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The reduction of variability in product performance characteristics is an important focus of quality improvement programs. Learning
is intrinsically linked to process improvement and can assume two forms: (i) autonomous learning; and (ii) induced learning. The
former is experientially-based, while the latter is a result of deliberate managerial action. Our involvement in quality and capacity
planning with several major corporations in different industries suggested that it would be instructive to devise a model that would
prescribe an optimal combination of autonomous and induced learning over time to maximize process improvement. We thus propose
such a model to investigate the optimal quality improvement path for a company given that quality costs depend on both autonomous
and induced types of learning experienced on a number of quality characteristics. Several properties of an optimal investment path
are developed for this problem. For example, it is shown that decisions maximizing short-term gains may actually lead to suboptimal
resource utilization decisions when total costs associated with a longer planning horizon are taken into account. Numerical examples
are used to assess the sensitivity of the optimal investment plan with respect to changes in several model parameters.

1. Introduction

A significant portion of quality related costs is incurred due
to variation in process output. Thus, manufacturing com-
panies strive to continually improve processes via reduction
in process variation. An important mechanism for reduc-
ing process variation is for the manufacturer to commit to
a quality improvement philosophy and strategy that fosters
continuous process learning and improvement.

When considering the relationship between learning and
process improvement, it is useful to view organizational
learning as being either autonomous or induced (Levy,
1965). Autonomous learning is associated with learning by
doing and captures the efficiency gained through repetitive
implementation of tasks and experience. Induced learning is
generated by conscious managerial or engineering actions
that improve the efficiency of the system through changes
in the technology, the underlying processes, and physical
or human capital. Some specific examples of such actions
are engineering design changes, and personnel training pro-
grams (Adler and Clark, 1991).

Our interest was motivated by our involvement in im-
provement activities with several large companies. One was
a major pharmaceutical corporation faced with the prob-
lem of capacity planning. It was found that process learning
in this organization’s manufacturing operations resulted in
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an annual increase in capacity of 15%. A second was a
major consumer electronics manufacturer who undertook
induced learning investments via six sigma type quality
training using project execution teams at one of its manu-
facturing plants in Latin America that produced an average
of 3000 units per day. These induced investments in qual-
ity training yielded “mature quality levels” in 2 weeks from
product start-up (defined as at least 90% first-pass yield), re-
sulting in increased productivity and reduced process costs.
This was a 94% improvement in the time to achieve process
maturity vis-à-vis the time to do so when improvements
were based on autonomous learning, which was 9 months.
Moreover, savings in manufacturing costs were greater than
11 million dollars over the 2-week period.

In developing its induced investment strategy, the con-
sumer electronics manufacturer had to determine an appro-
priate sequence of investments in each of the three major
stages of its manufacturing process: (i) Automatic Com-
ponent Insertion (ACI); (ii) Manual Assembly (MA); and
(iii) Soldering (S). The induced learning program was
launched by holding a plant-wide 3-day active learning
workshop that focused on statistical quality concepts and
analysis tools. This was followed by pre-defined, targeted
team-based projects to make specific improvements in each
of the three major stages of the manufacturing process. For
example, at ACI, defects such as incorrect lead length and
epoxy contamination were identified, and, corrective ac-
tions determined and implemented. At MA, reversing parts
was determined to be a major contributor to poor quality
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546 Serel et al.

and corrected. At S, too much or too little solder was iden-
tified as a major quality issue, and also corrected.

One of the challenges faced by both the above phar-
maceutical and consumer electronics companies was
determining what should be the optimal sequence of in-
vestments in autonomous and induced learning for pro-
cess improvement and concomitant capacity increase to
improve quality, reduce costs, and reduce cycle times, re-
sulting in a capacity increase. Motivated, in part, by this
decision problem, we investigate the dynamic behavior of
manufacturing quality costs as a function of variance re-
ducing investments which are realistically associated with
multiple quality characteristics. In this context, the main
goal is to select the most promising/beneficial areas for fo-
cusing quality improvement efforts, given the options avail-
able in each time period. Based on contemporary learn-
ing and quality cost theories, we develop a dynamic model
of relating investment and learning analytical formulation
that provides answers to questions such as: What is the
optimal investment in learning path to minimize expected
quality costs? Is there an easy-to-prescribe optimal invest-
ment policy that is robust under fairly general conditions?
How are quality improvement decisions influenced by au-
tonomous and induced types of learning? The multi-period
model to be presented relies on the fundamental notion that
improvements in quality are realized through gradual and
continuous decreases in process variation over time.

1.1. Relationship to the learning literature

The link between the learning curve and quality improve-
ment activities has been explored quite extensively. Fine
(1986) developed a quality-based learning model in which
the quality level, represented by economic conformance to
tolerances, was a management-controlled decision variable.
By dynamically changing the economic conformance level,
management controls the cumulative production of con-
forming output, which determines the unit cost of produc-
tion. Thus, a model based on quality-weighted volume re-
places the well-known volume-based learning curve. Higher
quality levels lead to higher percentages of conforming out-
put as well as faster rates of reduction in unit production
cost. Fine and Porteus (1989) studied a different quality
improvement model that included only induced learning
with stochastic rewards. Kini (1994) incorporated the influ-
ences of both good and defective items on the learning rate.
Zangwill and Kantor (1998) described how various forms
of the learning curve such as power and exponential func-
tions can be treated in a unified manner. Moskowitz et al.
(1997) and Plante (2000) formulated single-period models
to determine target levels for quality improvement in the
presence of induced learning.

Most learning models in the literature have commonly
considered only autonomous learning, and explored op-
timal production policies that minimize production costs
(Mazzola and McCardle, 1997). However, several recent

papers have addressed both autonomous and induced
learning simultaneously. For example, Li and Rajagopalan
(1998) differentiated between the “productivity knowledge”
and “quality knowledge” gains resulting from learning ef-
forts by building a model in which both autonomous and
induced learning activities influence the changes in the ac-
cumulated levels of productivity and quality knowledge.
Lapre et al. (2000) proposed a learning curve for the waste
rate of a manufacturing process, which includes both au-
tonomous and induced learning.

