2) sin ¢ cos po+2t f sin’ ¢, and the optimal using (26) and (31), as shown in Fig. 3(c) and (d), respectively.

kernel is Time-frequency support of the GTBP optimal STFT illustrated
in Fig. 3(f) is significantly better localized when compared with
garep(T) = K977 (cot go(v* =1))/ (v* +eot? o) the TBP optimal STFT illustrated in Fig. 3(e).

The GTBP optimal STFT in (30) does not possess the
rotation property becausg;rgp(7) is not a member of the
Hermite—Gaussian function family; however, it has an envelope
where K = /(1 + jcot ¢o)/(7 + jcot o). Since the phase that is a scaled zeroth-order Hermite—Gaussian function. If
¢ can be ignored inD, (¢, f), it is easy to see that the de-the scaling is not equal to 1, the rotation property cannot be
sired representation in (30) has the form of STFT with kernghtisfied. In the next section, we will provide a canonical
garep(7). This explicit form of the GTBP optimal STFT dis- gecomposition of GTBP optimal STFT such that the rotation

tribution provides significant computational saving in practicgayariance is satisfied in a certain scaled fractional Fourier
Once the fractional order, is determined, the computationalgomain.

complexity of (30) is the same as the computational complexity
of the ordinary STFT. The discrete STFT is defined as [1]

e (rese? 60) /(7 +eot? d0) (37

V. GTBP OPTIMAL STFTAND ROTATION PROPERTY

e e Et In Section IV, we have demonstrated that GTBP optimal
STFT, (nT,mF) = /*”7 (") h* (t" —nT)e™ dt STFT can be evaluated as efficiently as ordinary STFT. Using

' (32) (30) and (31), the GTBP optimal STFT of a signdt) with a
wheren andm are integers, an@f andF are the sampling inter- support oriented at an angle ¢f with respect to the time axis
vals of time and frequency, and it can be efficiently implemented the time-frequency plane is as in (33), shown at the bottom
by using FFT techniques. of the page.

There are many alternative approaches to determine the opAlthough (33) provides an efficient implementation method
timal fractional order to be used in the GTBP optimal STFTforthe GTBP optimal STFT analysis, we would like to introduce
analysis. Since the optimal fractional ordey corresponding a multistage implementation of it, as shown in Fig. 4(b), with its
to a signal and its orientation in the time-frequency plane aegplicit derivation detailed in Appendix B. This decomposition
related, the optimal order can be estimated by determining tisea linear canonical representation of the GTBP optimal STFT
orientation of the signal in the time-frequency plane. One wanalysis with a sequence of operations explained and illustrated
of determining the orientation of a signal in the time-frequenan Fig. 5. First, theugth-order FrFT of the input signal is com-
plane is to search for the peaks in the FrFT magnitudes coputed using (9). As shown in Fig. 5(d), the time-frequency sup-
puted at various fractional orders [14], [32], [33]. In practiceport of the transformed signal [which is shown in Fig. 5(c)] is
the search for the optimal fractional order can be conductedented along the time axis.
approximately by computing the FrFT of the signal at ten to After this operation, the major axis of the time-frequency do-
30 different fractional orders. Since each FrFT computationisain support of the transformed signal is along the time axis.
O(N log N), the overall complexity of the required search is oflence, the conventional TBP provides a good support informa-
O(N log N) as well. The FrFT computation algorithm is givertion on the transformed signal. Assuming that the time and fre-
in Table 1[23], [27]. Alternatively, for mono-component signalsquency widths of the transformed signal dteand B,., respec-
the required fractional Fourier transformation order can also tieely, the time scaling of the transformed signal by an amount
found based on the fractional moments of the signal. Efficieaf M = /B, /T, results in a signat(M¢) whose time and fre-
ways of computing the fractional Fourier transform momentmency widths are equal. Hence, after the scaling, the time-fre-
of a signal are given in [34] and [35]. In addition, for signalgjuency support will fit into a circular support. As shown in
with strong harmonics, an alternative mean of determining tiég. 5(f), the time-frequency support of the scaled signal [shown
required fractional Fourier transformation order can be foundin Fig. 5(e)] fits into a circular region. Once the support of the

STFT,(t, f) = [(/L,;(T)efﬂ(fft)z[(('chc2 ¢0)/(v*+cot” o)) —3((cot ¢o(v* —1))/ (v +cot” ¢0))] ,—127 f7 1. (33)
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TABLE |
FAST FRACTIONAL FOURIER TRANSFORMALGORITHM PROPOSED IN[23]

