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Satisfying due-dates in a job shop with sequence-dependent family set-ups

MEHMET R. TANERy, THOM J. HODGSONz,
RUSSELL E. KINGz* and KRISTIN A. THONEYx

This paper addresses job shop scheduling with sequence dependent family set-ups.
Based on a simple, single-machine dynamic scheduling problem, state dependent
scheduling rules for the single machine problem are developed and tested using
Markov Decision Processes. Then, a generalized scheduling policy for the job
shop problem is established based on a characterization of the optimal policy.
The policy is combined with a ‘forecasting’ mechanism to utilize global shop floor
information for local dispatching decisions. Computational results show that
performance is significantly better than that of existing alternative policies.

1. Introduction

A job shop scheduling problem with sequence dependent family set-ups is
considered. It is assumed that the jobs are released simultaneously. There are N
families with ni jobs in each family i ¼ 1,2, . . . ,N. Each job j has a given due-date,
dj, and processing time, pjk, on each machine, k ¼ 1,2, . . . ,M. Set-up is required on
some machines if a job from a smaller indexed family is an immediate successor of one
from a larger indexed family. When required, the set-up time between two families is a
given constant s. The initial set-up of each machine is assumed known. The objective
is to determine a schedule that minimizes the maximum lateness (Lmax); that is, the
maximum difference between the completion time and the due date, among all jobs.

The special set-up structure in this problem may be seen in process industries.
In Conway et al. (1967) it is described as the comedown problem, which occurs in the
rolling of steel strips. The rollers are slightly scored by the edges of the strip being
rolled. Consequently, the next strip in the sequence must be narrower or the rollers
must be reground. Another closely related problem is dyeing operations in the textile
industry. Usually, a relatively minor set-up is involved when lighter to darker shades
are dyed in progression. However, when a lighter shade is to be dyed following a
darker shade, the dye vessel requires additional cleaning.

In the following, a brief overview of research on single-machine and job shop
scheduling problems with sequence dependent set-up times and Lmax performance
criterion is presented. Then, a simple single machine problem is modelled and
solved using Markov Decision Processes (MDP). A generalized scheduling policy
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is developed based on the optimal results from the MDP. This generalized policy is
incorporated in the Virtual Factory (Hodgson et al. 1998, 2000) a job shop scheduling
system. Experimentation is performed with different job shop scenarios, and results
are compared with those obtained from alternative techniques.

2. Previous research

Many studies have appeared in the literature on general job shop scheduling
problems. Pinedo (1995) gives a good summary of various approaches. A review
of research on scheduling in the presence of set-up times can be found in Allahverdi
et al. (1999).

Although there are a number of studies on single-machine problems with
sequence dependent set-up times and the Lmax performance criterion, we found no
reported results in job shop scheduling with the same criterion except for those by
Uzsoy and his colleagues. Ovacik and Uzsoy (1994a) use deterministic simulation to
predict the arrival times of jobs at a machine in a job shop environment. They then
utilize that information to make scheduling decisions whenever the machine becomes
available. Their procedure is similar to dispatching but they also consider jobs that
would arrive within a certain time window. Ovacik and Uzsoy (1994b) introduce
rolling horizon algorithms to solve the single machine problems that occur as
sub-problems in the decomposition of complex job shop scenarios. They develop a
branch and bound procedure for small problems.

Uzsoy et al. (1991) develop a procedure that decomposes a complex job shop
with sequence dependent set-up times into separate work centres. The job shop is
represented as a disjunctive graph and the release times and due-dates of the jobs at
each work centre are estimated. A separate scheduling problem is solved for each
work centre. One of the arising problems is the single-machine scheduling problem
under precedence constraints. They propose a branch and bound algorithm and a
local improvement heuristic for the Lmax objective, and develop an approximate
procedure to minimize the number of tardy jobs. Uzsoy et al. (1992) propose
heuristics for the dynamic problem and a dynamic programming procedure for
the static problem to minimize Lmax and the number of tardy jobs. They develop
worst-case error bounds for the special case in which the set-up times are bounded
from above by the processing times. Monma and Potts (1989) consider batch-
scheduling problems in which the number of batches is fixed and the triangular
inequality of set-ups is satisfied. They show that under those conditions the problems
of maximum lateness, total weighted completion time and number of tardy jobs can
be efficiently solved via dynamic programming.