There have also been recent empirical studies on au-
tonomous and induced learning. Ittner (1996) investigated
the relationship between the expenditures on quality im-
provement activities and the costs associated with prod-
uct defects. Mukherjee et al. (1998) proposed the following
two main dimensions for the knowledge gained via qual-
ity improvement projects: (i) operational learning which
refers to the acquisition of “know-how”; and, (ii) concep-
tual learning which is defined as the acquisition of “know-
why”. By analyzing the quality improvement projects un-
dertaken by a steel wire manufacturer, they attempted to
assess the impact of these learning dimensions on the waste
rate of the production process. Empirical research by Li and
Rajagopalan (1997) concluded that quality improvement
activities led to identifying inefficiencies in the production
process, and such a knowledge gain resulted in increased
productivity. Analyzing data pertaining to 12 manufactur-
ing plants and consistent with our proposed modeling ap-
proach, Ittner et al. (2001) find that production quality was
influenced by both autonomous and induced learning.

1.2. Rationale of our modeling approach

Building on the literature, we simultaneously; (i) consider
multiple learning curves in a manufacturing environment;
(ii) use the variability of quality characteristics as a per-
formance metric (cf. Zangwill and Kantor, 1998); and
(iii) quantify the quality-related costs based on the com-
bined effect of these metrics. More specifically, we employ
Taguchi’s “quality loss function” to estimate quality-related
costs (Taguchi and Clausing, 1990). For this model, the
ideal state of a quality characteristic that maximizes user
satisfaction is called the target value (Kackar, 1985), and, all
deviations from this target value incur some cost. Taguchi’s
loss function thus implies that quality costs are incurred
whenever the quality (performance) characteristic is not on
its target, even if the product conforms to specifications. The
traditional quality cost theory dating back to Juran (1951),
on the other hand, does not consider it as a costly outcome
when the performance of a product falls in the interval be-
tween the lower and upper specification limits. As compared
to the traditional approach, Taguchi’s loss function places
emphasis on reducing the variability of the performance
characteristic as the key element of modern quality man-
agement practice. Since the performance characteristics are
usually modeled as random variables, the overall quality
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Investing in quality 547

level of production is inversely related to performance vari-
ation around the target value. Thus higher variation implies
higher manufacturing costs. Consequently, reducing vari-
ability in the performance characteristics will simultane-
ously reduce both quality costs to the users, and production
costs to the manufacturer with concomitant reductions in
scrap and rework costs, and improvements in productivity,
cycle time, service call rates, etc. (Kackar, 1985).

Consistent with Taguchi’s loss function approach and un-
like that of Fine (1986), we relate the reductions in quality
costs to decreases in process output variation over time. Pro-
cess variation reduction is a continuous effort that is influ-
enced by the accumulation of process knowledge (MacKay
and Steiner, 1997). We draw from the learning literature to
specify this relationship between the level of process varia-
tion at a specific point in time and the level of “learning”
achieved up to that point. Rather than relating the cumula-
tive production volume to the cost of production, our learn-
ing curve describes the relationship between process qual-
ity and elapsed time. Use of a learning curve as a function
of time has been deployed in practice; e.g., Schneiderman
(1988) and Stata (1989) report that this form of a learning
curve, which we employ in our model, was actually being
applied at Analog Devices.

Our work is an initial attempt to: (i) introduce Taguchi’s
loss function concept in a dynamic multi-period frame-
work; and, (ii) incorporate multiple quality characteristics
and their interdependencies into a theory of quality-based
learning. We also introduce a general modeling approach to
incorporate induced learning effects into the autonomous
learning curve. The basic idea is that investments in induced
learning induces the organization to make forward leaps
along the original autonomous learning curve.

2. Modeling framework and key assumptions

To evaluate the quality of a product, more than one qual-
ity characteristic is often monitored. In such cases, a mul-
tivariate quality loss function is appropriate to use. Let
Y = (Yi, . . ., Yp) be the vector of quality characteristics,
and, T = (T1, . . ., Tp) be the vector of target values associ-
ated with those characteristics. Each of the quality char-
acteristics, Yi, may be directly related to specific inputs
and raw materials used in the process. Rather than invok-
ing the standard assumption of process independence, we
allow some generality in our model by allowing for posi-
tive correlation between characteristics. Then, the expected
quality loss function for p characteristics, E [L], is given by
(Pignatiello, 1993; Kapur and Cho, 1996):

E[L] =
p∑

i=1

ki
[
(µi − Ti)2 + σ 2

i

]

+
p−1∑
i=1

p∑
j =i+1

kij[ρijσiσj + (µi − Ti)(µj − Tj)], (1)

where µi is the mean of Yi, σ 2
i is the variance of Yi,

ρij is the correlation coefficient between Yi and Yj, ki
is the Taguchi loss coefficient associated with Yi, and kij is
the Taguchi loss coefficient associated with Yi and Yj, i �= j.
The Taguchi loss coefficients ki and kij can be estimated us-
ing a regression approach (Kapur and Cho, 1996). Given
fixed loss coefficients, the expected quality loss can be de-
creased by reducing the variances of the characteristics, the
biases (µi − Ti), and products of biases. We will focus on
learning strategies that influence the variations around the
target levels of the respective performance characteristics.
The reduction of bias is an independent process, (i.e., dual
response (Vining and Myers, 1990)) and is not considered.
From a practical perspective, to increase process capabil-
ity and to create an environment conducive to continuous
learning: (i) it is generally more beneficial (and difficult) to
invest in reducing process variation than bias (i.e., adjusting
the process mean); (ii) knowledge gained from reduction in
process variation can be used to reduce bias; and, (iii) often,
if not usually, bias can be easily mitigated or eliminated by
adjusting process settings. Hence, in the interest of exposi-
tion and pragmatism, the terms involving biases in (1) will
not be considered, and the expected quality loss per unit of
output at time t will therefore be assumed as

E[L(t)] =
p∑

i=1

kiσ
2
i (t) +

p−1∑
i=1

p∑
j=i+1

kijρijσi(t)σj(t). (2)

As the notation in (2) indicates, all ki, kij, and ρij are as-
sumed time-invariant. It will also be assumed that quality-
related costs are incurred continuously over time, and re-
duction in (expected) quality costs will be realized by au-
tonomous and induced learning in Yi that will decrease σ 2

i ,
which in turn will decrease E[L]. Additional assumptions
in our model are as follows:

A1: Autonomous learning for the quality characteristic
is described by a traditionally deployed exponential rela-
tionship, i.e.,

σ 2
i (t) = σ 2

i (0)e−bit , i = 1, . . . , p, bi > 0, t ≥ 0, (3)

where bi is the learning rate associated with Yi. The
exponential-type learning curve is a common assumption
in learning research (Zangwill and Kantor, 1998). Equa-
tion (3) implies that, as time increases, σ 2

i decreases at a
decreasing rate.