Object of the algorithm:
Given z(n/dz), —N/2 < n < N/2 — 1, to compute z4(m/2dz), —N < m < N — 1, under the
assumption that the WD of z(¢) is confined into a circle with diameter dz < VN.
Steps of the algorithm:
Interpolate the input samples by 2: z(n/dz) — z(n/2dz)
a = (a+2 mod4) -2 % After the modulo operation, a' € [~2, 2)
% The cases of @’ € [0.5, 1.5] and a’ € {[-2, —0.5)U(—0.5, 2)} have to be treated separately.

if |a'| € [0.5, 1.5] then

a":=a
else
a" :=(a' +1 mod4) -2 % After the modulo operation, a” € (0.5, 1.5)
end if
¢" = Za"
a = cot¢”
B = cscgd”
Ay = ezp(—jrrs’gslilrff;;;@/4+j¢/2)

% Compute the following sequences:

c1[m] = eIma(e/da?=B/N)m*  for _N<m<N-1
calm] = eImAm/2VN)? for —2N <m <2N —1
c3[m] = e’"gft‘mﬁz‘("‘/N_ﬁ/d”2)m2 for —N<m<N-1
g[m] = c¢1[m]z(m/2dz) for —-N<m<N-1
haz(m/de) = %%c;;[m](@ xg)m] for —N<m<N-1

%In the last step FFT is used to compute the convolution in O(N log N) flops.
if |a| € [0.5, 1.5] then

zq(m/2dz) := hgr(m/2dz)
else

% Compute samples of the ordinary FT using FFT.

Ta(m/2dz) i= {F hor}(m/2de)

end if

signal becomes circular, the GTBP optimal STFT and the TBfages to provide the final answer. First, a time-frequency
optimal STFT becomes identical. Hence, as it can be showamain inverse scaling should be performed:

easily by using (26), the kernel of the GTBP optimal STFT is
the following zeroth-order Hermite—Gaussian function Du(t.f) =D (%,Mf) (35)

garep(t) = e . (34)
whereD(t, f)istheinput, and, (¢, f) is the output of the time-

The obtained STFT representation with the zeroth-ordequency inverse scaling operation. The effect of this scaling
Hermite—Gaussian kernel should be operated in two successiperation is shown in Fig. 5(f) and (g). Then, the final GTBP
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@ ® . lations, we use a quadratic FM signal embedded5rdB noise.
il The analyzed signal is(t) = (1/y/3)ermlot* +8(t=m)’]g—mt*
- wherea =1, § = 0.2, n = 1.5, and~y = 1/18. The time
domain signal and the corresponding TBP optimal STFT are
shown in Fig. 6(a) and (b). In Fig. 6(c), the peak amplitudes of
the fractional Fourier transformed¢) as a function ofp —m /2
p i | is presented. The peak is observed at the amgle= 65°.
. _ 7| Finally, the GTBP optimal STFT is shown in Fig. 6(d).

564202 46 8 -8 -6 -4 'Zﬁgw 2 4 68 A significant improvement for the time-frequency localiza-
© @ tion is observed when compared with the TBP optimal STFT
0.3 02 with similar computational complexity. As future work, optimal
STFT analysis will be extended to multicomponent signals. To
02 01 obtain a well-localized time-frequency representation of a mul-
ticomponent chirp signal with different chirp rates, the orienta-
tion angles of each component and, consequently, the required
FrFT orders to perform the STFT, should be determined. Fol-
lowing the individual GTBP optimal time-frequency analysis of
iy o2 each signal component, the obtained time-frequency represen-
B2 e 08 R ime = 4 ® % tations are combined so that the time-frequency localization of

© 0! each chirp component is optimally compact.

o
1)

Real{x(t)}
=)
frequency

1
o
N
|

N

-0.4 =6[....i.

