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Abstract

In this paper, the performance of the extreme value theory in value-at-risk calculations is compared to the performances of
other well-known modeling techniques, such as GARCH, variance–covariance (Var–Cov) method and historical simulation
in a volatile stock market. The models studied can be classified into two groups. The first group consists of GARCH(1, 1)
and GARCH(1, 1)-t models which yield highly volatile quantile forecasts. The other group, consisting of historical simula-
tion, Var–Cov approach, adaptive generalized Pareto distribution (GPD) and nonadaptive GPD models, leads to more stable
quantile forecasts. The quantile forecasts of GARCH(1, 1) models are excessively volatile relative to the GPD quantile fore-
casts. This makes the GPD model be a robust quantile forecasting tool which is practical to implement and regulate for VaR
measurements.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The common lesson from financial disasters is
that billions of dollars can be lost because of poor
supervision and management of financial risks. The
value-at-risk (VaR) was developed in response to
financial disasters of the 1990s and obtained an in-
creasingly important role in market risk management.
The VaR summarizes the worst loss over a target
horizon with a given level of confidence. It is a pop-
ular approach because it provides a single quantity
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that summarizes the overall market risk faced by an
institution or an individual investor.2

In a VaR context, precise prediction of the probabil-
ity of an extreme movement in the value of a portfolio
is essential for both risk management and regulatory
purposes. By their very nature, extreme movements are
related to the tails of the distribution of the underly-
ing data generating process. Several tail studies, after
the pioneering work byMandelbrot (1963a,b), indicate
that most financial time series are fat-tailed.3 Although

2 SeeDowd (1998), Jorion (1997)and Duffie and Pan (1997)
for more details on the VaR methodology. For the regulatory roots
of the VaR, seeBasel (1996).

3 See, for example,Dacorogna et al. (2001a,b), Hauksson et al.
(2001), Müller et al. (1998), Pictet et al. (1998), Danielsson
and de Vries (1997), Ghose and Kroner (1995), Loretan and
Phillips (1994), Hols and de Vries (1991), Koedijk et al.

0167-6687/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2003.07.004



338 R. Gençay et al. / Insurance: Mathematics and Economics 33 (2003) 337–356

these findings necessitate a definition of what is meant
by a fat-tailed distribution, there is no unique definition
of fat-tailness (heavy-tailness) of a distribution in the
literature.4 In this study, we consider a distribution to
be fat-tailed if a power decay of the density function is
observed in the tails. Accordingly, an exponential de-
cay or a finite endpoint at the tail (the density reaching
zero before a finite quantile) is treated as thin-tailed.5

In order to model fat-tailed distributions, the log-
normal distribution, generalized error distribution,
and mixtures of normal distributions are suggested in
many studies. However, these distributions are thin-
tailed according to our definition since the tails of
these distributions decay exponentially, although they
have excess kurtosis over the normal distribution. In
some practical applications, these distributions may
fit the empirical distributions up to moderate quan-
tiles but their fit deteriorates rapidly at high quantiles
(at extremes).

An important issue in modeling the tails is the
finiteness of the variance of the underlying distribu-
tion. The finiteness of the variance is related to the
thickness of the tails and the evidence of heavy tails
in financial asset returns is plentiful. In his seminal
work, Mandelbrot (1963a,b)advanced the hypothesis
of a stable distribution on the basis of an observed
invariance of the return distribution across different
frequencies and apparent heavy tails in return distri-
butions. The issue is that while the normal distribu-
tion provides a good approximation to the center of
the return distribution for monthly (and lower) data
frequencies, there is strong deviation from normality
for frequencies higher than monthly frequency. This
implies that there is a higher probability of extreme
values than for a normal distribution.6 Mandelbrot
(1963a,b)provided empirical evidence that the stable
Levy distributions are natural candidates for return

(1990), Boothe and Glassman (1987), Levich (1985)and Mussa
(1979).

4 SeeEmbrechts et al. (1997, Chapters 2 and 8)for a detailed
discussion.

5 Although the fourth moment of an empirical distribution (sam-
ple kurtosis) is sometimes used to decide on whether an empirical
distribution is heavy-tailed or not, this measure might be mis-
leading. For example, the uniform distribution has excess kurtosis
over the normal distribution but it is thin-tailed according to our
definition.

6 This indicates that the fourth moment of the return distribution
is larger than expected from a normal distribution.

distributions. For excessively fat-tailed random vari-
ables whose second moment does not exist, the stan-
dard central limit theorem no longer applies, however,
the sum of such variables converge to Levy distri-
bution within a generalized central limit theorem.
Later studies,7 however, demonstrated that the return
behavior is much more complicated, and follows a
power law, which is not compatible with the Levy
distribution.

Instead of forcing a single distribution for the entire
sample, it is possible to investigate only the tails of the
sample distribution using limit laws, if only the tails
are important for practical purposes. Furthermore, the
parametric modeling of the tails is convenient for the
extrapolation of probability assignments to the quan-
tiles even higher than the most extreme observation in
the sample. One such approach is the extreme value
theory (EVT) which provides a formal framework to
study the tail behavior of the fat-tailed distributions.

The EVT stemming from statistics has found many
applications in structural engineering, oceanography,
hydrology, pollution studies, meteorology, material
strength, highway traffic and many others.8 The link
between the EVT and risk management is that EVT
methods fit extreme quantiles better than the conven-
tional approaches for heavy-tailed data.9 The EVT
approach is also a convenient framework for the sep-
arate treatment of the tails of a distribution which
allows for asymmetry. Considering the fact that most
financial return series are asymmetric (Levich, 1985;
Mussa, 1979), the EVT approach is advantageous
over models which assume symmetric distributions
such ast-distributions, normal distributions, ARCH,
GARCH-like distributions except E-GARCH which
allows for asymmetry (Nelson, 1991). Our findings
indicate that the performance of conditional risk
management strategies, such as ARCH and GARCH,
is relatively poor as compared to unconditional ap-
proaches.

