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Weak localization leads to the same correction to both the conductivity and the McMillan’s electron–
phonon coupling constant l (and ltr, transport electron–phonon coupling constant). Consequently the
temperature dependence of the thermal electrical resistivity is decreasing as the conductivity is decreas-
ing due to weak localization, which results in the decrease of the temperature coefficient of resistivity
(TCR) with increasing the residual resistivity. When l and ltr are approaching zero, only the residual
resistivity part remains and it gives rise to the negative TCR. Accordingly, the Mooij rule is a manifes-
tation of weak localization correction to the conductivity and the electron–phonon interaction. This
understanding provides a new means of probing the phonon-mechanism in exotic superconductors and
an opportunity of fabricating new novel devices.

1 Introduction

Although weak localization has greatly deepened our understanding of the normal state of disordered
metals [1–3], its effect on superconductivity and the electron–phonon interaction has not been under-
stood well [2]. Recently, it has been shown that weak localization leads to the same correction to the
conductivity and the phonon-mediated interaction in superconductivity [4, 5]. In fact, there are over-
whelming numbers of experiments which support this idea [4]. For instance, tunneling [6–8], specific
heat [9], X-ray photoemission spectroscopy (XPS) [10], correlation of Tc and the residual resistivity
[11–13], universal correlation of Tc and the resistance ratio [14–16], and loss of the thermal electrical
resistivity [17] with decreasing Tc clearly show a decrease of the electron–phonon interaction accom-
panying the decrease of Tc with disorder. It is then anticipated that the electron–phonon interaction in
the normal state of metals will also be influenced strongly by weak localization. We expect that
phonon-limited electrical resistance, attenuation of a sound wave, thermal resistance, and a shift in
phonon frequencies may change due to weak localization [18].

Indeed, the Mooij rule [19] in strongly disordered metallic systems seems to be a manifestation of
the effect of weak localization on the electron–phonon interaction and the conductivity. In early
seventies, Mooij found a correlation between the residual resistivity and the temperature coefficient of
resistivity (TCR). In particular, TCR is decreasing with increasing the residual resistivity. Then it
becomes negative for resistivities above 150 mW cm. We stress that this behavior is consistent with the
above superconducting properties: correlation of Tc and the residual resistivity [11–13], universal
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correlation of Tc and the resistance ratio [14–16], and loss of the thermal electrical resistivity [17]
with decreasing Tc.

There are already several theoretical works on this problem. Jonson and Girvin [20] performed
numerical calculations for an Anderson model on a Cayley tree and found that the adiabatic phonon
approximation breaks down in the high-resistivity regime producing the negative TCR. Imry [21]
pointed out the importance of incipient Anderson localization (weak localization) in the resistivities of
highly disordered metals. He argued that when the inelastic mean free path, ‘ph, is smaller than the
coherence length, x, the conductivity increases with temperature like ‘�1

ph and thereby leads to the
negative TCR. On the other hand, Kaveh and Mott [22] generalized the Mooij rule. Their results are
as follows: the temperature dependence of the conductivity of a disordered metal as a function of
temperature changes slope due to weak localization effects, and if interaction effects are included, the
conductivity changes its slope three times. Belitz and coworkers [23, 24] introduced a theory with
phonon-induced tunneling. There is also the extended Ziman theory [25], and Jayannavar and Kumar
[26] suggested that the Mooij rule can arise from strong electron–phonon interaction taking into
account qualitatively different roles of the diagonal and off-diagonal modulations. Zhao et al. [27]
used the first-principles electronic structure calculation for 100- and 200-atom model for metallic
glasses to compute the electronic transport properties. They noticed that the magnitudes and the shape
of the conductivity function can give rise to a negative TCR.