To the best of our knowledge, this is the first paper in the literature on job shop
scheduling problems where sequential processing of jobs belonging to different
families involves sequence dependent set-up times.

3. A dynamic, single machine model

In this section, a single-machine, dynamic scheduling problem with due dates
and sequence dependent set-up times is studied. A queuing model is developed.
Optimal control rules to minimize a penalty cost are established using Markov
Decision Processes. Since the objective value is additive in the MDP, using a
minimax objective is difficult. However, the penalty cost structure used does
approximate minimizing Lmax. The control rules obtained from the MDP are
generalized and used to construct a heuristic scheduling policy that is applied
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to single-machine sub-problems arising in the context of scheduling a complex job
shop. This heuristic policy is tested against other rules that minimize Lmax using a
job shop simulation. This approach is similar to those of Matsui and Shinghu
(1978) and Hodgson et al. (1987) although their approaches were applied to
different problems.

3.1. Problem definition
A simple problem with three job families is considered. If the next job to be

processed is from the same or higher indexed family as the previous job, then no
set-up is required. However, if it has a lower family index, then a set-up in incurred.
Thus, a job from family three never requires a set-up, while one from family two only
requires a set-up if it follows a family three job and a family one job incurs a set-up
unless it follows another family one job. The underlying probability distribution of
the arrival process is Poisson, and the set-up and processing times are known and
deterministic. An arriving job can be from family one, two, or three with given
probabilities, r1, r2, and r3, respectively. The time from the arrival of a job until
its due date is a pre-specified constant, d.

After a job’s lateness reaches a pre-specified point, denoted by l, a penalty cost is
assessed for each additional period until the job is completed. The objective is to
determine a schedule that minimizes the total penalty cost. This is equivalent to
minimizing the number of periods that any job’s lateness exceeds l time units.
Hence, this objective also does an excellent job of minimizing Lmax when the
minimum Lmax value exceeds l. The performance criterion implies the use of due
date related and set-up time related scheduling rules, or a hybrid of the two.

With d, l and r1, r2, and r3, as given above, define:

Q capacity of the queue,
� total arrival rate,
s set-up time, and
p processing time.

A schematic representation of the system is given in figure 1.

3.2. Alternative rules
The alternative scheduling rules correspond to different queue disciplines in the

context of queuing theory. The alternatives considered for the selection of the next
job from the queue are as follows.

Deterministic
Service Process

r1

r2

r3

Departures

Queue
(Q = 2)

Poisson 
Arrivals
(rate λ)

Figure 1. A schematic representation of the queuing system.
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1. Earliest Due Date (EDD)
. Process the first job in the queue. Note that since the time from the arrival

of a job until its due date is a pre-specified constant, d, the first job in the
queue has the earliest due date.

2. Shortest Set-up Time (SST)
. If there is nothing in the queue maintain the latest set-up,
. otherwise if there is at least one job from the family of the current set-up in

the queue, process the next job from that family,
. otherwise, process the jobs in rotating family index order starting from the

index of the current set-up. If there are multiple jobs from the selected
family, process the first one in the queue.

3. Priority Grouping (PG)
. Form priority groups according to due dates such that if the time until the

due date for a job is less than or equal to a pre-specified value, that job is
classified as of ‘high priority’. Otherwise it is classified as of ‘low priority’.
Then use the SST rule within the priority groups.

3.3. Model formulation
The problem can be modelled and solved as a finite state, undiscounted, discrete-

time Markov Decision Process (MDP). A dynamic programming based method-
ology for MDPs was proposed by Howard (1960). White (1963) developed a
successive approximation technique to solve the systems of equations arising in
the context of undiscounted, discrete time MDPs. We use a variant of White’s
procedure.

The state of the system is defined as [a(1), b(1), . . . , a(Q þ 1), b(Q þ 1), c, ss]
where

a(i) ¼ Family of the job indexed i (a(i) ¼ 0,1,2,3 where a(i) ¼ 0 indicates that
there is no job indexed at i),

b(i) ¼ Time until the due date of the job indexed i (b(i) ¼ �l, �l þ 1, . . . ,
0,1,2, . . . , d ),

c ¼ Index number of the job in process, if the system is not empty; or the
current set-up, if the system is empty,

ss ¼ Stage of the service in progress (ss ¼ 0,1, . . . , s, s þ 1, . . . , s þ p).

