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Abstract. This study investigates the use of low-cost infrared sensors in
the differentiation and localization of target primitives commonly encoun-
tered in indoor environments, such as planes, corners, edges, and cyl-
inders. The intensity readings from such sensors are highly dependent
on target location and properties in a way that cannot be represented in
a simple manner, making the differentiation and localization difficult. We
propose the use of angular intensity scans from two infrared sensors and
present a rule-based algorithm to process them. The method can
achieve position-invariant target differentiation without relying on the ab-
solute return signal intensities of the infrared sensors. The method is
verified experimentally. Planes, 90-deg corners, 90-deg edges, and cyl-
inders are differentiated with correct rates of 90%, 100%, 82.5%, and
92.5%, respectively. Targets are localized with average absolute range
and azimuth errors of 0.55 cm and 1.03 deg. The demonstration shows
that simple infrared sensors, when coupled with appropriate processing,
can be used to extract a significantly greater amount of information than
they are commonly employed for. © 2003 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1570428]

Subject terms: pattern recognition and feature extraction; position estimation; tar-
get differentiation and localization; infrared sensors; optical sensing.

Paper 020383 received Sep. 4, 2002; revised manuscript received Oct. 28, 2002;
accepted for publication Nov. 18, 2002.

1 Introduction

Target differentiation and localization are of importance for
intelligent systems that need to interact with and autono-
mously operate in their environment. In this paper, we con-
sider the use of infrared sensors for this purpose. Infrared
sensors are inexpensive, practical, and widely available de-
vices. Simple range estimates obtained with infrared sen-
sors are not reliable, because the return signal intensity de-
pends on both the geometry and the surface properties of
the target. On the other hand, from single intensity mea-
surements it is not possible to deduce the geometry and
surface properties of the target without knowing its distance
and angular location. In this study, we propose a scanning
mechanism and a rule-based algorithm based on two infra-
red sensors to differentiate targets independently of their
locations. The proposed method has the advantage of mini-
mal storage requirements, since the information necessary
to differentiate the targets is completely embodied in the
decision rules.

Application areas of infrared sensing include robotics
and automation, process control, remote sensing, and safety
and security systems. More specifically, infrared sensors
have been used in simple object and proximity detection,
counting,1,2 distance and depth monitoring,3 floor sensing,
position control,4 obstacle and collision avoidance,5 and
machine vision systems.6 Infrared sensors are used in door
detection,7 mapping of openings in walls,8 monitoring
doors and windows of buildings and vehicles, and light

curtains for protecting an area. In Ref. 9, an automated
guided vehicle detects unknown obstacles by means of an
‘‘electronic stick’’ consisting of infrared sensors, using a
strategy similar to that adopted by a blind person. In Ref.
10, infrared sensors are employed to locate edges of door-
ways in a complementary manner with sonar sensors. Other
researchers have also dealt with the fusion of information
from infrared and sonar sensors11,12 and from infrared and
radar systems.13,14 In Ref. 15, infrared proximity sensing
for a robot arm is discussed. Following this work, Ref. 5
describes a robot arm completely covered with an infrared
skin sensor to detect nearby objects. In another study,16 the
properties of a planar surface at a known distance have
been determined using the Phong illumination model, and
using this information, the infrared sensor employed has
been modeled as an accurate rangefinder for surfaces at
short ranges.

Reference 17 also deals with determining the range of a
planar surface. By incorporating the optimal amount of ad-
ditive noise in the infrared range measurement system, the
authors were able to improve the system sensitivity and
extend the operating range of the system.

A number of commercially available infrared sensors are
evaluated in Ref. 18. References 19 and 20 describe a pas-
sive infrared sensing system that identifies the locations of
the people in a room. Infrared sensors have also been used
for automated sorting of waste objects made of different
materials.21,22
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However, to the best of our knowledge, no attempt has
been made to differentiate and estimate the position of sev-
eral kinds of targets using infrared sensors. This represents
the extraction of a significantly greater amount of informa-
tion from such simple sensors than in earlier work.

Most work on pattern recognition involving infrared
deals with recognition or detection of features or targets in
conventional two-dimensional images. Examples of work
in this category include face identification,23 automatic tar-
get recognition,24 automatic vehicle detection,25 remote
sensing,26 detection and identification of targets in back-
ground clutter,27 and automated terrain analysis.28 We note
that the position-invariant pattern recognition and position
estimation achieved in this paper are different from such
operations performed on conventional images in that here
we work not on direct ‘‘photographic’’ images of the targets
obtained by some kind of imaging system, but rather on
angular intensity scans obtained by rotating a pair of sen-
sors. The targets we differentiate are not patterns in a two-
dimensional image whose coordinates we try to determine,
but rather objects in space, exhibiting depth, whose position
with respect to the sensing system we need to estimate. For
this reason, position-invariant differentiation and localiza-
tion are achieved with an approach quite different than
those employed for invariant pattern recognition and local-
ization of conventional images~for instance, see Ref. 29!.