In this paper, we propose an explanation of the Mooij rule based on the effect of weak localization
on the electron–phonon interaction. We show that TCR decreases with increasing the residual resistiv-
ity, since weak localization decreases the electron–phonon interaction [4, 5]. The negative TCR is
therefore due to weak localization correction to the Boltzmann conductivity. Note that when TCR is
approaching zero there is no temperature-dependent resistivity left. (This latter point is similar to
Kaveh and Mott’s interpretation [22].) In Section 2, we briefly describe the Mooij rule. In Section 3,
weak localization correction to the McMillan’s electron–phonon coupling constant l and ltr is calcu-
lated. A possible explanation of the Mooij rule is given in Section 4, and its implication is briefly
discussed in Section 5. In particular, this study provides a means to probe the phonon-mechanism in
exotic superconductors [5, 28]. Furthermore, since weak localization basically leads to the decoupling
of electrons and phonons, this property can be employed to fabricate new novel devices [29].

2 The Mooij rule

Mooij [19] was the first to point out that the size and sign of the temperature coefficient of resistivity
(TCR) in many disordered systems correlate with its residual resistivity q0 as follows:

dq=dT > 0 if q0 < qM ;

dq=dT < 0 if q0 > qM : ð1Þ
Thus, TCR changes sign when q0 reaches the Mooij resistivity qM ffi 150 mW cm. An approximate
equation for qðTÞ is given by [2]

qðTÞ ¼ q0 þ ðqM � q0Þ AT ; ð2Þ
where A is a constant which depends on the material.

Figure 1 shows the temperature coefficient of resistance a versus resistivity for transition-metal
alloys obtained by Mooij. It is clear that a (and TCR) is correlated with the residual resistivity. Note
that above 150 mW cm most a values are negative while no negative a is found for resistivities below
100 mW cm. Figure 2 shows the resistivity as a function of temperature for pure Ti and TiAl alloys
containing 3, 6, 11, and 33% Al. TCR is decreasing as the residual resistivity is increasing. For TiAl
alloy with 33% Al shows a negative TCR. The solid line denotes the temperature range which will be
considered in our theoretical calculation. The resistivity saturation above 1000 K is not yet well under-
stood [2]. We note that the positive TCR is basically a high temperature phenomenon, presumably
related to the phonon-limited resistivity, whereas the negative TCR is rather a low temperature beha-
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vior, probably connected with the residual resistivity part. Since this behavior is generally found in
strongly disordered metals and alloys, amorphous metals, and metallic glasses [2], it is called the
Mooij rule. However, the physical origin of this rule has remained unexplained until now.
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Fig. 1 Temperature coefficient of re-
sistance a versus resistivity for bulk al-
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Fig. 2 Resistivity versus temperature for Ti and TiAl al-
loys containing 0, 3, 6, 11, and 33% Al. Data are from
Mooij, Ref. [19]. The solid line represents the temperature
range where our theoretical calculation will be compared
with the experimental data.
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loys. Data are from Rapp, Ref. [55] and Grimvall,
Ref. [35].



3 Weak localization correction to the electron–phonon interaction

Since the electron–phonon interaction in metals gives rise to both the (high temperature) resistivity
and superconductivity, these properties are closely related, which was noticed by many workers [30–
34]. Gladstone et al. [30] pointed out that l and the high temperature electrical resistivity are closely
related each other. Hopfield [31, 32] noted that the electronic relaxation time due to electron–phonon
interaction, as measured in optical experiments above the Debye temperature, should be approximately
equal to 2plkBT=�h. He applied this idea to Nb, Mo, Al and Sn and found a good agreement with
experiment. Grimvall [33] estimated l for noble metals from Ziman’s high temperature resistivity
formula. Maksimov and Motulevich [34] followed the idea of Hopfield and estimated l from optical
measurements for Pb, Sn, In, Al, Zn, Nb, V, Nb3Sn, and V3Ga, which are in good agreement with the
McMillan’s coupling constant l from superconductivity data.

In this section, we show that weak localization leads to the same correction to the conductivity, the
McMillan’s electron–phonon coupling constant l and ltr.