The alternative scheduling rules constitute the alternatives of the MDP. A
constant cost/period is incurred for carrying each item that is late by at least l
time units.

3.4. Generalization of the optimal control policy
A generalization of the optimal scheduling policy from the MDP based on

the experimental results is presented below. It is verified by inserting the generalized
policy back into the MDP and comparing the cost to that of the optimal policy.
Experimental results show that the performance is very close to optimal (Taner
2001).

The generalized policy requires scaling factors � and �, where � represents a lower
limit on the length of time that a job should have until its due date for it to be
considered not urgent and � represents an upper limit on the length of time that a job
should have until its due date to be considered extremely tardy.
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Generalized policy

. If there is no job in the system then use SST.

. Else if there is only one job in the system, then
– If the job in the queue has � time units or more until its due date and it has a

bigger family index than the current set-up, use SST,
– otherwise, use EDD.

. Else if there is more than one job in the queue
– If all jobs waiting in the queue are already tardy and at least one is tardy �

or more time units, use the PG rule,
– else if SST prefers a job in the queue that has � time units or more until its

due date while a more urgent job is also waiting for service, use EDD,
– else if SST and EDD prefer the same job in the queue for subsequent

processing use EDD,
– else use SST.

The purpose of this policy is to facilitate effective utilization of the production
resources and to meet the operation due dates. When a job finishes processing,
selection of the next job to be processed is made so as to minimize set-ups.
However, jobs with tight operation due dates that require set-ups, are also accounted
for. A job that would potentially yield the maximum lateness can be given higher
priority than other jobs even if it requires a set-up and the others do not.

4. Virtual factory job shop model

The Virtual Factory is a deterministic, iterative/adaptive simulation model devel-
oped by Hodgson et al. (1998, 2000) to solve standard job shop problems. The
Virtual Factory models both single and batch processors, and yields very good
solutions for industrial-sized problems (Hodgson et al. 1998, Thoney 2000 and
Weintraub et al. 1999). The scheduling procedure in the Virtual Factory is based
on an approach that was first proposed by Lawrence and Morton (1986), and
Vepsalainen and Morton (1988). The approach consists of repeatedly simulating
the system to be scheduled while simultaneously updating job sequences based on
the results of the previous simulation. During the first iteration, jobs are
sequenced on machines in order of increasing slack. Let di be the due date of job i
and pij be the processing time of job i on machine j. The slack of job i on machine m
is computed as

slackim ¼ di �
X

j2mþ

pij,

where mþ is the set of all operations on job i’s route subsequent to the one
performed on machine m. Slack is a measure of the amount of time a job can queue
and still meet its deadline. In general, however, dispatching in order of increasing
slack may not provide good results, Caroll (1965). This can be attributed to the fact
that slack does not take queuing time into account. In subsequent iterations, the
queuing time of the previous iteration is used to modify slack, and jobs are
sequenced in order of revised slack. Let qij be the queuing time of job i at machine
j. Revised slack is computed as

slack0im ¼ di �
X

j2mþ

pij �
X

j2mþ�

qij,
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where mþ * is the set of all operations on job i’s route subsequent to the one
performed on machine m except the one immediately following m. The slack calcu-
lation introduces an intermediate due date for the job. It is the time at which the job
needs to begin processing at the next machine to meet its overall due date. This
definition was found to be more effective in the procedure than a slack that includes
pim and qim.

The procedure is run for a fixed number of iterations and the best solution is
saved. The procedure tends to converge monotonically over the first 10 iterations or
so (regardless of the size of the problem). In other words, the queuing time estimates
become more accurate after the first iterations, producing better and better solutions.
After that, the solutions tend to ‘bounce’ with no particular pattern involved.
However, additional iterations typically yield better solutions.

5. Scheduling with set-ups and the job shop model

Job shop scenarios are modelled running the Virtual Factory for 200 iterations.
Incorporation of set-up considerations into the Virtual Factory requires some
additions and modifications. The set-up structure is assumed to be the same as
discussed earlier. That is, processing a job with a smaller family index following
one with a larger family index requires a set-up of s time units. No set-up is required
if a job with the same or a larger family index is to be processed following the current
job on the machine.