The paper is organized as follows. The EVT and
VaR estimation are introduced inSections 2 and 3.

7 SeeKoedijk et al. (1990), Mantegna and Stanley (1995), Lux
(1996), Müller et al. (1998)and Pictet et al. (1998).

8 For an in-depth coverage of EVT and its applications in finance
and insurance, seeEmbrechts et al. (1997), McNeil (1998), Reiss
and Thomas (1997)and Teugels and Vynckier (1996).

9 SeeEmbrechts et al. (1999)and Embrechts (2000a)for the
efficiency of EVT as a risk management tool.
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Empirical results from a volatile market are presented
in Section 4. We conclude afterwards.

2. Extreme value theory

From the practitioners’ point of view, one of the
most interesting questions that tail studies can answer
is what are the extreme movements that can be ex-
pected in financial markets? Have we already seen the
largest ones or are we going to experience even larger
movements? Are there theoretical processes that can
model the type of fat tails that come out of our empir-
ical analysis? Answers to such questions are essential
for sound risk management of financial exposures. It
turns out that we can answer these questions within the
framework of the EVT. Once we know the tail index,
we can extend the analysis outside the sample to con-
sider possible extreme movements that have not yet
been observed historically. This can be achieved by
computation of the quantiles with exceedance proba-
bilities.

EVT is a powerful and yet fairly robust frame-
work to study the tail behavior of a distribution. Even
though EVT has previously found large applicability
in climatology and hydrology, there have also been a
number of extreme value studies in the finance liter-
ature in recent years.de Haan et al. (1994)study the
quantile estimation using the EVT.Reiss and Thomas
(1997) is an early comprehensive collection of sta-
tistical analysis of extreme values with applications
to insurance and finance, among other fields.McNeil
(1997, 1998)studies the estimation of the tails of
loss severity distributions and the estimation of the
quantile risk measures for financial time series using
EVT. Embrechts et al. (1999)overview the EVT as a
risk management tool.Müller et al. (1998)andPictet
et al. (1998)study the probability of exceedances
for the foreign exchange rates and compare them
with the GARCH and HARCH models.Embrechts
(1999, 2000a)studies the potentials and limitations
of the EVT. McNeil (1999) provides an extensive
overview of the EVT for risk managers.McNeil
and Frey (2000)study the estimation of tail-related
risk measures for heteroskedastic financial time se-
ries. Embrechts et al. (1997), Embrechts (2000b)
and Reiss and Thomas (1997)are comprehensive
sources of the EVT to the finance and insurance
literature.

3. Value-at-risk

Let rt = log(pt/pt−1) be the returns at timet where
pt is the price of an asset (or portfolio) at timet. The
VaRt(α) at the(1 − α) percentile is defined by

Pr(rt ≤ VaRt(α)) = α, (1)

which calculates the probability that returns at time
t will be less than (or equal to) VaRt(α), α percent
of the time.10 The VaR is the maximum potential
increase in value of a portfolio given the specifica-
tions of normal market conditions, time horizon and
a level of statistical confidence. The VaR’s popular-
ity originates from the aggregation of several compo-
nents of risk at firm and market levels into a single
number.

The acceptance and usage of VaR has been spread-
ing rapidly since its inception in the early 1990s. The
VaR is supported by the group of 10 banks, the group
of 30, the Bank for International Settlements, and the
European Union. The limitations of the VaR are that
it may lead to a wide variety of results under a wide
variety of assumptions and methods; focuses on a sin-
gle somewhat arbitrary point; explicitly does not ad-
dress exposure in extreme market conditions and it
is a statistical measure, not a managerial/economic
one.11

The methods used for VaR can be grouped under
the parametric and nonparametric approaches. In this
paper, we study the VaR estimation with EVT which
is a parametric approach. The advantage of the EVT
is that it focuses on the tails of the sample distribu-
tion when only the tails are important for practical
purposes. Since fitting a single distribution to the en-
tire sample imposes too much structure and our need
here is the tails, we adopt the EVT framework which
is what is needed to calculate the VaR. We compare
the VaR calculations with EVT and its performance
to the variance–covariance (Var–Cov) method (para-
metric, unconditional volatility), historical simulation
(nonparametric, unconditional volatility), GARCH

10 A typical value ofα is 5 or 1%.
11 There is a growing consensus among both academicians and

practitioners that the VaR as a measure of risk has serious defi-
ciencies. See the special issue of Journal of Banking and Finance
26 (7) (2002) on “Statistical and Computational Problems in Risk
Management: VaR and Beyond VaR”.
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(1, 1)-t and GARCH(1, 1) with normally distributed
innovations (parametric, conditional volatility).