A2: A decision maker has a total of N investment op-
portunities to accelerate the process of variance reduction
of the Yi’s. We partition the timeline into equally spaced
intervals (periods), and plausibly assume that investments
in induced learning can be made at the beginning of these
periods. The length of the period is such that only one in-
vestment in each characteristic is possible per period. (This
is plausible from the viewpoint of process management, fo-
cus, and resource limitations.) Without loss of generality,
we assume that the length of each period is equal to one
under a suitably chosen time unit.
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548 Serel et al.

A3: An investment in Yi reflects induced learning by shift-
ing the variance to that of si periods later. For example, if
we invest in Yi at the beginning of period j, the new σ 2

i
at time j + 1 + t will be equal to σ 2

i (prior to investing)
at time j + 1 + t + si, t ≥ 0. The parameter si remains the
same for every investment in Yi, which is consistent with
the observation that the decrease in variance generated by
an investment becomes smaller as the current variance de-
creases. An alternative interpretation of this assumption is
as follows: Investment in induced learning at time j creates
a downward jump on the current learning curve. The vari-
ances on the interval between j + 1 and j + 1 + si on the
current curve are skipped over, and the remaining portion
of the current curve continues from time j + 1 into the fu-
ture. Thus, each induced learning investment generates a
leap down the original autonomous learning curve. This
can be related to the concept of forgetting (as is discussed
by Argote and Epple (1990)), which is modeled by posit-
ing that some of the cumulative experience is lost, and thus
some earlier points on the learning curve, say for the prior si
periods are revisited. Our assumption that induced learning
accelerates the process down the learning curve “mirrors”
the forgetting model; that is, the process variance reflects
induced learning that would result from an additional si
periods of autonomous experience in the process.

Further, assumption A3 implies that each investment in
Yi reduces all future variances by (1 − e−bisi )% from their
projected levels prior to the investment. A similar assump-
tion is made for the return from investments in the quality
improvement model of Marcellus and Dada (1991). Thus,
investment in induced learning can be regarded as a cap-
ital investment that yields benefits over multiple periods.
Because of autonomous learning, inefficiencies existing in
the process decrease with time, and induced learning invest-
ments made in later periods yield smaller returns.

For a general learning curve associated with a perfor-
mance metric (such as cost, defect rate, or variance), an
ideal value (goal) for the performance metric can be spec-
ified. For example, the hypothetically best possible value
for the variance of a quality characteristic is zero. Each
improvement made to the system brings it closer to this
performance goal. The difference between the current per-
formance level and the performance goal represents what
remains to be removed from the system before it can operate
optimally (Zangwill and Kantor, 1998). Some researchers
have assumed that the marginal improvement rate of the
performance metric is proportional to this gap between the
performance goal and the current performance level (Levy,
1965; Zangwill and Kantor, 1998; Lapre et al., 2000). In
our model each additional investment reduces the variance
of the quality characteristic and also the current distance
from the ideal target value of zero. Hence, our assumption
that returns from investments diminish with additional in-
vestments can be seen as consistent with the modeling ap-
proaches cited in the literature discussed above.

A4: A finite horizon of n periods is assumed (we refer to
it as planning horizon). For now, we assume n is sufficiently

large so that returns from all investments prescribed by the
optimal investment plan start to be generated before the
end of the nth period. Later, a more explicit lower bound
on n will be derived.

A5: All correlation coefficients between the quality
characteristics are non-negative. This condition frequently
holds in practice, and also, the analysis of the model is more
tractable under this correlation structure. (The metrics can
also be redefined to satisfy this assumption.)

Finally, although we do not take into account investment
costs explicitly, by limiting the total number of investment
actions to N, we implicitly assume that a decision maker
has a fixed budget of $N × L where L is the cost of each
individual investment. Thus, the sensitivity of an optimal
investment plan with respect to the budget can be explored
by changing the value of N. Later, we will discuss the im-
plications of the model when we remove the limit on the
available number of investments.

The objective in our model is to minimize the total undis-
counted quality-related costs per unit of output over n pe-
riods, subject to the constraint that at most N investments
in induced learning are possible. The manufacturer’s multi-
stage decision problem is essentially determining the opti-
mal number and timing of investments in induced learning
in each characteristic.

3. A dynamic programming formulation

For ease of exposition, we first assume that there are two
quality characteristics, i.e., p = 2. Let σ 2

i (u) be the variance
of Yi at time u under a feasible investment policy, i.e., it
reflects the effects of both autonomous and induced types
of learning. Then, using (2), the total expected cost at time
t for the remaining horizon, TC(t), is:

TC(t) =
∫ n

t
E [L (u)]du = k1

∫ n

t
σ 2

1 (u)du + k2

∫ n

t
σ 2

2 (u)du

+ k12ρ12

∫ n

t
σ1(u)σ2(u)du. (4)

The policy that minimizes TC(0) also maximizes the to-
tal benefits (rewards) generated by investments in induced
learning. Thus, instead of directly minimizing TC(0), we
treat the problem as a specialized capital budgeting prob-
lem and determine the optimal investment actions over time
that maximize the total expected rewards at time 0. The ben-
efit that a particular investment yields depends on when it
and other investments are made.