Revised slack computations are further modified to include sequence dependent
set-up considerations. Define:

sij the set-up time on machine j to process job i, sij2 {0,s} and
sþij the part of sij that is incurred after the arrival of job j at machine i.

Modified revised slack is computed as

slack00im ¼ di �
X

j2mþ

pij �
X

j2mþ

sþij �
X

j2mþ�

qij ,

for each job i on every machine m.
The results gathered from the MDP model suggest that the current way revised

slack is being used in the Virtual Factory may be inappropriate for machines
involving sequence dependent set-up times. Sequencing jobs in revised slack order
on such machines can be considered equivalent to using the EDD rule for local
dispatching decisions. However, results with single machine problems indicate that
the EDD rule may not be optimal in all cases. Hence, the generalized scheduling
policy developed based on the experimental results with the Markov Decision
Model, is implemented in the Virtual Factory.

Following Ovacik and Uzsoy (1994a), a ‘forecasting’ mechanism is incorporated
into the heuristic policy to utilize global job shop status information for local
scheduling decisions at the machine level. The jobs that have their next operation
on the machine and that are estimated to arrive within a given ‘forecast’ horizon, T,
as well as those waiting in the queue are considered as candidates for the current
scheduling decision. The set J contains the candidate jobs. In some cases, the selected
job may not be available for processing on the machine at the time the scheduling
decision is made. In those cases, if there is some other job that can be completed
before the estimated arrival of the selected job and processing it does not delay the
completion of the set-up for the selected job past its estimated arrival time, then it is
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processed next. If no such job exists in the queue, the set-up for the selected job is
initiated. If set-up is completed before the arrival of the selected job, the machine is
kept idle until its arrival.

5.1. Heuristic policies based on the MDP
Recall that the generalized policy requires two scaling factors, � and �, be set by

the user. These factors are initialized in the first iteration based on the findings of
some trial experimentation and they are updated in each successive iteration using
the results of the previous iteration. Two versions of the heuristic policy, which differ
in the way these two factors are used, are presented below.

Scheme 1: Policy – Version 1
In this version of the heuristic policy, the length of time from the point that the

machine becomes available until the operation due date (slack00) of a candidate job is
used to determine if that job should be considered ‘not urgent’ or ‘extremely tardy’.
In particular, a job is considered not urgent if it has at least � time units from the
time that the scheduling decision is made until its operation due date (slack00).
Likewise, a job is considered extremely tardy if it has � time units or less from the
time that the scheduling decision is made until its operation due date (slack00).

Scheme 2: Policy – Version 2
This version of the policy is essentially the same for those candidate jobs that are

already in the queue at the time the machine becomes available. However, when a
candidate job is estimated to arrive after the machine becomes available, the length
of time from the estimated arrival time of the candidate job until its operation due
date (slack00) is used to determine if that job should be considered not urgent or
extremely tardy. In particular, a job is considered not urgent if it has at least � time
units from its estimated arrival time until its operation due date (slack00). Likewise, a
job is considered extremely tardy if it has � time units or less from its estimated
arrival time until its operation due date (slack00).

5.2. Heuristic policies from the literature
The computational intractability of job shop scheduling problems rules out the

possibility of obtaining optimal solutions for the scenarios to be analyzed. Thus, the
results need to be compared to a lower bound or to the results of previously
proposed algorithms. However, developing a lower bound for the problem under
consideration is equivalent to establishing a lower bound for the asymmetric
travelling salesman problem with time windows. In spite of the special structure of
the set-up matrix at hand, developing a tight lower bound that can be computed in a
reasonable amount of time is extremely difficult. Therefore, the performance of the
technique is evaluated in relation to that of existing techniques.

To the best of the authors’ knowledge, Ovacik and Uzsoy (1994a) is the only
paper in the literature that addresses the dynamic job shop scheduling problem with
sequence dependent set-up times and the objective of minimizing Lmax. Their
technique extends four dispatching rules over a forecast window, T, and uses partial
enumeration to determine the next job for processing each time a machine becomes
available. They compare the performance of these four scheduling rules with that
of the ‘job earliest due date (J-EDD)’, ‘operation earliest due date (O-EDD)’ and
‘apparent tardiness cost with set-ups (ATCS)’ dispatching rules. J-EDD and
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O-EDD rules are currently used in industry for due-date related performance
criteria. An explanation of the ATCS rule can be found in Bhaskaran and Pinedo
(1991). The objective of this rule is to minimize the total weighted tardiness in a job
shop with sequence dependent set-ups. Ovacik and Uzsoy (1994a) report that their
algorithm LAO(�) is the best performer of the seven in terms of average solution
quality and robustness. Hence, the LAO(�) rule is used as a benchmark in this study.
The LAO(�) rule is explained and a modification of it is proposed below.