The Var–Cov method is the simplest approach
among the various models used to estimate the VaR.
Let the sample of observations be denoted byrt ,
t = 1, 2, . . . , n, wheren is the sample size. Let us
assume thatrt follows a martingale process with
rt = µt + εt , whereε has a distribution functionF
with zero mean and variance,σ2

t . The VaR in this
case can be calculated as

VaRt(α) = µ̂t + F−1(α)σ̂t, (2)

whereF−1(α) is the qth quantile(q = 1 − α) value
of the unknown distribution functionF. An esti-
mate ofµt andσ2

t can be obtained from the sample
mean and the sample variance. Although sample
variance as an estimator of the standard deviation
in Var–Cov approach is simple, it has drawbacks at
high quantiles of a fat-tailed empirical distribution.
The quantile estimates of the Var–Cov method for
the right tail (left tail) are biased downwards (up-
wards) for high quantiles of a fat-tailed empirical
distribution. Therefore, the risk is underestimated
with this approach. Another drawback of this method
is that it is not appropriate for asymmetric distri-
butions. Despite these drawbacks, this approach is
commonly used for calculating the VaR from holding
a certain portfolio, since the VaR is additive when
it is based on sample variance under the normality
assumption.

Instead of the sample variance, the standard devia-
tion in Eq. (2)can be estimated by a statistical model.
Since financial time series exhibit volatility cluster-
ing, the autoregressive conditional heteroscedasticity
(ARCH) (Engle, 1982) and the generalized autore-
gressive conditional heteroscedasticity (GARCH)
(Bollerslev, 1982) are popular models in practice.
Among other studies,Danielsson and Moritomo
(2000)andDanielsson and de Vries (2000)show that
these conditional volatility models with frequent pa-
rameter updates produce volatile estimates, and are
not well suited for analyzing large risks. Our findings
provide further evidence that the performance of con-
ditional risk management strategies, such as ARCH
and GARCH, is relatively poor as compared to un-
conditional approaches. The performance of these
conditional models worsens as one moves further in
the tail of the losses.

4. Empirical findings

A volatile market provides a suitable environment
to study the relative performance of competing VaR
modeling approaches. In this regard, the Turkish econ-
omy is a good candidate.12 The Istanbul Stock Ex-
change was formally inaugurated at the end of 1985.
Following the capital account liberalization in 1989,
foreign investors were allowed to purchase and sell all
types of securities and repatriate the proceeds. The to-
tal market value of all traded companies was only US$
938 million in 1986 and reached a record level of US$
114.3 billion in 1999. Following a major financial cri-
sis in February 2001, the total market value of all listed
companies went down to 33.1 billion by November
2001. The daily average trade volume also decreased
from the record level US$ 740 million in 2000 to US$
336 million in November 2001.Figs. 1 and 2clearly
indicate the high volatility and thick-tail nature of the
Istanbul Stock Exchange Index (ISE-100), making it
a natural platform to study EVT in financial markets.

4.1. Data analysis

The data set is the daily closings of the Istanbul
Stock Exchange (ISE-100) Index from 2 November
1987 to 8 June 2001. The index value is normalized
to 1 at 1 January 1986 and there are 3383 observa-
tions in the data set. The daily returns are defined by
rt = log(pt/pt−1), wherept denotes the value of the
index at dayt. In the top panel ofFig. 1the level of the
ISE-100 Index is presented. The corresponding daily
returns are displayed in the bottom panel ofFig. 1.
The average daily return is 0.22% which implies ap-
proximately 77% annual return (260 business days).13

This is not surprising as the economy is a high infla-
tion economy. However, 3.27% daily standard devia-
tion indicates a highly volatile environment. Indeed,
extremely high daily returns (as high as 30.5%) or
daily losses (as low as−20%) are observed during the
sample period. Also from a foreign investor’s point of
view, ISE-100 exhibits a wide degree of fluctuations
which is reflected in its US dollar value. In US dollar

12 For an overview of the Turkish economy in recent years, see
Ertuǧrul and Selçuk (2001). Gençay and Selçuk (2001)study
the recent crises episode in the Turkish economy from the risk
management point of view.
13 1.0022260 = 1.771.
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Fig. 1. Top: daily ISE-100 Index from 2 November 1987 to 8 June 2001 (1 January 1986= 1). The horizontal axis corresponds to time
while the vertical axis displays the value of the index. The last closing value of the index is 12138.26, implying a daily return of 0.22%
(geometric mean) on the average. Bottom: ISE-100 returns calculated byrt = log(pt/pt−1), wherept is the value of the index att. Notice
that there is volatility clustering in the market.
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Fig. 2. Histogram of daily negative returns (losses) and the best fitted normal distribution,N(µ̂, σ̂). Estimated parameters areµ̂ = −0.0022
and σ̂ = 0.0327. The right tail region (values overµ̂ + 2σ̂ = 0.0633) is zoomed in the lower panel which indicates a heavy tail.



R. Gençay et al. / Insurance: Mathematics and Economics 33 (2003) 337–356 343

terms (1986 = 100), the ISE-100 reached a record
level of 1654 at the end of the year 1999 and dropped
down to 378 in November 2001.

The sample skewness and kurtosis are 0.18 and
8.21, respectively. Although there is no significant
skewness, there is excess kurtosis. In the framework
of this paper, the fat-tailness may not be based on a
normality test. Normality tests, such as theBera and
Jarque (1981)normality test, based on sample skew-
ness and sample kurtosis, may not be appropriate since
rejecting normality due to a significant skewness or a
significant excess kurtosis does not necessarily imply
fat-tailness. For instance, a distribution may be skewed
and thin-tailed or the empirical distribution may have
excess kurtosis over normal distribution with thin-tails.
The first 300 autocorrelations and partial autocorrela-
tions of squared returns are statistically significant at
several lags. This indicates volatility clustering and a
GARCH type modeling should be considered in VaR
estimations.