We formulate a Dynamic Programming (DP) model to
determine the optimal investment path. At each stage, two
decision alternatives (invest, not invest) are available for
each of two quality characteristics. Hence, at each state
j, j = 0, 1, 2, . . ., there are two state variables, n1(j), and
n2( j ) that represent the cumulative number of investments
in each quality characteristic prior to state j. The initial
state at stage 0 is n1(0) = n2(0) = 0. Since the final state
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Investing in quality 549

and stage when the last investment is made are not pre-
scribed, it is convenient to apply forward DP to find the
optimal policy by successively finding the optimal policies
for sub-problems of stage 1, 2, 3, . . ..

Let Gj(m1, m2) be the maximum total benefits (rewards)
accumulated prior to stage j given that m1 investments in
Y1 and m2 investments in Y2 have been made over stages 0
through j − 1. Also let f1(m1, m2, j) be the immediate reward
associated with the movement from state (m1 − 1, m2) at
stage j − 1 to the state (m1, m2) at stage j, f2(m1, m2, j) be
the immediate reward associated with the movement from
state (m1, m2 − 1) at stage j − 1 to the state (m1, m2) at stage
j, and f12(m1, m2, j) be the immediate reward associated with
the movement from state (m1 − 1, m2 − 1) at stage j − 1 to
the state (m1, m2) at stage j.

Thus the recurrence relation is as follows:

Gj(m1, m2) = max{Gj−1(m1 − 1, m2) + f1(m1, m2, j),
Gj−1(m1, m2 − 1) + f2(m1, m2, j),
Gj−1(m1 − 1, m2 − 1) + f12(m1, m2, j),
Gj−1(m1, m2)},

G0(0, 0) = 0, j = 1, 2, . . . . (5)

The recurrence relation (5) conforms to the standard form
of forward DP with an additive objective function. To ad-
dress boundary conditions, we impose the following re-
strictions on the state variables and the stage index: Gi(m1,
m2) is not evaluated when m1 > i, or m2 > i, or m1 + m2 >

N. Also, Gi(−1, m2) ≡ Gi(0, m2), Gi(m1, −1) ≡ Gi(m1, 0),
f1(m1, m2, i) ≡ 0 when m1 = 0, f2(m1, m2, i) ≡ 0 when
m2 = 0, and f12(m1, m2, i) ≡ 0 when m1 = 0 or m2 = 0. The
immediate reward for a particular state transition is the
expected savings in quality-related costs for the remaining
horizon starting from the beginning of the next stage. No-
tice that the immediate reward includes the cost savings not
only in the next period, but also in all remaining periods.
Hence, using (4) and assumptions A1 and A3,

f1(m1, m2, j)
= (TC(j) given n1(j) = m1 − 1, n2(j) = m2,

and no further investment after period j)
− (TC(j) given n1(j) = m1, n2(j) = m2,

and no further investment after period j),

= k1σ
2
1 (0)

[ ∫ n

j
exp(−b1(u + s1(m1 − 1))) du

−
∫ n

j
exp(−b1(u + s1m1)) du

]

+ k12ρ12σ1(0)σ2(0)
[ ∫ n

j
exp(−b1(u + s1(m1 − 1))/2)

× exp(−b2(u + s2m2)/2) du

−
∫ n

j
exp(−b1(u + s1m1)/2)

× exp(−b2(u + s2m2)/2) du
]
. (6)

At first, the definition of f1(.) may appear counter-intuitive
since the difference in total cost is computed by as-
suming no further investment after period j. Clearly,
further investments after period j may be prescribed
in the optimal solution to the problem. Between j =
1 and j = n − 1, f1(.) is computed as if j − 1 is the
last decision stage in the problem, and the optimal
investment policy for ( j + 1)-period problem is deter-
mined. At the end of the recursive procedure, when the
stage j = n is reached, the maximal expected rewards
for the n-period problem has already been computed.
Note that each investment changes the expected costs
in all of the future periods. Our formulation ensures
that the return from a new investment at any stage is
incorporated into the total reward function after adjust-
ing it by the effects of all previous investments made up to
that stage.

Evaluating the integrals in (6), we have

f1(m1, m2, j)
= T1 exp(−b1( j + s1m1))(1 − exp(−b1(n − j))

+ T12(exp(b1s1/2) − 1) exp(−b1(j + s1m1)/2)
× exp(−b2( j + s2m2)/2)(1 − exp(−(b1 + b2)
× (n − j)/2)),

where

T1 = k1σ
2
1 (0)(exp(b1s1) − 1)/b1, and

T12 = 2k12ρ12σ1(0)σ2(0)/(b1 + b2). (7)

Similarly,

f2(m1, m2, j)
= T2 exp(−b2( j + s2m2))(1 − exp(−b2(n − j)))

+ T12(exp(b2s2/2) − 1) exp (−b1( j + s1m1)/2)
× exp(−b2( j + s2m2)/2)(1 − exp(−(b1 + b2)(n− j)/2)),

where T2 = k2σ
2
2 (0) (exp(b2s2) − 1)/b2, and

f12(m1, m2, j)
= T1 exp(−b1( j + s1m1))(1 − exp(−b1(n − j)))

+T2 exp(−b2( j + s2m2))(1 − exp(−b2(n − j)))
+T12(exp ((b1s1 + b2s2)/2 − 1) exp(−b1( j + s1m1)/2)
× exp (−b2( j + s2m2)/2)(1− exp (−(b1 + b2)(n − j)/2)).