Scheme 3: LAO(�) Rule
Whenever a machine becomes available, a set, J, of candidate jobs is determined.

First, � jobs with the earliest operation due dates in set J are sequenced optimally via
enumeration, and the first job in the optimal sequence is selected. If the selected job
is already in the queue, it is scheduled next. Otherwise, the jobs in the queue are
considered in increasing earliest operation due date order, and the first job that can
be finished by the estimated arrival time of the selected job is scheduled next. If no
such job exists in the queue, the machine is kept idle until the arrival of the selected
job. This technique is more robust than Schemes 1 and 2 in the sense that it does not
require any special set-up structure to produce good schedules.

Scheme 4: Modified LAO(�) Rule
In many industrial applications, the set-up operations are separable in the sense

that changeover for a certain job can start before the arrival of that job at the
machine. For example, in the context of textile dyeing processes, the dyeing vessel
can be cleaned for dyeing a lighter coloured fabric before that fabric actually arrives
at the machine. Thus, the original LAO(�) Rule is modified to allow starting the
set-up for a selected job before its arrival at the machine. When a selected job is not
already in the queue, jobs in the queue are considered in earliest operation due date
order, and the first one that can be finished without delaying the completion of
set-up for the selected job past its estimated arrival time is scheduled next. If no
such job exists in the queue, the set-up for the selected job is initiated. If the set-up is
completed before the selected job arrives, the machine is kept idle until the job
becomes available.

Ovacik and Uzsoy (1994a) estimate the operation due date of job i at machine j
by subtracting from its due date a multiple, k, of its total downstream processing and
average set-up times. In the implementation of this study, the modified revised slack
(slackim

00 ) values for each job i on every machine m are used as operation due dates in
Schemes 1 through 4.

6. Experimental framework

Two general job shop settings are analyzed. The first setting is similar to the
classical job shop setting studied by Ovacik and Uzsoy (1994a), where all machines
have sequence dependent set-ups and each job visits every machine exactly once in
some random order. In the second setting, only one of the machines has sequence
dependent set-ups and all jobs go through this machine at the midpoint of their
otherwise randomly generated operation routes.

6.1. Sequence dependent set-ups on all machines
Scenarios with all combinations of 20, 50 and 100 jobs, and 5, 11 and 21

machines are generated. Processing times are sampled from a Uniform distribution
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with a range of [1,200]. The non-zero set-up time value s is varied as 66, 200 and 600.
These numbers were arbitrarily chosen as one third of, the same as, and threefold
of the maximum processing time of 200 in order to generate problems in which the
set-up times are smaller than, in the same range as, and larger than the processing
times, respectively. Due dates are sampled from a Uniform distribution between 1
and 1 þ D, where D is the due date range. The due date range is varied based on
� defined as follows:

� ¼ Mð100:5þ 0:5sÞ,

where M is the number of machines. Problems with low, medium and high due date
ranges are generated by setting D equal to 0.5��, � and 2��, respectively. Twenty
random instances (replications) are generated for each of the 81 parameter combina-
tions shown in table 1, resulting in a total of 1620 problems.

6.2. Sequence dependent set-ups on a single machine
Scenarios with all combinations of 20, 50 and 100 jobs, and 5, 11 and 21

machines are generated. The number of operations is coordinated with the
number of machines. Processing times on regular machines are sampled from a
Uniform distribution with a range of [1,200]. Processing and set-up times on the
machine with sequence dependent set-ups are generated such that the machine will
be either be a bottleneck (B), somewhat of a bottleneck (SWB) or not a bottleneck
(NB). Define

f ¼
P

Pþ 0:5s
, ð1Þ

where P þ 0.5 is the average processing time and s is the set-up time on the machine
with sequence dependencies. The value of P þ 0.5s is determined as follows:

kðPþ 0:5sÞ ¼
O� 1

M � 1
� 100:5, ð2Þ

where k is a factor that determines the load on the machine with sequence depen-
dencies, O is the number of operations and M is the number of machines. The
average processing time on a regular machine is 100.5. Factor k is set equal to
0.5, 1 and 2 to make the machine with sequence dependencies a bottleneck, somewhat
of a bottleneck and not a bottleneck, respectively. Factor f is arbitrarily varied as 0.25,
0.50 and 0.75 to generate different P/s ratios. This makes the ratio of the set-up time
(s) to the maximum processing time (2P) 1/3, 1 and 3, respectively. Individual values
of P and s are determined by solving equations (1) and (2) simultaneously. The
processing time on the machine with sequence dependent set-ups is sampled from
a Uniform distribution with a range of [1,2P]. Due dates are sampled from a
Uniform distribution with a range between [1,1 þ D], where D is the due date

Number of jobs 20 50 100
Number of machines 5 11 21
Set-up time 66 200 600
Due date range Low Medium High

Table 1. Experimental design.
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range parameter. Due date range parameter D is varied based on � defined as
follows:

� ¼ ðO� 1Þ � 100:5þ Pþ 0:5s:

Problems with low, medium and high due date ranges are generated by setting D
equal to 0.5��, �, and 2��, respectively. Twenty random instances (replications)
are generated for each of the 243 parameter combinations shown in table 2 resulting
in a total of 4860 problems.

7. Computational results

Since the experimental results depend upon the way T, �, � and � are selected,
these parameters are determined in a common manner in all experiments. This makes
an accurate comparison of the scheduling schemes possible. T is set equal to 150, and
� is chosen as 3, based on the results of some initial experimentation. Parameters �
and � are initialized as 0 and 150, respectively, at the first iteration, and updated at
each iteration by subtracting from these initial values the Lmax obtained during the
previous iteration.

Following Ovacik and Uzsoy (1994a), the approach described by Lenstra (1977)
is used to compare the different scheduling methods used in this study. For each
scheme, the average of

G ¼
Lmax þ dmax

BESTþ dmax

over all instances of a given problem is reported, where Lmax is the value obtained by
a given method, dmax is the maximum due date for a particular instance of the
problem, and BEST is the smallest Lmax value found for that instance by any of
the four methods studied. The constant, dmax is added to both the numerator and the
denominator of the ratio in order to avoid problems caused by non-positive Lmax

values. Clearly, this ratio should be close to 1.0 for a successful method.
When analyzing the results, it is important to remember that the LAO(�) rule

(scheme 3) and the modified LAO(�) rule (scheme 4) adapted from Ovacik and
Uzsoy (1994a) do not require any special set-up structures, while either version of
the policy (schemes 1 and 2) proposed in this study may not be effective for a
different set-up structure.

7.1. Sequence dependent set-ups on all machines
Figure 2 shows the overall relative performance and computational time on a

400MHz PC with scheduling schemes 1 through 4. Schemes 1 and 2 perform
significantly better and run only a fraction of a second slower than schemes 3 and
4 on average. Performance of scheme 2 is slightly better than that of scheme 1.

Number of jobs 20 50 100
Number of machines/operations, M/O 5/5 11/7 21/11
Bottleneck status Yes Somewhat No
F 0.25 0.50 0.75
Due date range (D) Low Medium High

Table 2. Experimental design.
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Ovacik and Uzsoy’s (1994a) original scheme (scheme 3) is significantly improved by
the proposed modifications (scheme 4) at a very modest increase in computational
time. However, even this modified scheme seems inferior to either version (schemes 1
and 2) of the scheduling policy proposed in this study.