£ o1

Heal{gop((t)}
o

VI. CONCLUSIONS AND FUTURE DIRECTIONS

o M b o o
o N & O @

In this paper, we have investigated the magnitude-wise
shift invariance and time-frequency rotation properties of
linear time-frequency representations that are satisfied by the
guadratic WD. It is proven that STFT is the only linear distri-
bution that is magnitude-wise shift invariant in both time and
frequency. Furthermore, it is shown that the STFT satisfies the

Fig. 3. Time-frequency domain localization by the TBP and GTBP optimahyation property if its kernel is chosen as a Hermite-Gaussian
STFT of a quadratic FM signal(t) = e2m(t2+0.1[t+0.51%) o=7t/9 shown in . property

(a) is compared. The rectangles whose area are equal to the TBP and G‘fHB,Cnon-

respectively, are illustrated in (b). The TBP optimal STFT is evaluated with the \We investigated TBP optimal STFT analysis. By generalizing

kernel shown in (), and the GTBP optimal STFT is evaluated with the kem@{ae TBP tg fractional Fourier domains, the GTBP definition is
shown in (d). The GTBP optimal STFT illustrated in (f) has a significantly . ! K X .
improved time-frequency support than the TBP optimal STFT illustrated in (é))troduced. It is shown that the GTBP provides a rotation in-
variant measure for the time-frequency support of mono-com-
optimal STFT distribution is obtained by the following rotatior?"eNt signals. Then, the GTBP optimal STFT analysis is pro-
posed for mono-component signals.
Along with the proposed efficient implementation of the
STFT.(t, f) = Ry {Ds(t, f)}- (36) GTBP optimal STFT, a theoretically insightful canonical
decomposition of it is presented. This way, the GTBP optimal
The effect of this operation is shown in Fig. 5(h), which yieldSTFT analysis is related to the rotationally invariant STFT
a high-resolution time-frequency description corresponding &malysis with the zeroth-order Hermite—Gaussian kernel. In
the original signal. addition, this decomposition provided a “natural domain”
The main reason behind the introduction of this canonicabncept for mono-component signals.
decomposition is that the rotation invariant STFT with the The proposed GTBP optimal STFT requires three important
zeroth-order Hermite-Gaussian kernel is explicitly shown fearameters related to the time-frequency support of mono-com-
be part of every GTBP optimal STFT analysis. Therefore, f@onent signals. These are the dimensions and the orientation of
any arbitrary mono-component signal, there exists a “natutlle bounding rectangle [37]. In practical applications, these pa-
domain,” where the rotation independent STFT analysis witameters should be adaptively chosen. Comparison of the per-
zeroth-order Hermite—Gaussian kernel provides the GTBP dprmances of alternative ways of determining these parameters
timal STFT representation. The signals are transformed to thegquires further investigation.
“natural domains” by the first two operations of the canonical In addition, the GTBP optimal STFT representation of multi-
decomposition. We believe this concept of “natural domair€omponent signals needs the determination of the required set
is theoretically significant and will provide further insight toof parameters for each signal component. Efficient ways of their
the research on time-frequency signal analysis. determination and how the individual GTBP optimal STFT rep-
In the rest of this section, the performance of the GTBfsentations should be combined require further research. In ad-
optimal STFT is illustrated by using simulated data. In the simdition, further research is required in obtaining other forms of

/

frequency

|
n

frequency
A&
L

|
=)

-6

8 L I
8 642 0 2 4 6 8 8 -6 -4 -2
time

0
time

operation:
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® s STFT, (t.f)
x(t >
gGTBg) X
(a)
th Scalin, 2-D Rotation
x()— 20,009 b Mg Inverse by STFT, (t,0)
FrFT y scaling 5 a2

Fig.4. (a)Block diagram of GTBP optimal STFT. (b) Linear canonical decomposition of it. The first two operational blocks in (b) transform themmuomend
signala(t) to its “natural domain,” where the rotation invariant STFT with kerfag(t) provides the GTBP optimal STFT distribution.