3.1 High temperature resistivity

At high temperatures, the phonon limited electrical resistivity is [35–38]

qphðTÞ ¼
4pmkBT
ne2�h

ð
a2
trFðwÞ
w

dw ;

¼ 2pmkBT
ne2�h

ltr; ð3Þ

where a2
trFðwÞ is the transport electron–phonon coupling function which includes an average of a

geometrical factor 1� cos qkk0 in the Eliashberg coupling function a2FðwÞ. FðwÞ is the phonon den-
sity of states. On the other hand, in the strong-coupling theory of superconductivity [39, 40], the
McMillan’s electron–phonon coupling constant is defined by [40]

l ¼ 2
ð
a2ðwÞ FðwÞ

w
dw : ð4Þ

Assuming a2
tr ffi a2 [35, 41–43], we obtain

qphðTÞ ¼
2pmkBT
ne2�h

ltr ð5Þ

ffi 2pmkBT
ne2�h

l : ð6Þ

Consequently the McMillan’s coupling constant l also determines the size and sign of TCR.
The existence of this relationship was well confirmed theoretically and experimentally. Table 1

shows the comparison of ltr and l by Economou [41] for various materials. He obtained ltr from Eq.
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Table 1 Comparison of ltr and the McMillan’s electron-phonon coupling constant l. Data are from
Economou, Ref. [41] and Grimvall, Ref. [42].

metal ltr l metal ltr l

Li 0.40 0.41� 0.15 Na 0.16 0.16� 0.04
K 0.14 0.13� 0.03 Rb 0.19 0.16� 0.04
Cs 0.26 0.16� 0.06 Mg 0.32 0.35� 0.04
Zn 0.67 0.42� 0.05 Cd 0.51 0.40� 0.05
Al 0.41 0.43� 0.05 Pb 1.79 1.55
In 0.85 0.805 Hg 2.3 1.6
Cu 0.13 0.14� 0.03 Ag 0.13 0.10� 0.04
Au 0.08 0.14� 0.05 Nb 1.11 0.9 � 0.2



(5) and compared with l, as obtained from Tc measurements, and/or tunneling experiments, and/or
first principle calculations [42]. The overall agreement between ltr and l is impressive. Grimvall
estimated l for noble metals [33] and noble metal alloys [44] from Eq. (6). Maksimov [43] also noted
the direct relation between l and the high temperature resistivity. Hayman and Carbotte [45] pointed
out that information on the volume dependence of an electron–phonon coupling strength can be ob-
tained from high temperature resistivity. Chakraborty et al. [46] used Eq. (5) to obtain the empirical
values of ltr for Nb, Mo, Ta, and W. They found that ltr from resistance and the McMillan’s coupling
constant l from superconductivity are very similar in magnitude for these materials. We can also
mention experimental confirmations by Rapp and Crawfoord [47] for Nb–V alloys, Rapp and Fogel-
holm [48] for Al–Mg alloys, Fl�kiger and Ishikawa [49] for Zr–Nb–Mo alloys, Fogelholm and Rapp
[50] for In-Sn alloys, Lutz et al. [51] for Nb3Ge films, Mankovskii et al. [52] for thin Sn films, Rapp
et al. [53] for Au–Ga alloys, and Sundqvist and Rapp [54] for aluminum under pressure. Figure 3
shows the McMillan’s coupling constant l versus dq=dT / ltr for Au–Ga, Au–Al, and Ag–Ga alloys
[55], which examplifies the correlation implied by Eq. (6).

3.2 Weak localization correction to the McMillan’s coupling constants l and ltr

Now we need to calculate the McMillan’s electron–phonon coupling constant l for highly disordered
systems. We follow McMillan’s approach to the strong-coupling theory [5, 40]. (For simplicity we
consider an Einstein model with frequency wD). He showed that l can be written as [40]

l ¼ 2
ð
a2ðwÞ FðwÞ

w
dw ð7Þ

¼ N0
hI2i

Mhw2i ; ð8Þ

where M is the ionic mass and N0 is the electron density of states at the Fermi level. hI2i is the
average over the Fermi surface of the square of the electronic matrix element and hw2i ¼ w2

D. In the
presence of impurities, weak localization mainly leads to a correction to a2ðwÞ or hI2i. We disregards
the changes of FðwÞ and N0, since experimental data do not show any significant changes of FðwÞ
[56, 57] and N0 [58, 59].