Lower and upper confidence limits are established on the mean of 20 replications
for each one of the 81 combinations of the parameters systematically varied in the
experimentation (table 1). Confidence levels (100(1� �)%) of 95%, 90%, 75% and
60% are used to determine the t-value. The upper confidence limit on the average
Lmax obtained from the better of schemes 1 and 2 (U1/2) is compared with the lower
confidence limit on the average Lmax obtained from scheme 3 (L3). When U1/2 is
smaller than L3, the performance of the proposed scheduling technique is said to be
statistically significantly better than that of scheme 3. In addition, the lower con-
fidence limit on the average Lmax obtained from the better of schemes 1 and 2 (L1/2)
is compared with the upper confidence limit on the average Lmax obtained from
scheme 3 (U3). When L1/2 is greater than U3, the performance of the proposed
technique is said to be statistically significantly worse than that of scheme 3. Table 3
summarizes the analysis. At a confidence level of 95%, the proposed technique
statistically outperforms scheme 3 in 67 of the 81 cases (83%). This value increases
for decreasing levels of confidence. The proposed technique performs statistically
worse than scheme 3 in none of the cases with confidence levels greater than 75%

Figure 2. Relative performance and computational time of schemes 1–4.

Confidence level U1/2<L3 L1/2>U3

95% 67 (83%) 0 (0%)
90% 71 (88%) 0 (0%)
75% 73 (90%) 0 (0%)
60% 76 (94%) 1 (1%)

Table 3. Statistical analysis of results when all machines have
sequence dependent set-ups.
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and in only one of the 81 cases when the confidence level is 60%. Although the
confidence levels smaller than 90% generally do not provide strong statistical inter-
pretations, results at confidence levels of 75% and 60% are included to give the
reader a sense for the practical superiority of the proposed schemes.

In the following paragraphs, a p-value is provided for the comparisons made on
the mean performance of different scheduling schemes. These p-values indicate the
minimum level of significance that leads to rejection of the statistical hypothesis that
the means of the particular schemes are equal under the stated cases.

Figure 3 shows the effect of varying the number of jobs and the number of
machines on the relative performance of schemes 1 through 4. Scheme 3 is the
worst performer in all cases. When the number of jobs is 20, performances of
schemes 1, 2 and 4 are close to each other. When the number of jobs is 50 or 100,
schemes 1 and 2 perform almost equally well. Performance of scheme 4 is worse than
that of schemes 1 and 2 ( p-value ¼ 0.000 in both cases). Scheme 2 outperforms
scheme 1 when there are 50 jobs and 21 machines, and 100 jobs and 5 machines
( p-value ¼ 0.157). Scheme 1 is the best performer in all other cases closely followed
by scheme 2 ( p-value ¼ 0.599). When the number of machines is fixed at 5 and the
number of jobs is increased, the difference in performance of schemes 1 and 2, and
schemes 3 and 4 becomes more apparent. The impact of varying the number of jobs
in the same way seems less significant when there are 11 or 21 machines in the shop.

Figure 4 shows the effect of varying the number of jobs and the due date range on
the relative performance of schemes 1 through 4. When there are 20 jobs, perfor-
mances of schemes 1, 2 and 4 are close to each other, and significantly better than
that of scheme 3 under any due date range ( p-values of 0.037, 0.072 and 0.000,
respectively for schemes 1, 2 and 4 against scheme 3). Scheme 1 is the best performer
with low and medium due date ranges ( p-value ¼ 0.000), and scheme 4 is the best
performer with a high due date range ( p-value ¼ 0.000). The effectiveness of scheme
4 with a high due date range may not be surprising, as one should expect this scheme
explicitly to consider virtually all schedules that may yield the best solution when
there is little or no congestion at key resources. When the number of jobs is 50 or
100, schemes 1 and 2 perform almost equally well; however, the performance of
schemes 3 and 4 are significantly worse in most cases ( p-value ¼ 0.000). Scheme 4
performs slightly better than schemes 1 and 2 when there are 50 jobs and the due date
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Figure 3. Effect of varying the number of jobs and the number of machines on the relative
performance of schemes 1–4.
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range is high ( p-value ¼ 0.000 against both schemes 1 and 2). Scheme 3 is the worst
performer in all cases. For a given number of jobs, the difference in the performance
of schemes 1 and 2, and schemes 3 and 4 gets less significant for increasing due date
ranges. This may suggest that the methods proposed in this study are more effective
in comparison to the benchmark techniques when there are many jobs competing for
the same machines.

7.2. Sequence dependent set-ups on a single machine
Figure 5 shows the relative performance and computational time with scheduling

schemes 1 through 4 on average. Schemes 1 and 2 perform almost equally well. The
average performance with schemes 3 and 4 is worse than that with schemes 1 and 2.
Average computational times on a 400MHz PC are less than 1 second with all
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Figure 4. Effect of varying the number of jobs and due date range on the relative perfor-
mance of schemes 1–4.
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schemes. This suggests that the modifications proposed in this study to improve the
original technique developed by Ovacik and Uzsoy (1994a) are useful.