It can be shown that the search for the optimal policy can
be reduced to a search among policies in which investments
start in the first period and continue without any interrup-
tion in subsequent periods. In other words, to determine
the optimal investment path, we only need to consider the
decisions in the first N stages. Hence, when p = 2, in an
optimal policy, the investment in induced learning will ter-
minate at the beginning of stage M, where [N/2] ≤ M ≤ N,
where [N/2] is the smallest integer larger than or equal to
N/2. Consequently, in this case of two attributes only O(N)
distinct policies need be enumerated. The optimal number
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of investments in each variable can only be determined af-
ter comparing the costs of all possible policies satisfying
the above property. It should be noted that the challeng-
ing aspect of the problem is not the number of possible
policies, but the computation of costs associated with these
policies. Since the magnitude of rewards from a particular
investment depends on the previous investment history, a
sequence of interdependent computations is required to de-
termine the costs of alternative investment policies. All fea-
sible investment policies are composed of N investments.
The total benefit associated with a particular policy is com-
puted by summing the marginal benefits generated by in-
dividual investments. Equation (7) illustrates how these
marginal benefits can be computed. Hence, although a DP
formulation is not strictly necessary once we know the gen-
eral form of the optimal policy, we would still need to de-
termine the total benefit of a particular policy based on
those marginal benefit expressions which are part of our
DP formulation. The DP formulation with its recurrence
relations helps us (especially when there are an arbitrary
number of attributes) to enumerate and evaluate all fea-
sible investment policies in a systematic and structured
manner.

Thus, we can rewrite the recurrence relation in (5) as

Gj(m1, m2) = max{Gj−1(m1 − 1, m2) + f1(m1, m2, j),
Gj−1(m1, m2 − 1) + f2(m1, m2, j),
Gj−1(m1 − 1, m2 − 1) + f12(m1, m2, j)},

G0(0, 0) = 0. (8)

The integer values for the state variables satisfy the con-
straints: n1 ≤ i, n2 ≤ i, n1 + n2 ≤ N, n1 + n2 ≥ i, and i ≤
N for all Gi(n1, n2) in (8). We can also restate assump-
tion A4 regarding the length of the planning horizon:
n ≥ N + 1.

Notice that the optimal solutions and associated ex-
pected rewards to the problems with 1, 2, . . . , N − 1 invest-
ment opportunities are also determined as a by-product
when the DP algorithm finds the optimal solution to the
problem with N investments. If each investment costs $L,
we can decide whether an additional investment is worth-
while by comparing it against the computed increase in the
expected reward from increasing the total number of invest-
ments by one.

3.1. Optimal policy structure

Although we have stated that it is suboptimal to not make
an investment in one period and then invest in a later period,
it is not obvious which variables should be invested in which
time periods. The following lemmas, stated without proof,
further characterize the optimal policy, and indicate that
if the optimal number of investments in each variable is
known, it is not difficult to match these investments with
time periods.

Lemma 1. If it is not optimal to invest in both Y1 and Y2 at
stage t, then it is not optimal to do so at stage t + k, k ≥ 1.

Lemma 2. If it is optimal to invest in only Y1 (Y2) at stage t, it
is not optimal to invest in only Y2 (Y1) at stage t + k, k ≥ 1.

Combining Lemma 1 and Lemma 2, the form of the optimal
policy is determined as:

Corollary 1. Invest in both Y1 and Y2 for the first p1 periods,
then stop investing in one of the variables, and continue to
invest in the other variable in the next p2 periods, p1, p2 ≥ 0.

Notice that since it is always optimal to make N investments,
2p1 + p2 = N, and that when N = 1, it is optimal to invest
in only one process at stage 1.

Corollary 1 implies that, regardless of the initial state and
learning parameters, it is always beneficial to start investing
in a quality characteristic immediately rather than deferring
the investment. Thus, if the adherence of an organization to
continuous improvement can be described by autonomous
learning, additional improvement efforts should be spent at
the beginning of the planning horizon. This was especially
evident in our experience with a major consumer electron-
ics manufacturer. By significantly investing in quality im-
provement during the start-up of a new product launch,
the company achieved mature quality levels within days.
Previously, it took 9 months to achieve such quality levels.
We also note that our result is consistent with the model
of Li and Rajagopalan (1998) who found that the optimal
amount of induced learning efforts continuously decrease
over time.

Clearly, Corollary 1 points out the collection of Gj(.)
terms that actually need to be computed to identify the
optimal policy. It can be observed that once j, m1, and m2
are specified in Gj(m1, m2), we can compute Gj(m1, m2) in
the left hand side of (8) directly from the values of (cor-
responding) Gj−1(.) and f (.) without actually searching the
maximum of three terms found in the right-hand side of (8).
For example, in order to compute G8(8, 4), we only need the
values of G7(7, 4) and f1(8, 4, 8); similarly, the value of G6(6,
6) is found by summing G5(5, 5) and f12(6, 6, 6). Thus, it is
possible to develop a slightly modified and more efficient
solution algorithm which computes Gj(m1, m2) terms by
pruning those policies that are known to be not consonant
with Corollary 1.

The model is also applicable to the case where there is
only a single quality characteristic. To handle this case, we
set ρ12 and b2 to zero. Thus, the optimal policy has the same
form for the single-characteristic case.

3.2. Sensitivity of the optimal policy with respect to N

We first show that, ceteris paribus, the optimal reward in-
creases at a decreasing rate as the number of investments in
a particular characteristic increase.
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Lemma 3. The optimal reward function G(.) is componentwise
concave in the number of investments in each variable, ni.

Proofs of Lemmas 3 through 6 are given in the Appendix.
In the rest of this sub-section, we further assume that:

A6: The correlation coefficient between the characteris-
tics is zero; and

A7: The planning horizon is sufficiently long so that we
can treat the immediate reward functions f1, f2, and f12 as
independent of n.

Then, Lemmas 4 and 5 can be used to accelerate the com-
putation of an optimal policy and to examine its sensitivity
with respect to the total number of investments.

Lemma 4. Assume A6 and A7. When we keep the number
of investments in Y1 (Y2) fixed, and increase the number of
investments in Y2 (Y1), the incremental relative return from
investing in Y2 (Y1) over investing in Y1 (Y2) will not increase.