Other important tools for the examination of fat-
tailness in the data are the sample histogram,
QQ (quantile–quantile) plot and the mean excess
function.14 The sample histogram of negative returns
(returns multiplied with−1) is presented inFig. 2.
Extreme value analysis works with the right tail of
the distribution. Hence, we work with negative re-
turn distribution where the right tail corresponds to
losses.15 Fig. 2 indicates that extreme realizations are
more likely than a normal distribution would imply.
The mean excess plot in the top-left panel ofFig. 3in-
dicates a heavy right tail for the loss distribution. QQ
plot gives some idea about the underlying distribution
of a sample. Specifically, the quantiles of an empirical
distribution are plotted against the quantiles of a hy-
pothesized distribution. If the sample comes from the
hypothesized distribution or a linear transformation
of the hypothesized distribution, the QQ plot should
be linear. In extreme value analysis and generalized
Pareto models, the unknown shape parameter of the
distribution can be replaced by an estimate as sug-
gested byReiss and Thomas (1997, p. 66). If there
is a strong deviation from a straight line, then either
the assumed shape parameter is wrong or the model

14 See Reiss and Thomas (1997, Chapters 1 and 2)for some
empirical tools for representing data and to check the validity of
the parametric modeling.
15 Hereafter, we will refer to negative returns as losses.

selection is not accurate. In our case, the QQ plot of
losses in the top-right panel ofFig. 3provides further
evidence for fat-tailness. The losses over a threshold
are plotted with respect to generalized Pareto dis-
tribution (GPD) with an assumed shape parameter
0.20. The plot clearly shows that the left tail of the
distributions over the threshold value 0.08 is well
approximated by GPD.

The Hill plot is used to calculate the shape param-
eter ξ = 1/α, whereα is the tail index. The shape
parameterξ is informative regarding the limiting dis-
tribution of maxima. Ifξ = 0, ξ > 0 or ξ < 0, this
indicates an exponentially decaying, power-decaying,
or finite-tail distributions in the limit, respectively.
The critical aspect of the Hill estimator is the choice
of the number of upper order statistics. The Hill plot
of losses is displayed in the bottom panel ofFig. 3.
The stable portion of this figure implies a tail index
estimate between 0.20 and 0.25. Therefore, the Hill
estimator indicates a power-decaying tail with an ex-
ponent which varies between 4 and 5. This means that
if the probability of observing a return greater thanr
is p then the probability of observing a loss greater
thankr is in betweenk−4p andk−5p.

4.2. Relative performance

We consider six different models for the one pe-
riod ahead loss predictions at different tail quantiles.
These models are Var–Cov approach, historical simu-
lation, GARCH(1, 1), GARCH(1, 1)-t, adaptive GPD
and nonadaptive GPD models.

For the first five models, we adopt a sliding win-
dow approach with three different window sizes for
500, 1000, and 2000 days.16 For instance, the win-
dow is placed between first and 1000th observations
for a window size of 1000 days and a given quantile
is forecasted for the 1001st day. Next, the window
is slided one step forward to forecast quantiles for
1002nd, 1003rd,. . . , 3382nd days. The motivation
behind the sliding window technique is to capture
dynamic time-varying characteristics of the data in
different time periods. The last approach (nonadaptive
GPD model) does not utilize a sliding window and
uses all the available data up to the day on which fore-
casts are generated. This approach is preferable since

16 Danielsson and Moritomo (2000)also adopts a similar win-
dowing approach.
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Fig. 3. Top-left: mean excess (ME) plot. The horizontal axis is for thresholds over which the sample mean of the excesses are calculated. Values on the vertical axis display
the corresponding mean excesses. The positive trend for thresholds above approximately 0.082 indicates a heavy left tail since this is the mean excess plot for losses. Since an
approximately linear positive trend in an ME plot results from a Pareto type behavior (tail probabilities decaying as a power function), the extreme losses in ISE-100 Index have
a Pareto type behavior. Top-right: QQ plot of losses with respect to a GPD (assumed shape parameter,ξ̂, is 0.20). It shows that the left tail of the distributions over the threshold
value 0.08 is well approximated by the GPD. Bottom: variation of the Hill estimate of the shape parameter across the number of upper order statistics. The Hill estimate is very
sensitive to the number of upper order statistics. The estimator for the shape parameter should be chosen from a region where the estimate is relatively stable. A stable region is
toned gray in the figure. Notice that the confidence bands decrease on the right side of this stability region since more upper order statistics are used to calculate the estimate.
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GPD estimation requires more data for out-of-sample
forecasts, as extreme events are rare.17

The GARCH models are parameterized as having
one autoregressive and one moving average term,
GARCH(1, 1), since it is practically impossible to
find the best parameterization for each out-of-sample
forecast of a given window size. A similar constraint
also applies for the GPD modeling, i.e., the difficulty
of choosing the appropriate threshold value for each
run. Both the adaptive and nonadaptive GPD quantile
forecasts are generated using the upper 2.5% of the
sample. In principle, it is possible to choose different
thresholds for different quantiles and different win-
dow sizes but this would increase the effect of data
snooping.18 For the historical simulation, piecewise
linear interpolation is chosen to make the empirical
distribution function one-to-one.19

The relative performance of each model is cal-
culated in terms of the violation ratio. A violation
occurs when a realized return is greater than the esti-
mated return. The violation ratio is defined as the total
number of violations, divided by the total number of
one-period forecasts.20 If the model is correct, the ex-
pected violation ratio is the tail area for each quantile.
At qth quantile, the model predictions are expected to
be wrong (underpredict the realized return)α = (1−q)

percent of the time. For instance, the model is expected
to underpredict the realized return 5% of the time at the
95th quantile. A high violation ratio at each quantile
implies that the model excessively underestimates the
realized return (=risk). If the violation ratio at theqth
quantile is greater thanα percent, this implies exces-