There are two ways to obtain the McMillan’s coupling constant l in the presence of impurities. One
method is to calculate l directly from Eq. (8), using the electronic matrix element for disordered
systems and the other is to carry out the canonical transformation of Fr�hlich in the scattered state
basis [4, 60]. We have found that both methods lead to the same l.

In this paper, we use the latter method in a simple manner by observing that the Fr�hlich interaction
can be derived from the phonon Green’s function [61]. We note that the equivalent electron–electron
potential in the electron–phonon problem is given by the phonon Green’s function Dðx� x0Þ [61–63]

Vðx� x0Þ ! I20
Mw2

D

Dðx� x0Þ ; ð9Þ

where x ¼ ðr; tÞ and I0 is the electronic matrix element for the plane wave states. The Fr�hlich interac-
tion at finite temperatures is then given by [61]

Vnn0 ðw;w0Þ ¼ I20
Mw2

D

ð ð
dr dr0 w*n0 ðrÞ w*�nn0 ðr0Þ Dðr� r0;w� w0Þ w�nnðr0Þ wnðrÞ

¼ I20
Mw2

D

ð
jwn0 ðrÞj

2 jwnðrÞj
2 dr

w2
D

w2
D þ ðw� w0Þ2

¼Vnn0
w2

D

w2
D þ ðw� w0Þ2

; ð10Þ
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where

Dðr� r0;w� w0Þ ¼
P
q

w2
D

ðw� w0Þ2 þ w2
D

eiq � ðr�r0Þ

¼ w2
D

ðw� w0Þ2 þ w2
D

dðr� r0Þ : ð11Þ

Here w means the Matsubara frequency and wn and w�nn denote the scattered state and its time-re-
versed partner, respectively. Therefore, we get the strong-coupling gap equation [4]

Dðn;wÞ ¼ T
P
w0

P
n0

Vnn0 ðw;w0Þ Dðn0;w0Þ
w02 þ E2

n0 ðw0Þ

¼ T
P
w0

w2
D

ðw� w0Þ2 þ w2
D

P
n0

Vnn0
Dðn0;w0Þ

w02 þ E2
n0 ðw0Þ ; ð12Þ

where

En0 ðw0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2n0 þ D2

n0 ðw0Þ
q

; ð13Þ

and the McMillan’s electron–phonon coupling constant l

l ¼ N0hVnn0 ð0; 0Þi ¼ N0
I20

Mw2
D

ð
jwnðrÞj

2 jwn0 ðrÞj
2 dr

� �
: ð14Þ

Here En means the eigenenergy of the scattered state wn. As expected, Eq. (14) is the same as Eq. (8).
It is remarkable that the McMillan’s electron–phonon coupling constant is determined by the density
(or eigenstate) correlatin function,

Ð
jwnðrÞj

2 jwn0 ðrÞj
2 dr [60].

Note also that in the presence of impurities, the density correlation function has a free-particle form
for t < t (scattering time) and a diffusive form for t > t [64]. As a result, for t > t (or r > ‘), one
finds [65–69]

Rðt > tÞ ¼
ð
t>t

jwnðrÞj
2 jwn0 ðrÞj

2 dr ¼
P
q
jhwnj eiq � r jwn0 ij

2 ¼
P

p=L< q<p=‘

1
2p�hN0Dq2

ð15Þ

¼ 3

2ðkF‘Þ2
1� ‘

L

� �
: ð16Þ

Here ‘ is the mean free path and L is the inelastic diffusion length. D means the diffusion constant
and kF is the Fermi wave vector. Whereas the contribution from the free-particle-like density correla-
tion for t < t is [4, 65]

Rðt < tÞ ¼
ð
t<t

jwnðrÞj
2 jwn0 ðrÞj

2 dr ¼ 1� 3

ðkF‘Þ2
1� ‘

L

� �" #
: ð17Þ

Since the phonon-mediated interaction is retarded for tret � 1=wD, only the free-particle-like density
correlation contributes to l. This is also true of ltr, simply because the conductivity is determined by
the behavior of the wavefunction w for t < t (or r < ‘) [70].