Lemma 5. Assume A6 and A7. Let m1 and m2 (r1 and r2)
be the optimal total number of investments in Y1 and Y2 for
the problem with N (N + 1) total investment opportunities.
Then, the following relationships between m1, m2, r1, and r2
hold:

r1 ≥ m1, r2 ≥ m2. (9)

The result that the optimal number of investments in each
variable does not decrease as the total available number
of investments increases is useful, since knowing the op-
timal solution for the N-investment problem reduces the
search efforts for determining the optimal solution for
the (N + 1)-investment problem. Note that Lemma 5 does
not imply that the optimal investment path for the N-
investment problem also subsumes the optimal investment
paths for the 1, 2, . . . , N−1-investment problems. A nu-
merical example is provided in Table 1. For N = 5, the op-
timal investment path is: (1,1) → (2,2) → (2,3), we invest in
both variables in the stages 0 and 1, and then we invest
only in Y2 at stage 2. For N = 4, the optimal investment
path is: (1,1) → (1,2) → (1,3). The optimal investment paths
are (0,1) → (0,2) → (0,3) and (0,1) → (0,2) for N = 3 and
N = 2, respectively.

Another consequence of Lemmas 3 and 5 is that the op-
timal total expected reward follows the law of diminish-
ing returns as the total number of investments increases.
Namely, the marginal benefit from each additional invest-
ment opportunity will get smaller as more investments are
undertaken. Lemma 5 implies that the optimal set of in-
vestments in the (N + 1)-investment problem contains the
optimal set of investments in the N-investment problem
plus one new investment. Thus, the number of investments
in one of the variables increases by one as we go from the
optimal plan for the N-investment problem to that for the
(N + 1)-investment problem. Because of Lemma 3, it fol-
lows that the optimal total rewards increase at a decreasing
rate as investment opportunities increase. The property of
diminishing returns points out that investments in quality

Table 1. Values of Gj (m1, m2) by DP algorithm (n = 400,
k1 = k2 = 2, k12 = 1, ρ12 = 0.25, σ 2

1 (0) = 3, σ 2
2 (0) = 4, b1 =

0.01, b2 = 0.03, s1 = s2 = 3)

j m1 m2 Gj(m1, m2)

1 1 0 17.86
1 0 1 24.14
1 1 1 41.98
2 2 0 35.03
2 2 1 59.11
2 0 2 45.64
2 1 2 63.45
2 2 2 80.56
3 3 0 51.52
3 3 1 75.57
3 3 2 97.00
3 0 3 64.80
3 1 3 82.59
3 2 3 99.68
4 4 0 67.36
4 4 1 91.39
4 0 4 81.88
4 1 4 99.64
5 5 0 82.58
5 0 5 97.10

improvement are desirable up to the point where the
marginal return from the next investment becomes less than
the cost of the investment. This critical stopping point can
be determined easily by comparing the cost of an investment
with the increase in total rewards as we sequentially increase
the total number of investment opportunities by one.

We have proven Lemmas 4 and 5 for the case of large
n and zero correlation. Although we have been unable to
show the equivalent results without these restrictions on n
and ρ12, our numerical experimentation indicates that the
properties of Lemmas 4 and 5 also appear to hold for small
n and nonzero correlation.

3.3. Extension to an arbitrary number of variables

Now, we discuss the DP formulation for p > 2. Let U be
the set of all process variables in the model, i.e., Xi ∈ U, i =
1, . . . , p. At each stage j, we divide the variables into two
disjoint groups, U1( j) and U2( j), defined as

U1( j) : Set of variables invested in stage j;
U2( j) : Set of variables not invested in stage j.

Based on the partition above, we also define groups of vari-
able indices

I = {i : Xi ∈ U},
q( j) = {i : Xi ∈ U1( j)},
q ′( j) = {i : Xi ∈ U2( j)}.

It is not difficult to generalize (5) to the case p > 2. The
immediate reward function now is a sum of terms that only
contain one or two variables. This separability property, in
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fact, enables us to extend the structural results for p = 2 to
any value of p. The immediate reward associated with the
movement from state (mi − 1 : i ∈ q(j − 1), mi : i ∈ q ′(j − 1))
at stage j − 1 to the state (mi : i ∈ I) at stage j is given by

fq(j−1)(mi : i ∈ I, j)

=
∑

i∈q(j−1)

Ti exp(−bi( j + simi)) × (1 − exp(−bi(n − j))

+
∑

i∈q(j−1)

∑
k∈q(j−1)

Tik(exp((bisi + bksk)/2) − 1)

× exp(−bi( j + simi)/2) exp (−bk( j + skmk)/2)
× (1 − exp(−(bi + bk)(n − j)/2))

+
∑

i∈q( j−1)

∑
k∈q ′( j−1)

Tik(exp(bisi/2)−1) exp(−bi( j + simi)/2)

× exp(−bk(j + skmk)/2)(1 − exp(−(bi + bk)(n − j)/2))
(10)

where Ti = kiσ
2
i (0) (exp(bisi) − 1)/bi, and,

Tik = 2kikρikσi(0)σk(0)/(bi + bk), i ∈ I, k ∈ I, k > i.

Analogously to (7), the recurrence relation is

Gj(mi : i ∈ I) = max
q(j−1)∈I

{Gj−1(mi − 1 : i ∈ q(j − 1),

mi : i ∈ q ′(j − 1)) + fq(j−1)(mi : i ∈ I, j)}.
The results in Section 3.1 can be shown for p > 2 if all Tik
are assumed to be non-negative. Lemmas 1 and 2 can be
combined and generalized to the following lemma:

Lemma 6. If it is not optimal to invest in the subset q(j) or any
other subset containing q( j) at stage j, the optimal subset to
invest is not q( j) at any later stage.

The following corollary follows from Lemma 6:

Corollary 2. If it is optimal to invest in all elements of q( j) in
a stage, it is also optimal to invest in all elements of q( j) in
all previous stages.

Thus, the optimal investment policy for p > 2 is similar
to that for p = 2. We start with investing in a set of vari-
ables, then, successively the variables are dropped from the
investment set one-by-one.

Finally, the rationale behind Lemmas 3 and 5 are also
applicable to the case p > 2, and thus Section 3.2 can be
extended to p > 2.