06 @ o O generalized time-bandwidth products that are invariant under
04 8 a more general area preserving time-frequency operations: the
‘ 4 symplectic transforms [38].
0.2 52
g o g9 /
S £, i APPENDIX A
-0.2 4
o4 -8 Theorem 1
8-6-4-2 02468 B ez 4+ 88 If a linear systen¥” satisfies magnitude-wise shift invariance
08 © . @ in time, then there exist al(t) and¢(¢) such that the output of
o 6 7 for any arbitrary inputz(¢) can be written as
' 4
0.2 52 ~
2 o %o — T{ax(t)} = D [h(t) * x(t)] . (37)
-0.2 £-2
oa ': Proof: By using the Riesz theorerf, can be represented as
s a2 0.2 468 EEEE .2 468 .
ime
. , Tlo(t) = [ K(t0)a()ar (38)
0.6 8- .
04 8 L ] _ o
o 4 whereK (¢,t') is the kernel of the transformation.Tf satisfies
g ' g 2 magnitude-wise shift invariance in time, the outputs to impulses
=T i gz o(t) andd(t — ts), y(t) :?md.ys(t)., respectively, should satisfy
02 » lys(t)| = |y(t — ts)|, which implies that
-0.4 6
L] I _
8642 02 468 B 64202 468 |K (t —ts,0) | = |K (¢, ts) |, Vi, ts. (39)
© )
8 1 8, .
6 o In general, the kernel function can be decomposdd@st’) =
4 095 4 o(t, t)er?* ™) wherep(t, ') andg(t, ') are the magnitude and
32 . 32 phase functions, respectively. The condition in (39) requires that
s 409§ .
80 L 30 o(t,t") = o(t—1t'); therefore, the kernel function can be decom-
o oss =72 posed as
N R S K (t,t) = o(t—t) () 40
E R O 2 468 S -é”-T’-’é“ﬁg\e 2 4 6 8 (t,t)=o(t—1t)e . (40)

Fig. 5. For a chirp-like signal shown in (a), the FrFT is computed so that ﬂNeXt* it will be shown that the phase function satisfies

chirp is converted to a sinusoidal, as in (c). The corresponding STFTs are shown

in (b) and (d), respectively. Through appropriate scalingt) is converted N ’ ~

to a zeroth-order Hermite—Gaussian enveloped sinusoidal, as illustrated in (e), ¢ (tv t ) =-Vv (t —t ) + d’(t)' (41)

and its STFT is computed with the Gaussian window, as shown in (f). This is

followed by 2-D scaling, which inverts the scaling on the signal as shown in (g). . . . .
Finally, the distribution is rotated back to its original orientation removing the To prove (41), the input can be chosen as a linear combination

FIFT effect, as illustrated in (h). of two weighted impulses(t) = a16(t) + a26(t —7); then, the



1240 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003

. @ o © Therefore, ¢(¢,t'") satisfies the following partial differential
6 equation:
0.5 4
g2 9 / ’
s 0 ! 29 @Qs(tvt):ﬂ’(t—t) (47)
L2
-05 -4 which is solved by

-6)
1 -8

8 6 -4 2 0 2 4 6 8 -8 6 -4-2 0 2 4 6 8
time

() ==V (t—t)+ (1) (48)

© © wherey(t) = (d/dt)¥(t), ande(t) is an arbitrary phase func-
tion. Thus, the kernel has the following form:

K (4,1)) = o(t — t') e 72— 16(0) (49)

Hence, the input—output relationship of the linear system can be
written as

Peak amplitude of the FrFT
(%1} N
frequency
N O N & O @

!
=]

-90 -60 -30 0 30 60 90 8 6 -4 -2 0 2 4 6 8
06 -m2 time

Fig. 6. To illustrate the effect of noise, the noisy quadratic FM signal shown
in (a) is analyzed by both the TBP optimal STFT and the GTBP optimal STFT.
The corresponding TBP optimal STFT is shown in (b). The optimum fractional
Fourier order for the signal can be identified automatically by using the peak .
amplitudes of the FrFT magnitude data as a function of the orientation angle, as :eg¢(t) [h(t) % x(t)] (50)
shown in (c). The observed peak at the angle= 65° is used in the GTBP

optimal STFT distribution shown in (d).

y(t) :/.K(tﬂf/)z(t') dat’

/ o(t—1t) o~ IY (=) (15 (0) 1 (') dt’

whereh(t) = o(t)e=7%®),
output isy(t) = a1 K (¢,0) + a2 K (¢, 7). For the shifted input

zs(t) = z(t — ts), the output becomeg,(t) = a1 K(¢,t) + APPENDIX B

as K (t,ts + 7). The magnitude-wise shift invariance implies In this Appendix, we prove that the linear canonical decom-

lys(t)] = |y(t — ts)|. Thus, the kernel should satisfy position of the GTBP optimal STFT described in Section V and
its computationally efficient form in (33) are explicitly equiva-

lor K (t,ts) + oK (t,ts +7)| lent.