In Ref. 30, we considered processing information pro-
vided by a single infrared sensor using least-squares and
matched-filtering methods, comparing observed scans with
previously stored reference scans. In this paper, we con-
sider processing information from a pair of sensors using a
rule-based approach. The advantages of a rule-based ap-
proach are shorter processing times, greater robustness to
noise, and minimal storage requirements in that it does not
require storage of any reference scans: the information nec-
essary to differentiate the targets is completely embodied in
the decision rules. Examples of related approaches with
sonar sensors may be found in Refs. 31 and 32.

This paper is organized as follows: In Sec. 2, we de-
scribe the target differentiation and localization process em-
ployed. Section 3 provides experimental verification of the
approach presented in this paper. Concluding remarks are
made and directions for future research are provided in the
last section.

2 Target Differentiation and Localization

The infrared sensor33 used in this study consists of an emit-
ter and detector and works with 20- to 28-V dc input volt-
age; it provides an analog output voltage proportional to the
measured intensity reflected off the target. The detector
window is covered with an infrared filter to minimize the
effect of ambient light on the intensity measurements. In-
deed, when the emitter is turned off, the detector reading is
essentially zero. The sensitivity of the device can be ad-
justed with a potentiometer to set the operating range of the
system. The range, azimuth, geometry, and surface param-
eters of the target affect the intensity readings of the infra-
red sensors.

The target primitives employed in this study are a plane,
a 90-deg corner, a 90-deg edge, and a cylinder of radius 4.8
cm, whose cross sections are given in Fig. 1. The horizontal
extent of all targets other than the cylinder is large enough
that they can be considered infinite and thus edge effects
need not be considered. They are made of wood, each with
a height of 120 cm. Our method is based on angularly
scanning the target over a certain angular range. We use
two infrared sensors horizontally mounted on a 12-in. ro-
tary table34 with a center-to-center separation of 11 cm
~Fig. 2!. Targets are scanned from260 to 60 deg in 0.15-
deg increments, and the mean of 100 samples is calculated
at each position of the rotary table. The targets are situated
at ranges varying between 20 and 65 cm. The outputs of the
infrared sensors are multiplexed to the input of an 8-bit
microprocessor-compatible analog-to-digital converter chip
having a conversion time of 100ms.

Fig. 1 Target primitives used in the experiment.

Fig. 2 The experimental setup. Both the scan angle a and the target azimuth u are measured coun-
terclockwise from the horizontal axis.
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Some sample scan patterns obtained from the targets are
shown in Fig. 3. Based on these patterns, it is observed that
the return signal intensity patterns for a corner, which have
two maxima and a single minimum~a double-humped pat-
tern!, differ significantly from those of other targets, which
have a single maximum@Fig. 3~b!#. The double-humped
pattern is a result of the two orthogonal planes constituting
the corner. Because of these distinctive characteristics, the
corner differentiation rule is employed first. We check if the
scan pattern has two humps or not. If so, it is a corner. The
average of the angular locations of the dips in the middle of
the two humps for the left and right infrared sensors pro-
vides an estimate of the angular location of the corner.

If the target is found not to be a corner, we next check
whether it is a plane or not. As seen in Fig. 3~a!, the dif-
ference between the angular locations of the maximum
readings for the planar targets is significantly smaller than
for other targets. Planar targets are differentiated from other
targets by examining the absolute difference of the angle

values at which the two intensity patterns have their
maxima. If the difference is less than an empirically deter-
mined reference value, then the target is a plane; otherwise,
it is either an edge or a cylinder.~In the experiments, we
have used a reference value of 6.75 deg.! The azimuth es-
timation of planar targets is accomplished by averaging the
angular locations of the maxima of the two scans associated
with the two sensors.

Notice that the above~and the following! rules are de-
signed to be independent of those features of the scans that
vary with range and azimuth, so as to enable position-
invariant recognition of the targets. In addition, the pro-
posed method has the advantage that it does not require
storage of any reference scans, since the information nec-
essary to differentiate the targets is completely embodied in
the decision rules.

If the target is not a plane either, we next check whether
it is an edge or a cylinder. The intensity patterns for the
edge and the cylinder are given in Figs. 3~c! and 3~d!. They

Fig. 3 Intensity-versus-scan-angle characteristics for various targets along the line of sight of the
experimental setup. (a) Plane; (b) corner; (c) edge; (d) cylinder.
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have shapes similar to those of planar targets, but the inter-
section points of the intensity patterns differ significantly
from those of planar targets. In the differentiation between
edges and cylinders, we employ the intensity value at the
intersection of the two scans corresponding to the two sen-
sors, divided by the maximum intensity value of the scans.
~Because the maximum intensities of the right and left in-
frared scans are very close, the maximum intensity reading
of either infrared sensor or their average can be used in this
computation.! This ratio is compared with an empirically
determined reference value to determine whether the target
is an edge or a cylinder. If the ratio is greater than the
reference value, the target is an edge; otherwise, it is a
cylinder. ~In our experiments, the reference value was
0.65.! If the scan patterns from the two sensors do not
intersect, the algorithm cannot distinguish between a cylin-
der and an edge. However, this never occurred in our ex-
periments. The azimuth estimate of edges and cylinders is
also obtained by averaging the angular locations of the
maxima of the two scans. Having determined the target
type and estimated its azimuth, its range can also be esti-
mated by using linear interpolation between the central val-
ues of the individual intensity scans given in Fig. 3.