17 In extreme value analysis, we employed the EVIM toolbox of
Gençay et al. (2003).
18 SeeSullivan et al. (2001)for the implications of data snooping

in applied studies.
19 There are other interpolation techniques such as nonlinear

interpolation or nonparametric interpolation which can also be
used.
20 For example, for a sample size of 3000, a model with a window

size of 500 days produces 2500 one-step-ahead return estimates for
a given quantile. Each of these one-step-ahead returns is compared
to the corresponding realized return. If the realized return is greater
than the estimated return, a violation occurs. The ratio from total
violations (total number of times a realized return is greater than the
corresponding estimated return) to the total number of estimates is
the violation ratio. If the number of violations is 125, the violation
ratio at this particular quantile is 5%(125/2500= 0.05). That is,
5% of the time the model underpredicts the return (realized return
is greater than the estimated return).

sive underprediction of the realized return. If the viola-
tion ratio is less thanα percent at theqth quantile, there
is excessive overprediction of the realized return by the
underlying model. For example, if the violation ratio
is 2% at the 95th quantile, the realized return is only
2% of the time greater than what the model predicts.

It is tempting to conclude that a small violation ratio
is always preferable at a given quantile. However, this
may not be the case in this framework. Notice that the
estimated return determines how much capital should
be allocated for a given portfolio assuming that the
investor has a short position in the market. Therefore,
a violation ratio excessively greater than the expected
ratio implies that the model signals less capital allo-
cation and the portfolio risk is not properly hedged.
In other words, the model increases the risk exposure
by underpredicting it. On the other hand, a violation
ratio excessively lower than the expected ratio implies
that the model signals a capital allocation more than
necessary. In this case, the portfolio holder allocates
more to liquidity and registers an interest rate loss.
A regulatory body may prefer a model overpredicting
the risk since the institutions will allocate more capi-
tal for regulatory purposes. Institutions would prefer a
model underpredicting the risk, since they have to al-
locate less capital for regulatory purposes, if they are
using the model only to meet the regulatory require-
ments. For this reason, the implemented capital allo-
cation ratio is increased by the regulatory bodies for
those models that consistently underpredict the risk.

Quantiles which are important for contemporary
risk management applications as well as regula-
tory capital requirements are 0.95th, 0.975th, 0.99th,
0.995th and 0.999th quantiles.Table 1 displays the
violation ratios for the left tail (losses) at the window
size of 1000 observations.21 The numbers in paren-
theses are the ranking between six competing models
for each quantile. Var–Cov method has the worst per-
formance regardless of the window size except for the
95th quantile. Since quantiles higher than 0.95th are
more of a concern in risk management applications,
we can conclude that the Var–Cov method should
be placed at the bottom of the performance ranking
of competing models in this particular market. The

21 To minimize the space for tables and the corresponding figures
we report the results for the window size of 1000 observations.
The findings for the window sizes of 500 and 2000 observations do
not differ from the window size of 1000 observations significantly.
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Table 1
VaR violation ratios for the left tail (losses) of daily ISE-100 returns (in %)a

5% 2.5% 1% 0.5% 0.1%

Var–Cov 5.37 (2) 3.36 (5) 2.31 (6) 1.60 (5) 0.92 (6)
Historical simulation 5.46 (3) 2.73 (2) 1.22 (3) 0.67 (1) 0.34 (4)
GARCH(1, 1) 4.70 (1) 2.85 (4) 1.85 (5) 1.34 (4) 0.59 (5)
GARCH(1, 1)-t 3.78 (6) 2.23 (3) 1.18 (2) 0.76 (3) 0.21 (2)
Adaptive GPD 6.21 (5) 2.73 (2) 1.13 (1) 0.67 (1) 0.25 (3)
Nonadaptive GPD 4.41 (4) 2.64 (1) 1.39 (4) 0.71 (2) 0.17 (1)

a The numbers in parentheses are the ranking between six competing models for each quantile. The violation ratio of the best performing
model is given in italics. Each model is estimated for a rolling window size of 1000 observations. The expected value of the VaR violation
ratio is the corresponding tail size. For example, the expected VaR violation ratio at 5% tail is 5%. A calculated value greater than
the expected value indicates an excessive underestimation of the risk while a value less than the expected value indicates an excessive
overestimation. Daily returns are calculated from the ISE-100 Index. The sample period is 2 November 1987–8 June 2001. The sample
size is 3383 observations. Data source: The Central Bank of the Republic of Turkey.

Table 2
VaR violation ratios for the right tail of daily ISE-100 returns (in %)a

5% 2.5% 1% 0.5% 0.1%

Var–Cov 4.70 (2) 3.19 (5) 2.06 (6) 1.43 (6) 0.59 (6)
Historical simulation 5.37 (3) 2.85 (4) 1.34 (3) 0.84 (4) 0.34 (4)
GARCH(1, 1) 4.83 (1) 2.69 (2) 1.47 (5) 0.88 (5) 0.42 (5)
GARCH(1, 1)-t 3.74 (6) 1.81 (5) 0.88 (1) 0.42 (1) 0.21 (2)
Adaptive GPD 6.09 (4) 2.81 (3) 1.22 (2) 0.63 (2) 0.29 (3)
Nonadaptive GPD 3.78 (5) 2.52 (1) 1.43 (4) 0.67 (3) 0.13 (1)

a The numbers in parentheses are the ranking between six competing models for each quantile. Each model is estimated for a rolling
window size of 1000 observations. The expected value of the VaR violation ratio is the corresponding tail size. For example, the expected
VaR violation ratio at 5% tail is 5%. A calculated value greater than the expected value indicates an excessive underestimation of the risk
while a value less than the expected value indicates an excessive overestimation. Daily returns are calculated from the ISE-100 Index. The
sample period is 2 November 1987–8 June 2001. The sample size is 3383 observations. Data source: The Central Bank of the Republic
of Turkey.

second worst model is GARCH(1, 1), except for its
excellent performance at the 95th quantile. Although
it performs better than the Var–Cov approach, even
the simple historical simulation approach produces
smaller VaR violation rates than the GARCH model
for most quantiles.