Consequently, we obtain weak localization correction to the McMillan’s coupling constants l and ltr

l ¼ N0
I20

Mw2
D

1� 3

ðkF‘Þ2
1� ‘

L

� �" #
ð18Þ

and

ltr ¼ 2
ð
a2
trðwÞ FðwÞ

w
dw ffi N0I20

Mw2
D

1� 3

ðkF‘Þ2
1� ‘

L

� �" #
¼ N0I20

Mw2
D

1� 3

ðkF‘Þ2

" #
: ð19Þ
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For ltr we have used L ¼ 1 at T ¼ 0, since the zero temperature electron–phonon coupling constant
is required [39]. Note that the weak localization correction term is essentially the same as that of the
conductivity.

4 Explanation of the Mooij rule

As noted in the Section 2, the positive TCR is high temperature phenomenon whereas the negative
TCR is low temperature phenomenon. Thus, the decrease of the positive TCR is mainly due to the
decrease of the phonon-limited resistivity, which is a manifestation of weak localization correction to
the electron–phonon interaction. On the other hand, the negative TCR originates from the residual
resistivity, which is also a manifestation of weak localization correction to the conductivity. Accord-
ingly, weak localization seems to be the physical origin of the Mooij rule in disordered metals. One
should note that this observation agrees with the superconducting behavior of disordered system, when
the electrons are weakly localized [14–17].

4.1 Decrease of TCR at high temperatures

Upon substituting Eq. (19) into Eq. (3), one finds the phonon-limited high temperature resistivity

qphðTÞ ¼
2pmkBT
ne2�h

ltr ffi
2pmkBT
ne2�h

N0I20
Mw2

D

1� 3

ðkF‘Þ2

" #
: ð20Þ

Note that as the disorder parameter 1=kF‘ is increasing, both the magnitude of the phonon-limited
resistivity and the TCR decrease. This behavior is due to the reduction of the McMillan’s electron–
phonon coupling constant when electrons are weakly localized. It is remarkable that the slope of the
high temperature resistivity varies as �1=ðkF‘Þ2, in accord with the behavior of the residual resistiv-
ity.

The phonon-limited resistivity qph versus temperature T is shown in Fig. 4a for six values of kF‘.
Since conventional transport theory uses ðkF‘Þ�1 as an expansion parameter [2], kF‘ is a good mea-
sure of the degree of disorder. We used kF ¼ 0:8�A

�1
, n ¼ k3F=3p

2, and N0I20=ðMw2
DÞ ¼ 0:5. It is clear

that TCR is decreasing significantly as the electrons are weakly localized.

4.2 Negative TCR at low temperatures

At low temperatures the conductivity and the residual resistivity are given by [2, 3]

s ¼ sB 1� 3

ðkF‘Þ2
1� ‘

L

� �" #
ð21Þ

and

q0 ¼
1

sB 1� 3

ðkF‘Þ2
1� ‘

L

� �" # ; ð22Þ

where sB ¼ ne2t=m. When 1=kF‘ becomes comparable to �1, the magnitude and slope of qphðTÞ are
negligible. In that case, only the residual resistivity will play an important role. Therefore, the ob-
served negative TCR may be understood from the residual part. With decreasing T , since the inelastic
diffusion length L increases, the residual resistivity will also increase, leading to the negative TCR.
We stress that both the phonon-limited resistivity and the residual resistivity have the same quadratic
dependence on the disorder parameter 1=kF‘.

Figure 4b shows the temperature dependence of the residual resistivity q0 for kF‘ ¼ 2:2; 2:4; 2:8;
3:4; 5; and 15. Since it is difficult to evaluate kF‘ up to a factor of two [71], we assumed
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that q0 ¼ 100 mW cm corresponds to kF‘ ¼ 3:2. We used the same kF as in Fig. 4a and
L ¼

ffiffiffiffiffiffiffi
Dti

p
¼

ffiffi
‘

p
� 350=

ffiffiffiffi
T

p
ð�AÞ. Here ti denotes the inelastic scattering time. When kF‘ is compar-

able to 1, the negative TCR emerges. Notice the scale difference between Figs. 4a and b.