Lower and upper confidence limits are established on the mean of 20 replications
for each one of the 243 combinations of the parameters systematically varied in the
experimentation (table 2). Table 4 summarizes the analysis. At a confidence level of
95%, the proposed technique statistically outperforms scheme 3 in 56 of the 243
cases (23%). This value increases for decreasing levels of confidence, reaching 190
(79%) with a confidence level of 60%. The proposed technique performs statistically
worse than scheme 3 in none of the cases with confidence levels greater than 75%
and in only one of the 243 cases when the confidence level is 60%. Performances of
schemes 1 and 2 and that of scheme 3 are closer when only one machine has sequence
dependent set-ups. This may be because performance depends more on scheduling of
the sequence independent (regular) machines.

As in the previous section, p-values are provided for the statements made on
the mean performance of different schemes under specific cases in the following
paragraphs.

Figure 6 shows the effect of varying the number of jobs, machines and operations
on the relative average performance of scheduling schemes 1 through 4. In general,
schemes 1 and 2 produce significantly better schedules than schemes 3 and 4
( p-value ¼ 0.000). Modifications proposed in this study on the original technique
developed by Ovacik and Uzsoy (1994a) seem to improve the average performance,
as the results are better with scheme 4 than scheme 3 ( p-value ¼ 0.000). Differences
in performance among the scheduling schemes become more significant when the
number of jobs is increased for a given number of machines and operations.
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Figure 6. Effect of varying the number of jobs, machines and operations on the relative
performance of schemes 1–4.

Confidence level (%) U1/2<L3 L1/2>U3

95 56 (23%) 0 (0%)
90 80 (30%) 0 (0%)
75 119 (50%) 0 (0%)
60 190 (79%) 1 (0%)

Table 4. Statistical analysis of results when only one machine has sequence
dependent set-ups.
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Figure 7 shows the effect of varying the level of congestion at the machine with

sequence dependent set-ups for 20, 50 and 100 job problems. Scheme 1 is the best

method in all cases except when there are 20 or 100 machines and the machine with

sequence dependent set-up times is not a bottleneck ( p-value ¼ 0.000). Scheme 3 is

the worst method in all cases. Differences in performance of different scheduling

schemes for any given number of jobs are more significant in the cases when the

machine with sequence dependent set-ups is more of a bottleneck.

Figure 8 shows the effect of varying the number of jobs and the due date range on

the relative performance of scheduling schemes 1 through 4. Scheme 1 and scheme 3,

respectively, are the best and worst performing scheduling methods in all cases. The

difference in average performance of the four schemes becomes less significant as the

due date range is increased for a given number of jobs, and as the number of jobs is

decreased for a given due date range. Hence, bigger differences in performance are

observed when there are many jobs competing for the same machines and when the
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Figure 8. Effect of varying the number of jobs and due date range on the relative perfor-
mance of schemes 1–4.
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Figure 7. Effect of varying the number of jobs and the level of congestion at the machine
with sequence dependencies on the relative performance of schemes 1–4.
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number of alternative schedules that may yield good results is small. Therefore, the
methods proposed in this study are more effective in solving difficult problems than
the benchmark methods.

8. Conclusion and future research

Two general job shop settings are analyzed. In either setting the proposed
schemes 1 and 2 outperform benchmark schemes 3 and 4 on average. In general,
the performances of schemes 1 and 2 are almost equally good. Scheme 4, which is a
modification of the LAO(�), rule has a better average performance than that of the
original LAO(�) rule (scheme 3). Finally, differences in performance of the four
scheduling schemes become more significant when more jobs compete for the
same key resources in the shop.

The basic set-up structure examined is one of the simplest of those seen in
practice. It is necessary to address scenarios with more general set-up structures
and explore scheduling methodologies in the light of the findings of this study.
Bounding strategies for the problem need to be investigated. Obtaining a good
theoretical lower bound seems extremely difficult, but it may be possible to construct
statistical lower bounds at least for some key scenarios (see for example Golden and
Alt 1979). Modelling and solving parallel machine problems using the Virtual
Factory is another fertile but challenging area of research.
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