At the 0.975th quantile, nonadaptive GPD per-
forms the best with a violation ratio of 2.64% which
amounts to 0.14% over-rejection. The adaptive GPD
models follow with 2.73% (0.23% over-rejection)
and GARCH-t ranks third with 2.23% (0.27%
under-rejection). At the 0.99th quantile, the adaptive
GPD provides the best violation ratio with 1.13%
which is followed by GARCH-t with 1.18%. At the
0.995th quantile the adaptive GPD and historical sim-
ulation provide the best violation ratios with 0.67%
which is followed by adaptive GPD with 0.71%. At

the 0.999th quantile, nonadaptive GPD provides the
best performance with 0.17% which is followed by
GARCH-t with 0.21%. Overall, the results inTable 1
indicate that GPD models provide the best violation
ratios for quantiles 0.975 and higher. GARCH-t comes
close to being the third contender and competes with
the historical simulation.

Table 2 displays the results for the right tail of
returns.22 The Var–Cov method is again the worst
model for the quantiles higher than the 0.95th quan-
tile. GARCH(1, 1) performs best at the 0.95th and
0.975th quantiles but its performance deteriorates at
higher quantiles. GARCH(1, 1)-t provides the best re-
sults for quantiles higher than the 0.975th except the

22 It is important to investigate both tails since a financial insti-
tution may have a short position in the market.
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0.999th quantile where nonadaptive GPD performs
best. Adaptive GPD is the second best for 0.99th and
0.995th quantiles. Historical simulation is again an av-
erage model.

The one-period ahead 0.99th quantile forecasts of
GARCH(1, 1) and GARCH(1, 1)-t models for losses
are presented inFig. 4 for the window size of 1000.
Although the daily quantile forecasts of both models
are quite volatile, GARCH(1, 1)-t model yields sig-
nificantly higher, and therefore more volatile quantile
forecasts relative to the GARCH(1, 1) model. This
implies that the allocation of the capital for regu-
latory purposes has to vary on a daily basis. This
daily variation can be as large as 20% which is quite
costly to implement and difficult to supervise in
practice.
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Fig. 4. Daily ISE-100 Index returns from 2 November 1987 to 8 June 2001. Top: one-period ahead 0.99th quantile forecasts (dotted line)
of losses (solid line) using a window size of 1000 with GARCH(1, 1)-t. Bottom: one-period ahead 0.99th quantile forecasts (dotted line)
of losses (solid line) using a window size of 1000 with GARCH(1, 1). Note that for volatile periods, GARCH(1, 1)-t gives significantly
higher quantile estimates.

In the top panel ofFig. 5 quantile forecasts for
the Var–Cov, historical simulation and adaptive GPD
models are presented. All three models provide rather
stable quantile forecasts across volatile return periods.
The Var–Cov and historical simulation quantile fore-
casts are always lower than the adaptive GPD fore-
casts with Var–Cov quantile forecasts being the most
volatile between these three models.

A comparison between the GARCH(1, 1)-t and
adaptive GPD model is presented in the bottom
panel of Fig. 5. This comparison indicates that
GARCH models yield very volatile quantile estimates
when compared to the GPD, historical simulation or
Var–Cov approaches. The volatility of the GARCH
quantile forecasts are twice as much of the GPD
quantile forecasts in a number of dates. Based on
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Fig. 5. Daily ISE-100 Index returns from 2 November 1987 to 8 June 2001. Top: one-period ahead 0.99th quantile forecasts of losses using
a window size of 1000 with adaptive GPD, historical simulation and Var–Cov methods. The most conservative quantile forecasts belong
to the adaptive GPD model. Bottom: one-period ahead 0.99th quantile forecasts of losses using a window size of 1000 with GARCH(1,
1)-t and adaptive GPD methods. It is apparent from the figure that GARCH(1, 1)-t quantile forecasts are much more volatile than the
adaptive GPD model. Although the GARCH(1, 1)-t model provides more precise forecasts of this quantile, the excessive volatility of the
forecasts of the GARCH(1, 1)-t model should be a concern for a risk manager.

Fig. 5, the level of change in the GARCH quantile
forecasts can be as large 20–25% on a daily basis.

It is important that the models to be used in risk
management should produce relatively stable quantile
forecasts since adjusting the implemented capital fre-
quently (daily) in light of the estimated VaR is costly

to implement and regulate. Therefore, models which
yield more stable quantile forecasts may be more ap-
propriate for the market risk management purposes. In
this respect, the GPD models provide robust tail es-
timates, and therefore more stable VaR projections in
turbulent times.
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4.3. S&P-500 returns

Although the Istanbul Stock Exchange Index returns
provide an excellent environment to study the VaR
models in high volatility markets with thick-tailed dis-
tributions, this data set has not been studied widely in
the literature and is not well known. Hence, we have
repeated the same study with the S&P-500 Index re-
turns.