4.3 Comparison with experiment

In sections 4.1 and 4.2, we have explained the physical origin of the Mooij rule. In this section, we
compare our theoretical resistivity curve and the experimental data (Fig. 2) for extended temperature
range, up to 400 K. Let us remind the approximate formula for qðTÞ suggested by Lee and Ramakrish-
nan, i.e. [2],

qðTÞ ¼ q0 þ ðqM � q0Þ AT : ð23Þ
This form of equation can be obtained if we add the residual resistivity Eq. (22) and the phonon-
limited resistivity Eq. (20), that is

qðTÞ ¼ q0 þ qphðTÞ ¼
1

sB 1� 3

ðkF‘Þ2
1� ‘

L

� �" #þ 2pmkBT
ne2�h

N0I20
Mw2

D

1� 3

ðkF‘Þ2

" #
: ð24Þ
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5, 3.4, 2.8, 2.4, and 2.2. b) Residual resistivity q0 versus T for the same six values of kF‘.



It should be noticed that the addition of both resistivities does not mean the Matthiessen’s rule. Here
we included the interference effect between the electron–phonon and electron– impurity interactions:

qðTÞ ¼ q0 þ qphðT ; c ¼ 0Þ þ Dqintph ; ð25Þ

where c denotes an impurity concentration. Whereas Altshuler [72] and Reizer and Sergeev [73] in-
vestigated corrections to the impurity resistivity due to the interference, we have considered its correc-
tion to the phonon-limited resistivity. Since the interference correction to the impurity resistivity is
�1% of the residual resistivity [73, 74], we neglect its effect for simplicity.

In general, the phonon-limited resistivity at any temperature T is given by [35–38]

qphðTÞ ¼
4pm
ne2

ð ðb�hwÞ a2
trðwÞ FðwÞ

ðeb�hw � 1Þ ð1� e�b�hwÞ dw ; ð26Þ

where b ¼ 1=kBT . For an Einstein phonon model with [75]

a2
trðwÞ FðwÞ ¼

N0I20
2MwD

dðw� wDÞ ; ð27Þ

it is rewritten as [76]

qphðTÞ ¼
2pm
ne2

N0I20
Mw2

D

ðb�hwDÞ wD

ðeb�hwD � 1Þ ð1� e�b�hwDÞ : ð28Þ

It is necessary to emphasize that this result is exact for the phonon-limited resistivity in an Einstein
model [74]. Including the weak localization correction to a2ðwÞ ffi a2

trðwÞ,

a2
trðwÞFðwÞ ¼

N0I20
2MwD

1� 3

ðkF‘Þ2

" #
dðw� wDÞ ; ð29Þ

one finds

qphðTÞ ¼
2pm
ne2

N0I20
Mw2

D

1� 3

ðkF‘Þ2

" #
ðb�hwDÞ wD

ðeb�hwD � 1Þ ð1� e�b�hwDÞ : ð30Þ

Finally, we obtain the total resistivity at any temperature T

qðTÞ ¼ q0 þ qphðTÞ

¼ 1

sB 1� 3

ðkF‘Þ2
1� ‘

L

� �" #þ 2pm
ne2

N0I20
Mw2

D

1� 3

ðkF‘Þ2

" #
ðb�hwDÞ wD

ðeb�hwD � 1Þ ð1� e�b�hwDÞ : ð31Þ

(If we consider the Debye and realistic phonon models, there are minor changes. However, the overall
behavior is the same. More details will be published elsewhere.)

Figure 5 shows the resistivity as a function of temperature for kF‘ ¼ 2:3; 2:5; 2:8; 3:4; 5; and 15.
The solid lines represent the resistivity from an accurate expression Eq. (31), while the dashed lines
are obtained from Eq. (24). We used the same parameters as those in Fig. 4 and �hwD ¼ 250 K. It is
noteworthy that both equations give rise to almost the same curve as the system is more disordered.
For low temperatures ti is determined by electron–electron scattering while for high temperatures it is
determined by the electron–phonon scattering. Since we are interested in rather high temperatures, we
assumed ti � T�1 corresponding to the electron–phonon scattering [2, 3] as in Fig. 4b, i.e.,
L ¼

ffiffiffiffiffiffiffi
Dti

p
¼

ffiffi
‘

p
� 350=

ffiffiffiffi
T

p
ð�AÞ. Considering the crudeness of our calculation, the overall behavior is

in good agreement with experiment, Fig. 2 (up to temperature 400K). In Fig. 2 the resistivity satura-
tion near 1000 K still remains unresolved [2, 34].
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5 Discussion