3 Experimental Verification of the Algorithm

Using the experimental setup described in Sec. 2, the algo-
rithm presented in that section was used to differentiate and
estimate the position of a plane, a 90-deg corner, a 90-deg
edge, and a cylinder of radius 4.8 cm.

Based on the results for 160 experimental test scans
~from 40 different locations for each target!, the target con-
fusion matrix shown in Table 1, which contains information
about the actual and detected targets, is obtained. The av-
erage accuracy over all target types can be found by sum-
ming the correct decisions given along the diagonal of the
confusion matrix and dividing this sum by the total number
of test scans~160!, resulting in an average accuracy of
91.3% over all target types. Targets are localized within
absolute average range and azimuth errors of 0.55 cm and
1.03 deg, respectively. The errors have been calculated by
averaging the absolute differences between the estimated
ranges and azimuths and the actual ranges and azimuths
read off from the millimetric grid paper covering the floor
of the experimental setup.

The percentage accuracy and confusion rates are pre-
sented in Table 2. The second column of the table gives the
percentage accuracy of correct differentiation of the target,
and the third column gives the percentage of cases when

one target was mistaken for another. The fourth column
gives the total percentage of other target types that were
mistaken for a particular target type. For instance, for the
planar target (413)/43516.3%, meaning that targets other
than planes are incorrectly classified as planes with a rate of
16.3%.

Because the intensity pattern of a corner differs signifi-
cantly from that of the rest of the targets, the algorithm
differentiates corners accurately with a rate of 100%. A
target is never classified as a corner if it is actually not a
corner. Edges and cylinders are the most difficult targets to
differentiate.

4 Conclusion

In this study, differentiation and localization of commonly
encountered targets or features such as planes, corners,
edges, and cylinders is achieved using intensity measure-
ments from inexpensive infrared sensors. We propose a
scanning mechanism and a rule-based algorithm based on
two infrared sensors to differentiate targets independently
of their positions. We have shown that the resulting angular
intensity scans contain sufficient information to identify
several different target types and estimate their distance and
azimuth. The algorithm is evaluated in terms of its correct
target differentiation rate and its range and azimuth estima-
tion accuracy.

A typical application of the demonstrated system would
be in mobile robotics in surveying an unknown environ-
ment composed of such features or targets. Many artificial
environments fall into this category. We plan to test and
evaluate the developed system on a small mobile robot in
our laboratory for map building in a test room composed of
the primitive target types considered in this study.

The accomplishment of this study is that even though
the intensity scan patterns are highly dependent on target
location, and this dependence cannot be represented by a
simple relationship, we achieve position-invariant target
differentiation. By designing the decision rules so that they
do not depend on those features of the scans that vary with
range and azimuth, an average correct target differentiation
rate of 91.3% over all target types is achieved, and targets
are localized within average absolute range and azimuth
errors of 0.55 cm and 1.03 deg, respectively. The proposed
method has the advantage that it does not require storage of
any reference scans, since the information necessary to dif-
ferentiate the targets are completely embodied in the deci-
sion rules. The method also exhibits considerable robust-
ness to deviations in geometry or surface properties of the

Table 1 Target confusion matrix (P: plane; C: corner; E: edge; CY:
cylinder).

Target

Differentiation result

P C E CY Total

P 36 — 4 — 40

C — 40 — — 40

E 4 — 33 3 40

CY 3 — — 37 40

Total 43 40 37 40 160

Table 2 Performance parameters of the algorithm (P: plane; C: cor-
ner; E: edge; CY: cylinder).

Actual
target

Correct diff.
rate (%)

Differen.
error I (%)

Differen.
error II (%)

P 90 10 16.3

C 100 0 0

E 82.5 17.5 10.8

CY 92.5 7.5 7.5

Overall 91.25 8.75 8.65
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targets, since the rule-based approach emphasizes structural
features rather than the exact functional forms of the scans.
The major drawback of the present method, as with all such
rule-based methods, is that the rules are specific to the set
of objects and must be modified for a different set of ob-
jects. Nevertheless, the rules we propose in this paper are of
considerable practical value, since the set of objects consid-
ered in this paper is an important set consisting of the most
commonly encountered features in typical indoor environ-
ments and therefore deserves a custom set of rules.~Differ-
entiating this set of objects has long been the subject of
investigations involving sonar sensors.35–38!

In this paper, we have demonstrated differentiation of
four basic target types having similar surface properties.
Broadly speaking, the major effect of different materials
and textures is to change the reflectivity coefficients of the
objects. This in turn will primarily have the effect of modi-
fying the amplitudes of the scans, with less effect on their
structural forms. Therefore, the same general set of rules
can be applied with minor modifications or mere adjust-
ments of the parameters. Current work investigates the de-
duction of not only the geometry but also the surface prop-
erties of the target from its intensity scans without knowing
its location.
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