The data set is the daily closings of the S&P-500
Index from 3 January 1983 to 31 December 1996 and
there are 3539 observations. The daily returns are de-
fined byrt = log(pt/pt−1), wherept denotes the value
of the index at dayt. The top panel ofFig. 6 pro-
vides the histogram of the daily S&P-500 daily returns
together with the best fitted normal distribution. The
lower panel ofFig. 6 provides the zoomed right tail
which indicates thicker tails. The S&P-500 returns are
highly skewed with a sample skewness of−6.5388
and has a large excess kurtosis with a sample kurtosis
of 233.79.

The mean excess plot in the top panel ofFig. 7 in-
dicates a heavy right tail for the loss distribution. The
QQ plot in the middle panel ofFig. 7provides further
evidence for fat-tailness. The losses over a threshold
are plotted with respect to the GPD with an assumed
shape parameter,ξ̂ = 0.30. It clearly shows that the
left tail of the distributions over the threshold value
0.08 is well approximated by GPD. The Hill plot is
used to calculate the shape parameterξ = 1/α, where
α is the tail index. The shape parameterξ is infor-
mative regarding the limiting distribution of maxima.
If ξ = 0, ξ > 0 or ξ < 0, this indicates an expo-
nentially decaying, power-decaying, or finite-tail dis-

Table 3
VaR violation ratios for the left tail (losses) of daily S&P-500 returns (in %)a

5% 2.5% 1% 0.5% 0.1%

Var–Cov 3.39 (4) 2.40 (1) 1.69 (5) 1.42 (5) 0.75 (5)
Historical simulation 4.61 (3) 2.60 (1) 1.50 (4) 0.75 (3) 0.20 (2)
GARCH(1, 1) 4.71 (2) 2.89 (3) 2.18 (6) 1.58 (6) 0.83 (4)
GARCH(1, 1)-t 3.29 (6) 1.98 (4) 1.07 (1) 0.83 (4) 0.31 (3)
Adaptive GPD 4.72 (1) 2.60 (1) 1.30 (3) 0.63 (2) 0.12 (1)
Nonadaptive GPD 3.19 (5) 2.20 (2) 1.10 (2) 0.47 (1) 0.12 (1)

a The numbers in parentheses are the ranking between six competing models for each quantile. Each model is estimated for a rolling
window size of 1000 observations. The expected value of the VaR violation ratio is the corresponding tail size. For example, the expected
VaR violation ratio at 5% tail is 5%. A calculated value greater than the expected value indicates an excessive underestimation of the risk
while a value less than the expected value indicates an excessive overestimation. Daily returns are calculated from the S&P-500 Index.
The sample period is 3 January 1983–31 December 1996. The sample size is 3539 observations. Data source: Datastream.

tributions in the limit, respectively. The Hill plot of
losses is displayed in the bottom panel ofFig. 7. The
stable portion of this figure implies a tail index esti-
mate of 0.40. Therefore, the Hill estimator indicates a
power-decaying tail with an exponent of 2.5.

Table 3displays the violation ratios for the left tail
(losses) at the window size of 1000 observations. The
numbers in parentheses are the ranking between six
competing models for each quantile. Adaptive GPD
model provides the best violation ratio for 0.95th and
0.975th quantiles. Var–Cov and historical simulation
also do equally well with the adaptive GPD model for
the 0.975th quantile. GARCH-t is the best performer
for the 0.99th quantile which is followed by the
adaptive GPD model. The nonadaptive GPD model
provides the best performance for the 0.995th and
0.999th quantiles where the second best performer is
the adaptive GPD model. The results from the left tail
analysis indicate that GPD models provide the best vi-
olation ratios in most quantiles. The ranking amongst
the remaining three models is not obvious although
Var–Cov method receives the worst violation ratios at
the 0.99th quantiles and higher.Table 4displays the
results for the right tail of returns. Amongst five quan-
tiles, the adaptive GPD model performs as the best
model by ranking first in three quantiles and the sec-
ond in the remaining two quantiles. GARCH-t model
has the worst performance in this tail by ranking as
the last model except at the 0.999th quantile.

The S&P-500 one-period ahead 0.99th quantile
forecasts of GARCH(1, 1) and GARCH(1, 1)-t mod-
els for negative returns (losses) are presented inFig. 8
for the window size of 1000. Although the daily
quantile forecasts of both models are quite volatile,
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Table 4
VaR violation ratios for the right tail of daily S&P-500 returns (in %)a

5% 2.5% 1% 0.5% 0.1%

Var–Cov 3.03 (4) 1.97 (2) 1.06 (2) 0.75 (4) 0.31 (5)
Historical simulation 4.57 (1) 2.52 (1) 1.06 (2) 0.63 (3) 0.16 (3)
GARCH(1, 1) 3.31 (3) 1.91 (3) 1.01 (1) 0.79 (5) 0.22 (4)
GARCH(1, 1)-t 1.80 (6) 0.84 (5) 0.22 (4) 0.11 (6) 0.06 (2)
Adaptive GPD 5.75 (2) 2.52 (1) 0.99 (1) 0.55 (2) 0.12 (1)
Nonadaptive GPD 2.72 (5) 1.61 (4) 0.83 (3) 0.47 (1) 0.12 (1)