At low temperatures the interference of the Coulomb interaction and the impurity scattering leads to
the interaction correction to the conductivity [2, 67]. This effect is described by [77]

s ¼ sB 1� 3

ðkF‘Þ2
1� ‘

L

� �
� C

ðkF‘Þ2
1� ‘

LT

� �" #
; ð32Þ

where LT ¼ ð�hD=kBTÞ1=2 and C � 1: The second correction term is the interaction term. The constant
C, however, changes sign depending on the exchange and Hartree terms and since it is difficult to
determine C [2, 3, 77], we did not include this term. But it may be important at much lower tempera-
tures.

It is clear that weak localization effect on the electron–phonon interaction needs more theoretical
and experimental studies. In particular, weak localization effect on the attenuation of a sound wave,
shear modulus, thermal resistance, and a shift in phonon frequencies will be very interesting. Since
superconductivity is also caused by the electron–phonon interaction, comparative study of the normal
and superconducting properties of the metallic samples will be beneficial. There is already compelling
evidence that this is the case. as shown by Testardi’s universal correlation of Tc and the resistance
ratio [11–17]. Recently, Elliot et al. [78] studied the conductance and superconducting transition tem-
perature of Mo/Si multilayers as a function of the metal layer thickness, from 7 �A to 85 �A. They
found the Mooij rule with a crossover resistivity of 125 mW cm and approximate correlation between
the resistance ratio and Tc. Since their very thin films may be inhomogeneous macroscopically, some
deviations are expected.

Observe that this study may provide a means of probing the phonon-mechanism in exotic super-
conductors, such as, heavy fermion superconductors, organic superconductors, fullerene superconduc-
tors, and high Tc cuprates. For superconductors caused by the electron–phonon interaction we expect
the following behavior. As the electrons are weakly localized by impurities or radiation damage, the
electron–phonon interaction is weakened. As a result, both Tc and TCR are decreasing at the same
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rate. When l is approaching zero, both Tc and TCR drops to zero almost simultaneously. When this
happens we may say that the electron–phonon interaction is the origin of the pairing in the super-
conductors. This behavior was already confirmed in A15 superconductors [14–17] and Ternary super-
conductors [79]. Recently, it has been shown that MgB2 also shows the same behavior, implying that
MgB2 is a BCS superconductor [5, 28]. In particular, Buzea and Yamashita [28] elaborated this ap-
proach in their review paper.

It is also noteworthy that this understanding leads to the fabrication of new novel devices. For
example, Gershenson et al. [29] have suggested fabricating the hot-electron detectors of far-infrared
radiation using ultra-thin disordered metal films, which have millisecond electron–phonon relaxation
time at millikelvin temperatures. The long relaxation time is due to the decoupling of electrons and
phonons caused by weak localization. We may also devise high-Q resonant-mass antennas and test
masses for gravitational wave detectors [80, 81], since weak localization can make the displacement
induced by gravitational waves to be free from the dissipation caused by the electron–phonon interac-
tion. More details will be published elsewhere.

6 Conclusion

It is shown that weak localization decreases both the conductivity and the electron–phonon interaction
at the same rate and thereby leads to the Mooij rule. As the residual resistivity is increasing due to
weak localization, so the thermal electrical resistivity is decreasing, producing the decrease of TCR.
When the electron–phonon interaction is near zero, only the residual resistivity is left and therefore
the negative TCR obtains. We emphasize that weak localization induced correlation of normal and
superconducting properties provides a means of probing the phonon-mechanism in exotic supercon-
ductors, such as, heavy fermion superconductors, organic and fullerene superconductors, and high Tc
superconductors. Furthermore, the decoupling between phonons and electrons caused by weak locali-
zation can be employed to fabricate new novel devices.
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