4. Numerical examples

The following numerical examples provide insight into why
additional structural properties are difficult to obtain. For
the problems described in Table 2, ni* denotes the optimal
total number of investments in Yi, and G* is the maximal
total cost savings computed from solving the DP model. We
also present the cost savings, G1 and G2, if all N investments
are made only in Y1 and Y2, respectively. Consider the ex-
ample in the third row of Table 2. Absent any investments

Table 2. Sensitivity of the optimal policy with respect to b1

and s1 (N = 6, n = 30, k1 = k2 = k12 = 1, σ 2
1 (0) = 3, σ 2

2 (0) = 2,
b2 = 0.02, s2 = 2)

b1 s1 ρ12 C0 G1 G2 G* n1* n2*

0.01 3 0.5 152.46 13.35 11.13 13.79 4 2
0.04 3 0.5 121.76 28.58 10.53 28.58 6 0
0.09 3 0.5 94.20 27.39 9.85 27.46 5 1
0.05 1 0 91.73 9.73 8.24 10.46 4 2
0.05 5 0 91.73 30.26 8.24 30.26 6 0
0.05 7 0 91.73 34.74 8.24 34.86 5 1

in induced learning, the total expected cost at time zero, C0,
is the sum of quality costs for the n-period horizon under
autonomous learning only:

C0 = k1σ
2
1 (0)(1 − exp(−b1n))b−1

1

+ k2σ
2
2 (0)(1 − exp(−b2n))b−1

2

+ 2k12ρ12σ1(0)σ2(0)(1 − exp (−(b1+b2)n/2))
× (b1 + b2)−1.

In our example, C0 = 94.20. Using the recurrence relation
given by (8), we determine the optimal investment path as:
(0,0) → (1,1) → (2,1) → (3,1) → (4,1) → (5,1). The cost sav-
ings associated with this policy: G5(5,1)= 27.46.

We observe that a myopic policy that selects the decision
yielding the highest immediate reward at each stage is not
optimal in this example. Fine and Porteus (1989) refer to the
myopic policy as the last chance policy since it prescribes
the optimal decision if there is only one last chance to in-
vest. In our example, the immediate reward at any state
is maximized if we can invest in both variables. Hence, a
myopic policy would prescribe the following path: (0,0) →
(1,1) → (2,2) → (3,3). However, G3(3,3)= 25.05, and thus,
not surprisingly, the myopic policy does not maximize total
rewards in this case. This result indicates that the practice
of across-the-board process improvement strategies (a form
of a myopic non-optimal policy) advocated by managers is
certainly questionable, which was also found by Moskowitz
et al. (1997). Essentially, a short-term approach to qual-
ity improvement may lead to investment decisions that are
non-optimal under a long-term perspective.

According to our numerical experimentation, the op-
timal investment plan is very sensitive to the value of n
(Table 3). The optimal plan stabilizes as n increases, and
short planning horizons may create nervousness in the sys-
tem when an investment plan needs to be revised as N
varies. This suggests that the planning horizon should be
selected sufficiently long so that even if the investment bud-
get changes later, it will likely remain in the vicinity of the
optimal plan.

Some learning models in the literature (e.g., Dorroh,
et al., 1994) include a salvage value for the amount of learn-
ing achieved during the planning horizon. Although we
have not made the optimal policy depend on the variances
of characteristics at the end of the planning horizon, it can
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Table 3. Sensitivity of the optimal policy with respect to plan-
ning horizon (n) (N = 6, k1 = k2 = k12 = 1, ρ12 = 0, σ 2

1 (0) = 2,
σ 2

2 (0) = 4, b1 = 0.06, b2 = 0.02, s1 = s2 = 3)

n C0 G1 G2 G* n1* n2*

10 51.29 6.41 7.10 9.52 3 3
30 118.06 14.85 23.42 24.82 2 4
40 140.44 16.50 29.44 30.34 1 5

300 232.84 18.49 56.46 56.46 0 6

be seen that increasing n reduces the portion of expected
returns from investments that are realized after the nth pe-
riod. Thus, one may consider that increasing n is equivalent
to a lower salvage value for learning that is induced during
the n-period quality improvement program.

Regarding the sensitivity of the optimal solution with re-
spect to changes in learning rates, our computational expe-
rience suggests that it is hard to draw a general conclusion.
We observed that, as the autonomous learning rate for a
variable (i.e., bi) increases, depending on the values of other
parameters, the optimal number of investments in that vari-
able may either increase or decrease. The first three rows of
Table 2 show the changes in ni* and G* as b1 changes. A
similar pattern can be observed for the impact of induced
learning parameters in the last three rows of Table 2. The
higher benefits from induced learning in Yi (i.e., higher si)
may sometimes lead to a lower number of investments in
Yi. The managerial implication is that, reliable estimation
of the parameters will generally be needed to glean the max-
imum possible benefits from induced learning investments.

5. Concluding remarks

The formulation of an investment model, incorporating au-
tonomous and induced learning, is intended to illustrate
how a manufacturing company might plan its future qual-
ity improvement actions according to the learning curve
characteristics associated with the variables that affect its
outgoing product quality. Today’s increasingly competitive
product markets pressure companies to base their deci-
sions regarding quality on a long-run horizon. Investments
in quality should be carefully planned and executed after
evaluating the trade-offs associated with alternative uses
of funds. Our study draws attention to the effects of the
learning curves associated with the quality characteristics
on the optimal allocation of quality improvement efforts.
One particularly important insight gained from our study
is that investment decisions should be made under a long-
run perspective. The decisions that maximize benefits in
the short-run are not necessarily optimal when a longer
planning horizon is considered. We also show that delaying
investments in quality is never beneficial.

Our work can be extended in various directions. A direct
research extension is inserting some uncertainty into the
problem, for example, by making the outcomes of induced

learning investments stochastic. It may also be interesting
to explore the robustness of the optimal investment plan
and expected rewards with respect to imprecisely estimated
model parameters. Finally, our model might be applied to
investigate induced learning in activities other than those
associated with quality.
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Appendix

Proof of Lemma 3. To simplify the notation, we omit the
stage index implied by the function arguments. Recall that
Corollary 1 implies j = max(m1, m2) in Gj (m1, m2). The
concavity of G(.) in n1 is equivalent to

G(m1 + 1, m2) − G(m1, m2)
> G(m1 + 2, m2) − G(m1 + 1, m2). (A1)

Consider the left-hand side of (A1):

G(m1 + 1, m2) − G(m1, m2)
= f1(m1 + 1, m2, m1 + 1) if m2 ≤ m1 + 1,

= f1(m1 + 1, m2, m2) if m2 > m1 + 1.