a The numbers in parentheses are the ranking between six competing models for each quantile. Each model is estimated for a rolling
window size of 1000 observations. The expected value of the VaR violation ratio is the corresponding tail size. For example, the expected
VaR violation ratio at 5% tail is 5%. A calculated value greater than the expected value indicates an excessive underestimation of the risk
while a value less than the expected value indicates an excessive overestimation. Daily returns are calculated from the S&P-500 Index.
The sample period is 3 January 1983–31 December 1996. The sample size is 3539 observations. Data source: Datastream.
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Fig. 8. Top: S&P-500 one-period ahead 0.99th quantile forecasts (dotted line) of losses (solid line) using a window size of 1000 with
GARCH(1, 1)-t. Bottom: one-period ahead 0.99th quantile forecasts (dotted line) of losses (solid line) using a window size of 1000 with
GARCH(1, 1). Note that for volatile periods GARCH(1, 1)-t gives significantly higher quantile estimates. We restricted the vertical axis
to [−0.05, 0.15] to improve the resolution. Otherwise GARCH quantile forecasts are as large as 0.34.
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GARCH(1, 1)-t model yields significantly higher, and
therefore more volatile quantile forecasts relative to
the GARCH(1, 1) model. This implies that the alloca-
tion of the capital for regulatory purposes has to vary
on a daily basis. This daily variation can be as large as
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Fig. 9. Top: S&P-500 one-period ahead 0.99th quantile forecasts of losses using a window size of 1000 with adaptive GPD, historical
simulation and Var–Cov methods. The most conservative quantile forecasts belong to the adaptive GPD model. Bottom: one-period ahead
0.99th quantile forecasts of losses using a window size of 1000 with GARCH(1, 1)-t and adaptive GPD methods. It is apparent from the
figure that GARCH(1, 1)-t quantile forecasts are much more volatile than the adaptive GPD model. Although the GARCH(1, 1)-t model
provides more precise forecasts of this quantile, the excessive volatility of the forecasts of the GARCH(1, 1)-t model should be a concern
for a risk manager. We restricted the vertical axis to [−0.05, 0.15] to improve the resolution. Otherwise GARCH quantile forecasts are as
large as 0.34.

30% which is quite costly to implement and difficult
to supervise in practice. The findings from the left
tail are parallel to the ones from the ISE-100 analy-
sis. In the top panel ofFig. 9 quantile forecasts for
the Var–Cov, historical simulation and adaptive GPD
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models are presented. All three models provide rather
stable quantile forecasts across volatile return periods.
The Var–Cov and historical simulation quantile fore-
casts follow similar time paths as the adaptive GPD
quantile forecasts.

A comparison between the GARCH(1, 1)-t and
adaptive GPD model is presented in the bottom
panel of Fig. 9. This comparison indicates that
GARCH models yield very volatile quantile estimates
when compared to the GPD, historical simulation or
Var–Cov approaches. The volatility of the GARCH
quantile forecasts are multiples of the GPD quantile
forecasts in a number of dates. Based onFig. 9, the
level of change in the GARCH quantile forecasts can
be as large as 30% on a daily basis. Our findings from
the S&P-500 returns confirm the findings obtained
from the ISE-100 returns that the GPD model pro-
vides more accurate violation ratios and its quantile
forecasts are stable across turbulent times.

From a regulatory point of view, it is important
that banks maintain enough capital to protect them-
selves against extreme market conditions. This con-
cern allows regulators to impose minimum capital
requirements in different countries. In 1996, the Basel
Committee recommended a framework for measur-
ing market risk and credit risk, and for determining
the corresponding capital requirements, seeBasel
(1996).23 The committee proposes two different ways
of calculating the minimum capital risk requirement:
a standardized approach and an internal risk man-
agement model. In the standardized approach, banks
are required to slot their exposures into different
supervisory categories. These categories have fixed
risk weights set by the regulatory authorities. A bank
can utilize its own internal risk management model,
subject to approval by the authorities. These models
must meet certain conditions. Our “violation ratio”
above as a criterion for evaluation of different models
is basically the Basel Committee criterion for evalu-
ating internal risk management models. We showed
that this criterion, in combination with volatile mar-

23 The New Basel Capital Accord (Basel II) is expected to be
finalized by the end of 2003 with implementation to take place
in member countries by year-end 2006. According to a recent
consultative document by Basel Committee, the new accord sub-
stantially changes the treatment of credit risk and introduces an
explicit treatment operational risk; seehttp://www.bis.orgfor fur-
ther details.

ket conditions, may result in costly implementations,
especially if conditional models are employed to
measure the risk. The results also indicate that the
existing Basel Committee risk measurement and reg-
ulatory framework can be improved by incorporating
costs of trading, costs of capital adjustments and
the amount of losses into the existing criterion to
determine minimum capital requirements.

5. Conclusions

Risk management gained importance in the last
decade due to the increase in the volatility of financial
markets and a desire of a less fragile financial sys-
tem. In risk management, the VaR methodology as a
measure of market risk is popular with both financial
institutions and regulators. VaR methodology benefits
from the quality of quantile forecasts. In this study,
conventional models such as GARCH, historical sim-
ulation and Var–Cov approaches, are compared to
EVT models. The six models used in this study can
be classified into two groups: one group consisting of
GARCH(1, 1) and GARCH(1, 1)-t models which lead
to highly volatile quantile forecasts, while the other
group consisting of historical simulation, Var–Cov,
adaptive GPD and nonadaptive GPD models provide
more stable quantile forecasts. In the first group,
GARCH(1, 1)-t, while in the second group the GPD
model is preferable for most quantiles.

Our results suggest further study by constructing
a cost function that penalizes the excessive volatility
and rewards the accuracy of the quantile forecasts at
the same time. The results also indicate that the exist-
ing Basel committee risk measurement and regulatory
framework can be improved by incorporating costs of
trading, costs of capital adjustments and the amount
of losses into existing criterion to determine minimum
capital requirements.
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