— |1 K (t — 5,0) + oK (t — 15, 7)|  (42) The _multistage_ implementation of th_e GTBP optimal STFT
analysis shown in Fig. 4(b) starts with the FrFT operation

for all £, .., 7, oy, ovs. Using the definition in (40), (42) can beat the optimum fractional ordetiy and scaling the signal

re-expressed as by M = /1., /Bs,, SO thatz,(Mt) is obtained. The
rotation-invariant STFT ofc,,(M¢) with the kernel of the
laro (t—ts) e?®Bt) f s (t—t,—7) 2Bt t7))| zeroth-order Hermite-Gaussian function is computed as

= |0 (t—ts) (=10 4 o (t—ts—1) e]¢(t_t"’7)|. (43)
STFT,,, (1) = [ 0y (M7) ylr =) "1 dr. (51)
Assuming thap(t) is not identically zero, (43) can only be sat-
isfied if The STFT operation is followed by a 2-D time-frequency do-
main scaling through transforming time and frequency variables
¢ (t,ts) — ¢ (t —ts,0) (t, f)to (t/M, M f) so that the resultant distributids (¢, f) is
=¢(tts+7)— Pt —ts,7), Vt, ts, 7. (44) .
D,(t, f) = / Tay (MT)HY <T - M) e 2 MIT - (52)
After rearranging the terms in (44), we obtain the following con-
dition: Using the definition in (9) and the propert®,,(t',7) =
B*, (t',7) of the FrFT kernelD,(t, f) can be re-expressed as
bltte+7) - (01,) o7 J) P

= ¢t —te,7) — (t—ts,0), VL, Lo, 7. (45) Ds(t,f):%/z(r)

It can be shown that if(¢,t') satisfies (45), them)(¢,t') = . T =\ e *
(0/0t")¢(t,t') exists. Thus, in the limit approaching 0, (45) : [/ B_qy (7,7") ho <7> e d’r} dr. (53)
implies that

The expression in the square brackets in (53) isthgth-order
P (t,ts) =1 (t—1ts,0) = (t —ts), Vi, ts. (46) FrFT of the scaled, time and frequency shifted zeroth-order Her-
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mite-Gaussian functiofi(7) = ho((7 — t)/M)e?*™f7, Using
the FrET properties in [21]f_,, (7) can be expressed as

f=ao(7)
" M sin ¢
=MKe ™ hyg <— %0
sin ¢g
. 632‘1r‘r(f cos po+tsingg)

~ e—]a‘r(7'+f sin o —t cos ¢ )2 cot ¢ (1—(cos? ¢’ /cos? ¢))
(54)
wheregy = agm /2, K = /(1 + jcot ¢g)/(1/M? + jcot ¢y),

Y = singgcosdo(t> — f2) + 2tfsin®po, and ¢y =
tan~!(tan ¢y /M?).

(7 + fsin¢gg — tcos (,bo))

Finally, D4(t, f) is rotated bygy = agw/2 in the counter

clockwise direction, an®, { Ds(t, f)} is obtained as

R¢0 {Ds(tv f)}
=D <t cos ¢o + [ sin ¢g, —t sin ¢g + f cos ¢0> (55)

e / o(r) KR <7]‘$z;{’6 - t])

LI cot ¢0(1—C052 ¢6/ cos? ¢0)(T—t)26—]27rf‘rd7_
(56)

where

Ve = (82 — f?) (sin % — sin 2¢y sin® ¢0>

+tf (2 cos 2¢g sin” ¢y + sin? 2¢>0) .

Since the phaseg,. can be ignored, it is simply seen that (56) is

an STFT with the kernel function

q(T) :Khé (MSiIl ¢6 7_) e]wrz cot ¢o (1—cos? b0/ cos? o)

sin ¢0
(57)
:Ke—‘/r((luz sin> ¢6)/(Sin2 4)0))72
. e]wrz cot ¢o (1—cos? b0/ cos? 4)0)‘ (58)

Since M in (58) andy in (31) are related ag = 1/M?, and
sin ¢, andcos ¢, are

sin ¢ty = b0 (59)
Vtan? ¢g + M*4
M2
Cos py =———=o-— (60)
Vtan? ¢g + M4
(58) can be re-expressed as
g(T) _ Ke—]ﬁrz(cot $0(v*=1))/(v* +cot> ¢g)
T (vese? 6o) /(47 +eot” ¢o) (61)

which equals the kernel functigep(7) in (31).
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