Similarly for the right-hand side of (A1):

G(m1 + 2, m2) − G(m1 + 1, m2)
= f1(m1 + 1, m2, m1 + 1) if m2 < m1 + 2,

= f1(m1 + 2, m2, m2) if m2 ≥ m1 + 2.

Hence, depending on the values of m1 and m2, we can
rewrite (A1) as

f1(m1 + 1, m2, m2) > f1(m1 + 2, m2, m2)
if m2 ≥ m1 + 2. (A2)

f1(m1 + 1, m2, m1 + 1) > f1(m1 + 2, m2, m1 + 2)
if m2 ≤ m1 + 1. (A3)

The direction of inequalities in (A2) and (A3) follow from
(6). Concavity of G(.) in n2 can be shown analogously. �

Proof of Lemma 4. Suppose we keep the number of invest-
ments in Y1 fixed. In order to prove Lemma 4 it is sufficient
to demonstrate the following inequality:

G(m1, m2 + 1) − G(m1 + 1, m2)
≥ G(m1, m2 + 2) − G(m1 + 1, m2 + 1). (A4)

Rewrite (A4) and define L and R such that:

L≡ G(m1 + 1, m2 + 1) − G(m1 + 1, m2)
≥ R ≡ G(m1, m2 + 2) − G(m1, m2 + 1). (A5)

It can be observed that

L= f2(m1 + 1, m2 + 1, m1 + 1) if m1 + 1 > m2 + 1,

= f2(m1 + 1, m2 + 1, m2 + 1) if m1 + 1 ≤ m2 + 1,

R = f2(m1, m2 + 2, m1) if m1 > m2 + 2,

= f2(m1, m2 + 2, m2 + 2) if m1 ≤ m2 + 2.

We will show that L ≥ R always. First, we consider the case
m1 > m2 + 2. Then, substituting ρ12 = 0,

L= f2(m1 + 1, m2 + 1, m1 + 1)
= T2 exp(−b2[m1 + 1 + s2(m2 + 1)]), and

R = f2(m1, m2 + 2, m1) = T2 exp(−b2[m1 + s2(m2 + 2)]).

Clearly L = R if s2 = 1, and L > R if s2 > 1. Now assume
that m2 < m1 ≤ m2 + 2. In this case,

L= T2 exp(−b2[m1 + 1 + s2(m2 + 1)]), and
R = T2 exp(−b2[m2 + 2 + s2(m2 + 2)]).

Again, L ≥ R in this scenario. Finally, consider the case
m1 ≤ m2 in which L and R are given by

L= T2 exp(−b2[m2 + 1 + s2(m2 + 1)]), and
R = T2 exp(−b2[m2 + 2 + s2(m2 + 2)]).

We again observe that L ≥ R. This concludes the proof of
Lemma 4 in the case that the number of investments in Y1
is kept fixed. We apply same reasoning to prove Lemma 4 in
the case where we fix the number of investments in Y2. �
Proof of Lemma 5. To show that (9) is true, it is sufficient
to show that (A6) or (A7) is not optimal:

r1 = m1 − 1, r2 = m2 + 2. (A6)
r1 = m1 + 2, r2 = m2 − 1. (A7)

Once (A6) and (A7) are shown not to be optimal, it can be
shown similarly that other combinations of r1 and r2 that
do not satisfy (9) also are not optimal.

We will refer to the problem with N learning invest-
ment opportunities as the N-investment problem. Now sup-
pose we need to make the last investment decision. At this
point, marginal returns from investing in Y1 and Y2 de-
termine which variable is selected for investment. For the
N-investment problem, when m1 − 1 investments in Y1 and
m2 investments in Y2 have been already made, we know
that it is optimal to invest in Y1 next. Now consider the
last investment decision in the (N + 1)-investment prob-
lem. Lemma 4 implies that if investing in Y1 is preferable
to investing in Y2 given m1 − 1 previous investments in Y1
and m2 previous investments in Y2, it will also be preferable
given m1 − 1 previous investments in Y1 and m2 + 1 pre-
vious investments in Y2. This implies that (A6) cannot be
optimal for the (N + 1)-investment problem. On the other
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hand, if m1 and m2 − 1 investments in Y1 and Y2 have been
made in the N-investment problem, the next optimal in-
vestment is in Y2. Because of Lemma 4, if investing in Y2 is
preferable to investing in Y1 given m1 investments in Y1 and
m2 − 1 investments in Y2, it will also be preferable given
m1 + 1 investments in Y1 and m2 − 1 investments in Y2.
This implies that (A7) cannot be optimal for the (N + 1)-
investment problem. �

Proof of Lemma 6. Suppose we are at state (mi : i ∈ I) at
stage j. Let r ( j) be any subset of I that includes all elements
of q( j), and let s( j) be the subset consisting of all elements
of r ( j) that are not in q( j). Similarly to (A3), the following
relationship holds:

fr ( j)(mi + 1 : i ∈ r ( j), mi : i ∈ r ′( j), j + 1)
> fs( j)(mi + 1 : i ∈ s( j), mi : i ∈ s ′( j), j + 1)
+ fq( j)(mi + 1 : i ∈ r ( j), mi : i ∈ r ′( j), j + 2). (A8)

(A8) can be verified by using (10). We can compare the left-
and right-hand sides of (A8) term-by-term. The compari-
son of the terms involving only one variable is straightfor-
ward. For the terms resulting from covariances, because of
separability, we can consider each two-variable combina-
tion in isolation, for which the direction of inequality in
(A8) holds in a similar manner to (A3). Since the direction
of inequality holds for every covariance term associated
with a pair of variables and the total reward function is ad-
ditive, (A8) is also satisfied when all covariance terms are
considered together. Hence, any policy not conforming to
Lemma 6 is not optimal. �
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